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The nonlinear instability mode of a monochromatic wave in a medium with an inertia- free non- 
linearity is analyzed theoretically and simulated numerically. It is shownthat, if longitudinal 
and transverse instabilities occur simultaneously, the wave is split into three- dimensional clus- 
ters containing amplitude singularities. As a result, the monochromatic wave "breaks down," 
which is accompanied by a considerable widening of its spectrum and angular divergence. 

1. In c e r t a i n  e x p e r i m e n t s  with se l f - focus ing  of l ight  [1, 2, 3] one has o b s e r v e d  a cons ide rab le  widen-  
ing of the o r ig ina l ly  v e r y  n a r r o w  s p e c t r a l  line. The pu rpose  of the p r e s e n t  s tudy is  to explore  the m e c h a -  
n i s m  by which the s p e c t r u m  is  widened,  spec i f i ca l ly  in a m e d i u m  with an i n e r t i a - f r e e  nonl inear i ty .  Such a 
m e c h a n i s m  could be the s imu l t aneous  buildup of longitudinal  and t r a n s v e r s e  ins tabi l i ty  in the light wave [4, 
5, 6], fol lowed by a spli t  of the wave into t h r e e - d i m e n s i o n a l  c l u s t e r s  which "co l l apse"  within a finite t ime.  
This  phenomenon  m a y  be ca l l ed  the b reakdown of  a m o n o c h r o m a t i c  wave.  The phenomenon  is a s s o c i a t e d  
not only with light,  and it m a y  a l so  be o b s e r v e d  in o the r  non l inea r  d i spe r s ive  media ;  f o r  this r e a s o n i t  s e e m s  
wor thwhi le  to ana lyze  it f r o m  a g e n e r a l  point  of view. 

2. We c o n s i d e r  an  i s o t r o p i c  non l inea r  medium.  When the m e d i u m  is s l ight ly  nonl inear ,  a m o n o c h r o -  
ma t i c  wave 

(p ( r ,  t) = % cos ((ot - k~), ~o = ~o~ + q l % l ~ 

H e r e  Wk r e p r e s e n t s  the mode  of wave d i spers ion ,  and q c h a r a c t e r i z e s  the non l inea r -  can t r ave l  th rough  it. 
i ty of the med ium.  

We now c o n s i d e r  a n e a r l y  m o n o c h r o m a t i c  wave and denote  i ts  comp lex  envelope by r 

(r, t) = Re [~ (r, t) exp ('-- io)~t + ikr)] 

This  envelope sa t i s f i e s  the equat ion [5, 6, 7, 8, 9] 

Here  V .  is the g roup  veloc i ty .  

F o r  a m o n o c h r o m a t i c  wave we have 

--- % exp (--iq l % pt) 

In an i n e r t i a - f r e e  d i e l ec t r i c  with a s c a l a r  nonl inear i ty  m e c h a n i s m  and with the r e f r a c t i v e  index 

n = no (co) + an,  IE t s 

Eq.  (2.1) holds t rue  at  any e l l ip t ical  po l a r i za t ion  of  the wave [10]. M o r e o v e r ,  

(2 .i) 

(2.2) 

c ,, l d~ ((on0) V. 6n. V. -- n ' 
c% = v , ~  do)~ ' q = k no ' (o) o)~ 
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Linearizing Eq. (2.1) with respect to the solution (2.2) and assuming a perturbation 6r 

5 ,  ~ exp ( - - iq l  To I ~ t) - i~t -}- ipr 
we ob ta in  

/ V ,  2 I i I . ~ , 

= v,p + v _  + ) 

If q > 0 and Wk" > 0, then the  m o n o c h r o m a t i c  wave  i s  s t ab le ;  o t h e r w i s e ,  i n s t a b i l i t y  w i l l  o c c u r .  If q < 0, 
t h e r e  o c c u r s  a t r a n s v e r s e  i n s t a b i l i t y ,  and s e l f - f o c u s i n g  of the  wave  r e s u l t s .  If  a t  the  s a m e  t i m e  r > 0, 
then  t h e r e  o c c u r s  a l s o  a l o n g i t u d i n a l  i n s t a b i l i t y .  Only the  l a t t e r  c a s e  wi l l  be  c o n s i d e r e d  f u r t h e r .  

We note,  in  addi t ion ,  tha t  E q. (2.1) c o n t a i n s  the  i n v a r i a n t s  

Jl= iI~l~dr 

-7--I v• 

P~ = -~ - I  (**v~,- ,v• dr (2.4) 

�9 r I i  

3 .  A f t e r  chang ing  to d i m e n s i o n l e s s  v a r i a b l e s  

[ V, V/,. ,~ = v , k t ,  r ,  = k,., ,.' = k I ~--~;') t ~ - -  V , t )  

u=(  Iql )'/, 
\ 2kV, / ~2 

we have  the equa t ion  

with the integrals of motion 

I 1 :  IluiZdr 

S ---- t f (u*Vu -- ~Vu*) dr 

H e r e  V i s  the  t h r e e - d i m e n s i o n a l  L a p l a c e  o p e r a t o r  in the v a r i a b l e s  r_L, z ' .  

We wi l l  r e s t r i c t  the  a n a l y s i s  to  the  s p h e r i c a l  s y m m e t r y  c a s e .  Then 

(3.1) 

t 0 ~ 0 
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We introduce into the analysis  the following quantities: 

A . =  i r ~ l u l ~ d r  
o 

B = i i r a ( u , . O u  Ou*, Or ~ u -ov--r } d r  
p 

F r o m  Eq. (5) we obtain 

and f rom this the inequality 

OA _~_ B ~-~ O, OB r~ I u ]~ dr o--i- a---~ + 212 = 
0 

A <~ I2P q- B (0) t ~- A (0) (3.2) 

In a medium without nonlinearity, where q = 0, the integral J2 is always positive. In a nonlinear me-  
dium there may be u(r, t) distributions for  which J2 < 0. We will prove that the development of such dis tr ibu-  
tions will, after a finite t ime, produce a singularity. 

Indeed, 

I~ = 0 . 2 5 q ( ~ ) 1 / 2 ] ~  

and is also negative when J2 < 0. After  a finite time, according to (3.2), A should also become negative but, 
on the other hand, A is a large positive quantity. This contradiction indicates a breakdown of the solution 
to Eq. (2.4) af ter  a finite t ime, when J2<0. 

4. Equation (3.1) was analyzed numerica l ly  on the BI~SM-6 computer  at the Computation Center, Siber-  
Jan Branch, Academy of Sciences of the USSR. 
bution 

U (r~ 

and the boundary conditions as 

The initial condition was defined in t e rms  of a Gauss d is t r i -  

O) = a oexp (--r 2 l l  ~) 

dL (o,  t) = O, u ( ~ ,  t) = 0 Or 

Equation (3.1) (with a spherical  Laplace operator) was approximated by an implicit difference grid 
with a variable interval along the radius. The interval  at the per iphery  was made over  1000 t imes l a rge r  
than at the center,  and this made it feasible to integrate numerical ly  over  a sufficiently large radius r (over 
20 t imes l a rge r  than the initial half-width of the distribution). The accuracy  of computations was checked 
by how closely the invariance of I l and 12 was maintained. The trend followed by the amplitude Iu (0, t) l for 
ao= 1 at var ious  values of 12 is shown in Fig. 1. As can be seen here, at sufficiently small  values of 12 a 
singulari ty - a "pull down" - appears  af ter  a finite time. As the machine simulated experiment indicates, 
a negative 12 is not a necessa ry  condition for  a pull-down - it occurs  a l ready when 12 < 0.675. A typical pat- 
t e r n -  an appearance of the singularity - is shown in Fig. 2 (for l = 4 ) .  Evidently, the singularity envelops 
a region of ra ther  small  radii. 
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It was  ac tua l ly  poss ib le  to o b s e r v e  a pu l I -down with lu (0, t) l up to app rox ima te ly  6.3. Af te r  that,  be -  
cause  of the high g rad ien t s  nea r  the axis ,  the in tegra l  of mot ion  12 broke  down. However ,  in tegra l  11 at that  
ins tant  and dur ing the subsequent  pe r iod  of t ime r e m a i n e d  unchanged wi th inAI1/ I i~  10 -5. Thus,  one m a y  con-  
elude that  f u r t h e r  computa t ions  will  be i n c o r r e c t  n e a r  the s ingu la r i ty  only, and one may  re l i ab ly  cont inue to 
follow the evolut ion of the r e m a i n d e r  of the prof i le .  

At t ~ t  0 the re  a p p e a r s  a " r ipp le"  a c r o s s  the en t i re  prof i le ,  which m a y  be i n t e rp r e t ed  as  the a p p e a r -  
a n t e  of waves  p ropaga t ing  f r o m  the cen t r a l  region.  These  waves  c a r r y  away the posi t ive  value of in tegral I2;  
n e a r  the s ingular i ty ,  the in tens i ty  of 12 tends t o w a r d - ~ .  

The s t e a d y - s t a t e  solut ions  of Eq. (5) in the f o r m  u = eit/2(p (r) were  a l so  obtained numer i ca l ly .  Here  

t 0 r2 o(p T3 = r~ Or Or --  ~ -  0, % ( 0 ) = 0 ,  q ~ ( ~ ) = 0  (4.1) 

Equat ion  (4.1) has an infinite n u m b e r  of soIutions;  g r a p h s  of the f i r s t  three  a re  shown in Fig.  3. The 
ampl i tudes  of ~p (0) and the va lues  of in tegraI  I t fo r  the f i r s t  set  of modes  a r e  

t 2 3 4 5 6 7 
~p (0) 4.34 t4.06 28 .68  46 .87  65 .45  81 .38  94.39 

J1 1.50 9.47 2 8 . 7 2  64 .09  t21.02 205.68 324. t8 

A f t e r  mul t ip ly ing  Eq. (4.1) by r2(fl and in tegra t ing  ove r  r f r o m  0 to ~,  we have 

- - S r 2 ; p r 2 d r - - ~ r e @ d r + i r e ~ p ' d r = O  
o ~o o 

After multiplying further by r3~rand integrating, we have 

t 2 r2~G~dr -- { ~ r~cp2dr + 3 ~ r  ~ i)4d r = 0  
0 0 0 

From here 

I2 = r2CPr2dr --  T r2 { 4dr= r2-P 2dr = [ l ~  O 
0 LO 0 

The integral 12 is positive and equal to 11 for all steady-state solutions. This result has been con- 
firmed by very precise computations (5-7 digits) and it proves further that the analysis is correct. 

The stability of the first steady-state mode was also analyzed numerically by introducing a Gauss per- 
turbation into the amplitude, adding thus a relative incrementdI1/If-, 10 -2 to the integral. The steady-state 
mode dissipated, whether the increment was negative or positive. 

The graph in Fig. 4 shows how the magnitude of the amplitude varies with time at r=0. 

5. The breakdown of a wave can be interpreted physically as follows. At ~0k" -- 0 a wave beam com- 
prises an aggregate of infinitely thin transverse nlayers" not interacting with one another. In every layer 
there develops a transverse instability splitting it into regions whose dimensions are of the order 

t ( v .  )lh 
ll ~ T ~ k-T-i-l-l-l-l-l-i-~ 

In the case  of axial  s y m m e t r y  these  r eg ions  have the shape of annu la r  zones .  The reg ions  of r i s ing  
in tens i ty  co l lapse  and f o r m  loci; as  the pulse  shape v a r i e s  cont inuously ,  the loci  t r ave l  a long the z axis  (see 
[11]). The ampl i tude  of f ield in tens i ty  at a focus  is l imi ted  e i the r  by mul t iphoton abso rp t ion  o r  by non l inear -  
i ty sa tura t ion .  

At a finite value of r k" > 0 t he re  o c c u r s  i n t e rac t ion  between the l aye r s ,  which r e su l t s  in a r e d i s t r i b u -  
t ion of e n e r g y  among  them.  Dur ing  the f i r s t  s tage,  this  in t e rac t ion  p r o d u c e s  an i n c r e a s i n g  longi tudinal  m o d -  
u la t ion  by the c h a r a c t e r i s t i c  d imens ion  l H ~ l •  (kwk"/V~)l/2.  

At  the same  t ime  t h e r e  develops  a t r a n s v e r s e  ins tabi l i ty  in the d imens ion  l •  and, in this  way, t hewave  
spl i ts  into t h r e e - d i m e n s i o n a l  c l u s t e r s .  Af t e r  a finite t ime,  inside eve ry  such  c l u s t e r  the re  builds up an a m -  
pl i tude s ingu la r i ty  of the wave; the reg ion  n e a r  such a s ingula r i ty  r ad ia t e s  a wide f r equency  and phase  spec -  
t rum.  The c o n c u r r e n t  in tense  longi tudinal  modula t ion  of the wave explains the widening of the spec t rum.  
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In the absence  of any diss ipat ion mechan i sms ,  the buildup of a s ingular i ty  continues until i ts d imen-  
sion becomes  comparab le  to the wavelength.  At that t ime  the spec t r a l  line widens most:  Aw ~ w. In other  
cases  the buildup of a s ingular i ty  is l imi ted  by nonlineari ty saturat ion,  by mult iquantum absorpt ion,  o r  by 
the finite re laxat ion t ime  T* of the mediura.  In the l a t t e r  case,  the line widens by Aw N 1/•-* only. When the 
re laxat ion t ime  is sufficiently long, 

t * ~ - ~ - \  qL*p ] r \,Sn. iE P v. l 

The pattern of wave breakdown becomes completely "smudged" when the nonlinearity relaxes. We 
note here that not the entire nonlinearity mechanism need be inertia-free to make it possible for a wave to 
break down, and that a nonlinearity mechanism with inertia - if present - will produce a wave guide withthe 
wave breaking down inside. 

The condition J2 < 0, which is sufficient for the breakdown of a wave, expresses the requirement that 
the amplitude and the phase of a wave must not change too much within the dimensions l II and l• This also 
means that the intensity of a wave beam must be much higher than critical and the period must be much 
longer than/l[/V, ~ These requirements are easily met in experiments witb~ laser pulses in nonlinear diel- 

ectrics. 

Inasmuch as the generated singularities are integrable, only small quantities of the wave energy are 
"trapped" in them. Nevertheless, the buildup of a longitudinal-transverse instability results in an intensive 
"turbulization" of the originally monochromatic wave. The characteristic scale dimensions of turbulence 
are l~. in the transverse direction and l]I in the longitudinal direction. The turbulence is strong because 
within these dimensions the linear terms"of E q. (2.1) are of the same order of magnitude as the nonlinear 
ones. Turbulization of a wave occurs over the distance l* ~ v,/qIr 2. If a plane-parallel wave beam is in- 
jected into the medium, it will transform into a "turbulent jet" along the distance l~ l* with a divergence 

angle 0 ~ (qIr I/2. 
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