KORTEWEG-DE VRIES EQUATION: A COMPLETELY
INTEGRABLE HAMILTONIAN SYSTEM

V. E. Zakharov and L. D. Faddeev

The Korteweg-de Vries equation (KdV) arose long ago in an approximate theory of hydrodynamic
waves, . .

U — butte - tige =0 w(x B, = u(x) — oo {x< x; u(x)—>0, |x|— o0 (1)

recently it has become the object of intensive study [1-3, 12]. A group of scholars, including Gardner,
Green, Zabusky, Kruskal, and Miura, has made the following two important observations:

1. Equation (1) with smooth initial data admits an infinite set of first integrals. These integrals
have local densities, i.e., they are representable in the form /,[u] = j P, {(u,uy,, ..)dx, where Pplu, ug,...)

-is a polynomial in u and spatial derivatives of u with orders up to n—2, which contains the term un. The
first three such polynomials have the form Py(u) = u, Py(u) = u?, Pylu, uy) = u® + (ui/ 2). An explicit form
for eleven of the Py is given in [2, 3]; in [3] an explicit procedure for determining them is given. An alter-
nate approach for determining the Pplu, ux, . . J) has been developed by Lax [4].

2. An explicit solution of the KdV equation can be obtained by using the formalism of a scattering
problem for the Schroedinger equation,

— Yux + u(x) P = B (2)
We clarify this in more detail. If

J e a0 de < oo, (3)
then Eq. (2) has a two-fold positive continuous spectrum and a finite number of negative characteristic
values - ‘K.%, l=1,...,n. For proof, see, for example, [5]. Let r(k) be the coefficient of reflection on the
left, i.e., a function involving the solution ¥(x, k) of Eq. (2) in the asymptotics for x — —oo, this function be-
ing uniquely defined by the conditions

Y(x, k) = e - r(k)ye ™ o(l), x—> — oo; Y(x, k) =t (k)e* +o(l), X — oc. ' (4)

Further let ¥] (x) be the characteristic functions of the discrete spectrum, normalized by the condition

a0

¥ = enl¥(1+0(l)),x ——w,andel,l - 1, ..., m, the corresponding normalizing factors being ¢; = <j

V7 (x) dx> ) . The set s = (r(k), %], ¢} will be called the scattering data for Eq. (2). The mapping u(x) — s
of potentials u(x) into the scattering data s is uniquely invertible. The corresponding procedure for re-
covering u(x) from s, which is the inverse scattering problem, was formulated for the first time in [6] and
investigated rigorously in [5]. In [5] necessary and sufficient conditions on the scattering data, correspond-
ing to potentials satisfying condition (3), were obtained.

The remarkable result given in {1] consists in the following. In the set of scattering data we consider
the action of the one-parameter group
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r(k)—e®rk), w—w, c— e’ ‘tc,. (5)

It proves to be the case that the corresponding motion in the set of potentials u(x) —u(x, t) determines the
solution u(x, t) of the KdV equation.

In the present paper we give a new interpretation of this result and a new derivation based on it.
This interpretation provides, in our opinion, a simple explanation of the somewhat puzzling conclusions
given in [2].

Our interpretation may be formulated in the following way. The KdV equation is a completely inte-
grable Hamiltonian system. The mapping u — s plays the role of a transformation, transforming the vari~
ables u(x) into canonical variables of the type involving angle and action variables (see, for example [7]).

In order to justify these assertions we must:

1) producea simplicial form © on the set of potentials u(x) and a Hamiltonian function H[u] on this
set, which generate the KAV equation according to the rules of Hamiltonian mechanics (see [8], for example);

2) calculate the preimages of the form € and the Hamiltonian H[u] under the mapping u ~ s and ex-
press the canonical variables in the action-angle form in terms of the scattering data.

The first problem is easily solved. It is not hard to see that the KdV equation may be written in the
form

d 8lslu)
Uy = T B ! (6)

where the symbol 6H[u]/6u (x) denotes the gradient (Frechet derivative) of the function Hfu]. It was pointed
out in [4] that this result is due to Gardner.

The notation (6) for the KdV equation is-clearly Hamiltonian, The corresponding simplicial form
oo X
Q (S, Spu) = | dx | dy (8,0 (x) 8,0 (4) — 8,1 (4) Syt (x)] @
has constant coefficients in the variables u and is therefore closed. We are using here the older but more
natural and, for our infinite dimensional case, more suitable coordinate notation for a differential form in
terms of the "local coordinates" u(x) and their differentials, the variations &u(x) and 6s;u(x). The role of
the Hamiltonian H[u] is played by the integral of motion

Hul =1;]u] = § (u’(x) -+ ——ux) dx.

We devote the major part of this paper to a solution of the second problem. In §3 we express the
Hamiltonian Hfu] in terms of the scattering data in the following way:

H[u]=——i—$ k*ln(l—]r(k)]*)dk—«—Zn, (8)

=1

We will show that this expression is a special case of the formulas for traces [9, 10, 11]. Simultaneously
we obtain explicit formulas for all the first integrals In[u], deriving thereby simple recursion relations
for the densities Pp(u, ux, . . .). Interms of the scattering data these integrals may be expressed by
formulas analogous to Eq. (8); i.e., they involve moments of the function In (1—|r(k) |% and powers of w].

In §2, using the formalism of the inverse scattering problem, we express the form £ in terms of the
scattering data and we find the corresponding canonical variables. We show, in particular, that P(k) =
—(k/m) In (1= | vk} %, p; = %§, 1 =1,..., m,are variables of impulse type, so that the fact of the constancy
of the integrals Iy[u] becomes trivial. Solution of the Hamiltonian equations may thus be trivialized with
the corresponding answer supplied by the formulas (5).

In § 1, as a preliminary, we supply, without going into a detailed derivation, the necessary facts of
scattering theory for the one-dimensional Schroedinger equation over the entire axis in a form suitable to
our purposes.
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The present paper could well be written in the language of the theory of suuoth infinite~dimensional
manifolds, We shall not pursue this modern tendency in contemporary mathematical physics if only to
keep the paper within appropriate bounds. For this reason we omit many of the proofs and concentrate in-
stead on the details of the formal derivations.

§1. Scattering Theory Background Information

The Schroedinger Equation (2), subject to the condition (3), has solutions f(x, k) and g(x, k), uniquely
defined for all real k by the conditions

f(x» k)=eikx+o(1)’ X % o¢) g(ka) =e—ikx "!‘0(1-)1 X > — 20, (9)

In addition, f(x, k) = f(x, —K), g(x, k) =g(x, —k). The pairs f(x, k), f(x, =k) and g(x, k), g(x, ~k) form, for
k = 0, two fundamental systems of solutions of Eq. (2). The following relations hold:

f(x. k) =b (k)g (xv k) + a (k)g (X, "'k)’ g (x’ k) = —b (—‘k)f (X, k) + a (k)f (xr "k)! (10)
where the coefficients a (k) and b(k) satisfy the conditions
a(—ky=a(k); b(—k)y=b), |af=1-+ b (11

In addition, a(k) = (1/2ik) if(x, k), g(x, k)/, where {f, gh = fxg gxf

The solutions f(x, k) and g(x, k) and the coefficient a(k) may be continued analytically into the upper
halfplane of the variable k even for large k:

a(k)=1+0(r/t‘|)’ fx, k)e‘”‘—1+0(:k) g("’k)“kx=1+o(|'llc*|)'

The last two bounds are uniform with respect to x in the 1nterva1s (a, =) and (—e, B), respectively, where
o, B are arbitrary finite numbers. :

For Im k = 0 the solution f(x, k) decreases exponentially for x — =, and g(x, k) does so for x —~—=,
If a(in) =0, the solutions fF(x, in) and g(x, in) are linearly dependent, so that ¥(x) = g(x, in) decreases
exponentially for [x| — =,

Py =e(1+o(1), x—>—, P)=de(l +o(1)), x>0, (12)

and thus defines a characteristic function of Eq. (2). The corresponding characteristic value (in)? must
be real since Imw =0 and the function ¥(x) is real. We denote the derivative of g(x, k) with respect to k
for k = k; by ¥(x). This function takes on imaginary values and has the asymptotic behavior

P (x) = O (xex%), x— — oo, P (x) = he** (1 + 0 (1)), x— oo. (13)

From the Schroedinger equation we readily find that

1 ¢ .
S = S YPdx = ihd. (14)
We assume that a(k) has a total of m zeros, and we index by [,1= 1, 2, ..., m, the corresponding
functions ¢l(x) and ¥3(x), normalizing constants ¢, characteristic values ], and asymptotic coefficients
di and b;.

Consider the solution ¥(x, k) =f(x, k)/a(k). From Eqs. (9) and (10) it is obvious that ¥(x, k) satis~
fies the asymptotic condition (4), where the coefficient of reflection is representable in the form

r (k) = b (k)a (). (15)
We determine in this way completely the set of scattering data s = (r (k), «, ¢l).

We note here that the coefficients a(k) and b(k) may be determined from the scattering data. Indeed,
from Egs. (15) and (11) we obtain
lap—|bf 1

t=lrf =" = e

(16)

defining |a(k) | with respect to the coefficient of reflection. The condition of analyticity and the knowledge
of the zeros of a(k) enables us to write a(k) in the form
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1 0 In(—
a (k) —exp{m S n k_'_’q(q”)dq}[[k ,Imk==0, a(k)—ilf‘:”la (k~+ie), Imk =0. (17)

—c0

Knowing a(k) we can then find b(k) from Eq. (15).

We proceed now to the inverse problem. Its solution is based on an integral equation, obtained for the
first time in [6], which is a particular case of the Gel'fand-Levitan equation. Let s; = (r4(k), “l(l)’ c;l),
l1=1,..., m) and sy = (ry(k), ul(z), cl(Z),l =1, ... my be the scattering data for the two potentials u;(x)
and u,(x). We formulate the kernel F(x, y),

| oc my my
Y =55 ( [ro(R) — ri(k)l gy (x, k) g1 (y. k) dk + 2 g (x, i) g1 (y, in?) Zdi)gl(x in") g, (y, ix”),  (18)
i 1=

& =1

and consider the equation for the kernel K(x, y),

Ky +Fry+ [KeaFeyd=0, x>y (19)

—0c

This equation is uniquely solvable; also
1) =109 = £ K (5,2, (20)
For uy = 0 this equation permits us to reestablish the potential uy(x) from its corresponding scatter-
1n% data. In the definition (18) it follows that one should take gy(x, k) = e~ikx and cfl) =0. For cf and
2 we may take arbitrary positive numbers, with none of the % being equal. The coefficient r(k) must

sat1sfy the conditions rk) = O(1/lk]), k| — =; [(k) = 1, and the Fourier transform of the coefficient b(k),
namely

B(x)= o Q b (k) e-i*=dk ,

must satisfy the condition
¢ d
{4 12| B |dr< oo

(see [5]). Generally, in the matter of smoothness the functions u(x) and dB(x)/dx behave identically.

§2. Calculation of the Form £ in Terms of the Scattering Data

Consider the potential u(x) and two of its variations éu(x) and &u(x). Let s, 645, 8,8 be the corres-
ponding scattering data and their variations. We must calculate 2(&u, &u) in terms of s, §;s, and &,s.
To do this we need to find an explicit expression for éu in terms of s and 8s, and then substitute it into
definition (7) of the form &.

We now make these calculations. From formulas (18), (19), and (20) we obtain the following expres-
sion for the variation éu(x):

—_x

wm=-£b§S&m¢mMM¢;MwM+mwmmeﬂ,
=1

where the notation g(x, k), rk), #(x), ¢l(x), %], and ¢] is thatAintroduced above. Substituting these formulas
for #ju(x) and &u(x) into Eq. (7) leads to the following expression:

%@wm—\\Akmwaw-wmwmmw
+ lz ,_“ By (k) 18,1 (k) 8%, — 8y, 8or (R) dRe 4 2 [Cy (8y3t8ac; — Bye;8ym1) - Dy (86,8, — O,%;8,%)]
=1 — Lj=1
+ 3 j E( (k) [8yr (k) 8,0, — 8,00,r (k)] dk —+ 2 Fy; 18,6856 — 8,c8,0/],

l=1 — Lj=1

283



where

Ak =7 $tg b g (xoadan Byt =2 (@2 k), v (3) (1))

—oc —0c

¢

Cy=2icr [ Cp(0)e(0), WO ds Dy = — ey § {91(0) G (), 5 () i ()} i,

«©

E# =g {@envien F= { @i, vw)d

-0

and where we use the usual notation {f , gJL = fxg—gxS for the Wronskian determinant. The integrals ép—
pearing in the definitions of A(k, q) and Bi(k) are to be taken in the sense of the theory of generalized func-
tions.

_ It proves to be the case that all the integrals mentioned can be calculated explicitly and expressed in
terms of the scattering data only. We show this in detail in the case of the integral for A(k, q). From the
Schroedinger equation it is not difficult to show that

g0, B 8 (%, 0) = —r—r 7 (€ (6 ), 8(x. )} (21)

On the other hand,
{8% (xs &), g% (x, q)} = 28 (x, R) g (x. q) {g (x, k), g (x, 9)},

whence, using Eq. (21), we have
{8 (4, 2), 8 (1,0)) =~ o (lg (5, B), (. D)

The latter formula enables us to express the integrals A(k, @), E;(k), and Fyj in terms of the asymptotic be-
havior of the corresponding Wronskians. It is evident here that Ej(k) = 0, F7j = 0, and we obtain for A(k,
q) the expression [see (9), (10)]

Al g) = lim —T . r (@ (R a(@)i (g — B eteo

+al)b(—q)itk+q) e @BV —a(q)b(—R)ik+q)eEEIN = b(—R)b(—q)i(k—q)e DN —(i(q— k)l B+ V)],
We use a known relationship from the theory of generalized functions,

SN
lim P——— = ind (),

Nesoo

where the symbol P means that 1/x is taken in the principal value sense. The final expression for Ak,q)
is then

Akg)="Ela(B)d(k+0) + = PEELa(Ba@b(—Rb(~a),

where in simplifying the first term we used the fact that by virtue of the relations (11)
jalt — bl =(alr—|oP)(jaP+|o) L1l =]aP +]bP-1=2]al’

The expressions for By(k), C7j, and Djj are obtained in an analogous way. In addition we also need the
identities

(€ 0, R 0 b () = — o - 7 (€ (1), W (9} £ (), B () + -oes
]
00 B () b (= (0 B0 b ) 91 (00 + (0 8, 080 G, B D) + s

where we omit writing the total derivatives of rapidly decreasing terms. We then obtain the result

k2 u—{-u
&m=—i—- :

E ATy

a(kyb(—k, pll_sll ‘c—' yDyj=— 4 (1 — 8y),
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where in the calculations we have used the asymptotic relations (12) and (13) and the identity (14).

The resulting formulas enable us to express the form Q in terms of the scattering data:

Qu (B, 8,8) =\ )@ (R) 2 (837 (B) 87 (— B) — Bur (— £) 87 ()

+ 3 (=5 a®a ) b= Hb(— )18 (018 (q) — B @)y ()1 dk dg

° 2
!

{2 a ) b(— )18 (0B, — Syubr ()1

-+ 2 Z - 1617‘16251 — 8,c0,m] + 2 Z yl Bl j [8,2,0,%; — ‘51"/ o ¥y]- (22)

”#_ll % _/l
We show now that the set of variables

P = — L —1r@p, Q(k)=argb(k>,

pr = 7/.?, g = 2In b[,‘ b[ k)lla:zaly l= 1:”- , 1, (23)

lCl dk

is a canonical set, i.e., the form & in these variables takes on the following appearance:

-m

(85, 85) = | (8P (£) 8,0 (8) — 8,Q (k) 8,P (k) lke + 3} (8,p,8.9, — 8,018.p1). (24)

—s =1

Without dwelling on the motivation for the choice of variables (23) we reassure ourselves of this choice by
means of a direct substitution. Noting that arg b (k) = argr(k) + arg a(k), and using Egs. (17), we obtain

1 br(e)  bri—R)) w2 P ¢
b= [ - B L

7’ r(—&) / 57 4r(q)12 (r(@)dr(— q) + r(—q) b7 (g))dg.

—cc

Further, it follows directly from Eq. (22) that
3 1 S
OP (k) = ERECL (r (k) 8r (— k)— 1 (— k) br (k)), 8p; = 2%,8x,.

Finally, using Eqs. (17) and deleting terms proportional to §»J, we have

Gcl

= 22 Sq—u 1_;,(4), (r(@)dr (—q) + r(—q) br(g)dg -+ - ...

We substitute these expressions for the variations in Eq. (24). The resulting expression is easily trans-
formed to the form (22) if account be taken of relations (11), (15), and (16).

We have thus expressed, in terms of the scattering data, a set of variables, which is canonical for
the simplicial form ©. In the following section we confirm that this set plays the role of variables of angle~
action type with respect to the Hamiltonian Hfu].

§3. Identities for Traces and the Behavior of Their Sums

In this section we shall assume that the function u(x) is infinitely differentiable and along with its de-
rivatives decreases rapidly. In this caseIna (k) admits for {k|— w the asymptotic expansion in inverse
powers of k,

Inaky = D . T (25)

n
n=1 k

We present two methods for calculating the coefficients cp. Eciuating the coefficients obtained by these
two methods then yields the desired identities expressing the integrals of motion in terms of the scattering
data.
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To prove the relation (25) we note that by virtue of the aforementioned relationship between the
smoothness properties of u(x) and the Fourier transform of the coefficient b(k) the latter coefficient de-

creases rapidly for |k| — . By virtue of relations (11) and (16) this implies the rapid decrease of
In (1-{r{k {9, i.e., of the integrand in Eq. (17). We can therefore justify the expansion (25), where

1C 2 O
=0 Gy =3 § R — | r(B)) db— g S (i),
— =1

The second method for calculating the coefficients cy, is based on the Schroedinger equation. We
consider the function y(x,k) =lnf(x, k), which is defined for all sufficiently large k], Imk > 0. For
Im k > 0 the function y(x, k) exhibits the asymptotic behavior

Y k) =ikx +0 (1), x— oc; (%, k) = ikx + Inatk) +o(l), x—— o (26)

- Consider the function
3 (e k) = . x, By — ik,

It is a solution of an equation of Ricatti type
Gy + 0% —u -+ 2iko =0 (27)

and decreases for x — =. From the relations (26) we see that

na(®)=— [a(xk)dr.
_ This equation, obtained for Im k > 0, applies in its smoothness even to the real axis. Using the differential
equation (27) we may confirm that o (x, k) has the asymptotic representation

where the coefficients on(x) satisfy the recursion relations
d o
S0 (¥) = — 2= Gn1 (8) — D) Swia (¥ Sk (1) R =2, Sy (x)=u(x}:
k=1
The first several coefficients have the form
Sp=—uy, Gy=—Uldtuy Op= —Upe + 4l Oy = lUperz— Busi, — Sui + 248,

We see that 0,(x) and 0,(x) are total derivatives. This property holds for all the azj(x). Returning to In
a (k) we may assure ourselves of the validity of Eq. (25), where

[

Cojyy = — (—2!?)2“1 S Sajn (x) dx,

—_

so that

o

) & ¢
= —-3 Su(x)dx, 3= — g~ Su’(x)dx, "5="§EZE S(Zu"—{-ui)dx.

A -~ —te

8

We thus arrive at the set of relations
¢ R 22 GHY M gint
\ountde=(—1y2v P @yde ~ 5 S pe,

—0 =1
where in writing the right-hand side we have used the notation introduced in Eqs. (23). In particular,

» mo
il =+ §suax—s (wPwyae— 32 S

=1
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so that the Hamiltonian is actually a function of "impulses" only, which justifies our analogy between the
variables P(k), p7, Q(k), q7 and the variables of angle-action type in Hamiltonian mechanics.

We have now finished the solution of the second problem formulated in the introduction. We note

now that in the variables introduced here the KdV equation appears as follows:

d d d d
TPB=0, p=0 Q=8 - q=-—28

in this form its solution is a trivial matter. The solution is given by the formulas (5).

On the basis of the mechanical analogy developed here we have reproduced all the results obtained

in [2-4]. The existence of an infinite set of integrals of motion for the KdV equation has been shown to be
a trivial consequence of this analogy. Our method also enables us to give an explicit solution for all the
generalized KdV equations

d < 81, [u]
U= 2 9. (f) ik

Our method, however, is most attractive through its systematic point of view: we now have at our disposal
a nontrivial model of an infinite-dimensional completely integrable Hamiltonian system.

1.

o0

10.

11.

12.

LITERATURE CITED

C.S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, "Method for solving the Korteweg-de
Vries equation,” Phys. Rev. Lett., 19, 1095-1097 (1967).

R. M. Miura, C. S. Gardner, and M. D. Kruskal, "Korteweg~de Vries equation and generalizations,
II. Existence of conservation laws and constants of motion," J. Math. Phys., 9, No. 8, 1204-1209
(1968).

M. D. Kruskal, R. M. Miura, C. S. Gardner, and N. J. Zabusky, "Korteweg~de Vries equation and
generalizations, V. Uniqueness and nonexistence of polynomial conservation laws," J. Math. Phys.,
11, No. 3, 952-960 (1970).

P. D. Lax, "Integrals of nonlinear equations and solitary waves"” Comm. Pure Appl. Math., 21, No. 2, .
467-490 (1968). '
L. D. Faddeev, "Properties of the S-matrix of the one-dimensional Schroedinger equation," Trudy '
Matem. in-ta im. V. A, Steklova, 73, 314-336 (1964).

J. Kay and H. E. Moses, "The determination of the scattering potential from the spectral measure
function, III" Nuovo Cimento, 3, No. 2, 277-304 (1956).

L. D. Landau and E. M. Lifshits, Mechanics, Addison-Wesley, Reading, Mass (1960).

V.I1. Arnol'd, Lectures on Classical Mechanics [in Russian], Moscow State Univ., Moscow (1968).

I. M. Gel'fand and B. M. Levitan, "On a simple identity for the characteristic values of a differential
operator of the second order,” Dokl. Akad. Nauk SSSR, 88, No. 4, 593-596 (1953).

I. M. Gel'fand, "On identities for characteristic values of a differentiable operator of the second
order," Usp. Mat. Nauk, 11, No. 1, 191-198 (1956).

V. S. Buslaev and L. D. Faddeev, "On formulas for traces of a Sturm-Liouville singular differential
operator," Dokl. Akad. Nauk SSSR, 132, No. 1, 13-16 (1960).

V. E. Zakharov, "A kinetic equation for solitons," Zh. Eksp. Teor. Fiz., 60, No. 3, 993-1000 (1971).

287



