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A theoretical computer-assisted investigation was made of the transient effects that 
ar ise when waves are  excited parametrically. It was established that, in the frame- 
work of a previously formulated "S modeln [I], the wave system relaxes when "pump- 
ing" is switched on from the thermal level to a stationary state nk - 6(k - ko) op some 
surface in k space defined by the condition of external stability. During the last stage 
of the relaxation, the distribution nk(t) has the form of a Gaussian packet with width 
proportional to -1/a. The relaxation process was studied in detail by means of a 
computer; it depends strongly on the amount by which the parametric excitation ex- 
ceeds the threshold and the relations between the coefficients of the Hamiltonian. 
When there i s  no internal stability with respect to the zeroth mode, the total ampli- 
tude of the waves grows unrestrictedly and the packet as a whole i s  "ejected" from 
the resonance surface. 

In the present investigation we studied the 
transient effects that arise in ferrodielectrics when 
a pumping magnetic field h(r,  t) = hexp(-iwpt), 
which is periodic in time and homogeneous in space, 
is applied to them. It is well known that if the 
pumping amplitude i s  greater than the threshold 
hc defined by the damping of the waves, pairwise 
coupled spin waves a r e  parametrically excited in 
the ferrodielectric. They increase exponentially 
in time until nonlinear effects become important. 
The consistent description of the further evolu- 
tion of the system of parametric spin waves i s  a 
many-body problem. 

The nonlinear theory of the stationary state 
of parametrically excited spin waves has been de- 
veloped by Zakharov, L1vov, and Starobinets [I]. 
The theory i s  formulated in the classical Hamil- 
tonian formalism and is based on the replacement 
of the interaction Hamiltonian of the system of pa- 
rametric spin waves by the part that is diagonal in 
pairs: 

Here the canonical variables ak  are  the complex 
amplitudes of the spin waves; the coefficients Tkki 
and Skk~ describe the nonlinear shift of the fre- 
quency and the parametric interaction of the spin 
waves with one another. It can be shown that the 
points in the k space at which the amplitude of the 
pairs nk = (a&) in the stationary state i s  non- 
vanishing are  distributed on surfaces in the k space. 
The condition of external stability (against the for- 
mation of new pairs) [ll  uniquely determines the 
equation of the surface for  the possible stationary 
states: 

where ok  is the dispersion law of the spin waves. 
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For complete stability the condition of internal 
stability (against a change of the intrinsic amplitudes 
and phases) must also be satisfied. 

In the present investigation the evolution in 
time of parametric spin waves was studied for the 
simple model of an isotropic interaction with the 
pumping Vk = const [see the Hamiltonian (5)l. This 
situation is realized when there i s  parametric ex- 
citation of spin waves in antiferromagnets [2]. With 
a good accuracy of the order of the ratio of the 
energy of the dipole -dipole interaction to the en- 
ergy of crystallographic anisotropy one can as- 
sume Vk = const for parallel pumping in uniaxial 
ferromagnets with anisotropy of the easy-plane 
type [31. The deductions of the present paper are 
also qualitatively correct for parallel pumping in 
cubic ferromagnets (for example, YIG), in which 
Vk = Vo has axial symmetry; this is because up to 
excess h/hc of order 6-8 dB the pairs a re  grouped 
near 0 = 7r/2 [4]. 

The nonlinear equations (9) describing the 
time evolution of the parametric spin waves for 
our model a r e  formulated in Sec. 1; in Secs. 2 and 
3 i t  is shown that in the stable case S(2T + S) > 0 
the parametric spin waves relax when the pumping 
is switched on from the thermal level nk = no to 
the stationary state: 

The relaxation process takes place in three 
stages -linear, nonlinear, and asymptotic. In the 
third stage the distribution ~ ( t )  has the form of a 
Gaussian packet with half-width proportional to 
- 1 / n ( 1 4 ) ,  which is a self-similar solution (11) 
of Eqs. (9) for  large t. At small excesses 
(hV - y << y ,  see Sec. 2) self-similarity of nk(t) 
obtains at  all times. A numerical experiment showed 
that for hV - y << y the distribution nk(t) does in- 
deed always have a Gaussian form and i t  revealed 
important diffsrences in the behavior of the pa- 
rametric spin waves in the nonlinear stage at high 
excesses (Sec. 3) .I In particular, the distribution 
nk(t) may have several maxima and the total am- 
plitude N (t) oscillates a s  the stationary value N o  i s  
reached with frequency Q o  = 2 [(2T + S ) / S ] I / ~ ~ V  
and decay constant y . 

These oscillations correspond to shock ex- 
citation of collective degrees of freedom in the 
system of interacting parametric spin waves. 

In Sec. 4 i t  is shown that if there is no inter- 
nal stability against the zeroth mode the ampli- 
tude N(t) increases unrestrictedly and the packet 
as  a whole is "ejectedw from the resonance sur -  
f ace. 

It should be noted that the evolution in  time of 
parametric spin waves has been studied in [5]; how- 
ever, in this paper no allowance is made for the in- 
teraction of the spin waves with one another and it 
is assumed that the amplitudes of the parametric 
spin waves are restricted because of their feed- 
back influence on the pumping. 

1. BASIC EQUATIONS 

The equations of motion for the amplitudes nk 
and phases Jl, of the pairs, 

in the framework of the Hamiltonian 

have the form 

where 

is the frequency difference renormalized by the 
interaction of the waves, and 

is the self -consistent total pumping. These equa- 
tions a re  derived in [I], which also contains an 
investigation of their stationary solutions. 

We shall study the behavior of the system of 
parametrically excited waves in time for the iso- 
tropic model Vk= const, when Skkr and T k k ~  de- 

l ~ h e  calculatioils were carried out oil the &&I-6 computer of the 
Computational Center of the Siberian Branch of the Academ) of 
Sciences of the USSR. 
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pend only on the angle between k and U. At the same where A(T) = 1 fds , the total intensity, X & T )  = 
t ime it is natural to consider only isotropic dis- A-I 1 x fdx  , the position of the center of gravity 
tributions nk in the k space and for these, Eqs. of the packet, and d ( ~ ) ,  its width, satisfy the equa- 
(6) simplify: tions 

1 dnk --- 2  fit -nkj-y+hV~in(k+S I 2 nk,sin((k-+k.) 
k' = - A X ; - ~ A ( A - I ) [ Q ( A - ~ ) + ~ I ,  I 

I d*k --- 
dt  - l & , ' - - + 2  

kr - qk,) + hV cos +,. 

Lxo Y=-(A - I ) ( a - + ) ,  

1 
d (r) =- 

4F . 

These equations have the following asymptotic 
The stable stationary solution of these equa- 

behavior for T >> l: 
tions has the form (3). 

1 
zO= -- 1 

2 .  SMALL EXCESS ABOVE THE 2 z ,  A - I = -  ~ ( 4 a - 1 ) d '  

INSTABILITY THRESHOLD I 
d (r) = - d F .  

In this section we shall study the establishment 

I 
I 

of the stationary state (3) from the thermal noise 
level nk = no for small excesses hV - y << y.  It 
is obvious that as long a s  N = 2 n, < N o ,  the am- 
plitudes of the pairs will grow in accordance with 
the linear theory with the growth rate  hV - y. At 
the same time, a narrow packet with width A w - 
(hV - y) << y is  excited in the k space. Its sub- 
sequent fate i s  described by Eqs. (9). It canbe seen 
from these equations that the relaxation times of 
the amplitudes and the phases a r e  of order 
l/(hV - y) and l/y, respectively; we may there- 
fore assume that the phases & follow the am- 
plitudes adiabatically, i.e., we can neglect a &/at. 

Because the packet is  narrow, Aw << y, we 
can expand the trigonometric functions in Eqs. (9) 
in ser ies  and represent Eqs. (9) in the form 

where a, = (2T + S)/S; the dimensionless variables 
a r e  

Thus, for small sxcess above the threshold an 
arbitrary pair distribution function nk relaxes to 
the stationary state (9) with 6-function form in ac- 
cordance with the power law 

For  a detailed study of the nonstationary be- 
havior of the system for arbitrary hV, S, and T we 
solved Eqs. (9) numerically. The accuracy of the 
calculations was verified a s  follows. 

As i s  readily.seen, Eqs. (9) for y = 0 have an 
energy integral. The accuracy of the calculation 
was tested by testing the energy conservation; the 
loss of the integral during a time much greater 

nk (7) 

W - W  k 0 ,  r = ( 2 q ~ y t .  f ( 5 ,  7 ) = - ,  x=------ 
N o  2 S N 0  

Note that in Eq. (10) the dependences on the 
excess hV - y disappear and the parameters of 
the system occur only in the ratio T/s. Equation - 1 
(10) has the self-similar solution wk- wp/z= Z T N ~  -2 TNo= wk- w,,Z B 

Fig. 1. Distribution function nk(F) for hV = 1.4y. 1, 2 )  Linear 
f7 

f ( x ,  T ) = A ( = ) ~  - e q -  
stage ( a  = 1 / 6 ,  a = 1); 3, 4) asymptotic stage ( a  = 1 / 6 ,  1, re-  

a (I1' spectively). 
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than all the characteristic times of the problem, 
-150(1/ y), was - 1.5% for the chosen parameters 
of the calculation. 

In Fig. 1 we show the distribution function ndt) 
for  two successive instants of time and the values 
a! = 1/6 and 1 of the parameter. The initial dis- 
tribution was taken to be homogeneous, hV = 1 . 4 ~ .  
Initially, the waves grow exponentially and the 
maximum of nk(t) is situated on the surface wk = 
*/2, a s  follows from the linear theory. Of course, 
the form of the function 2 % does not depend on the 
parameter a. Subsequently, when 2 nk is not small 
compared with No, the behavior of nk(t) depends 
strongly on the ratio of the coefficients S and T de- 
scribing the interaction of the waves; namely, for 
T = 0 the packet nk continues to grow and contract, 
remaining on the surface wk = wp /2. If T 0, 
the packet grows and moves as  a whole, being de- 
formed somewhat, to the surface wk + 2TNo = wp/2 
(i.e ., to larger o r  smaller values of k ,  depending 
on the sign of T). When the maximum of the packet 
%(t) is near this surface, the asymptotic contrac- 
tion of the packet begins. Note that the form of 
the curve In nk(t) (Fig. 1) for large t i s  nearly 
that of a parabola, which confirms the transition 
to the self-similar solution (11) - a Gaussian 
packet. 

Figure 2 shows the dependence of the inte- 
grated amplitude N(t) = 2 nk(t) of the pairs on the 
time. It can be seen that the process by which the 
stationary state is reached from the thermal level 
when the parametric pumping is switched on occurs 
in three stages: In the f i rs t  - linear - stage the 
amplitude grows exponentially and there i s  no de- 
pendence on the nonlinear characteristics T and S 
of the system of waves. It i s  therefore natural that 
the two curves for N(t) (for a = 1/6, 1) coincide in 
this stage. 

In the second -nonlinear -stage there is an 
important mutual nonlinear shift of the frequency 
and parametric interaction of pairs of waves. At 
the same time, there i s  not yet the compensation, 
characteristic for the stationary state in the "S 
model," of the damping of the waves yk by the total 
pumping Pk. The behavior of the system in this 
stage i s  at  i ts most complicated and i s  amenable 
only to numerical simulation. It turns out that for 
T < 0 the integrated amplitude passes through a 
maximum, whereas for T > 0 it increases mono- 
tonically. In the third - asymptotic - stage 
I I Pk 1 - ykl << yk and there i s  a slow approach 
to the steady state (3) described by the "S model." 
Note that the sign of the difference N - N o  in the 

Fig. 2. Total  amplitude N as a fuilction of the  t i m e  for hV = 1.4y. 
a: 1) 1 1 6 ;  2) 1. 

numerical experiment (Fig. 2) is the same as 
that which follows from the analytic asymptotic 
behavior (13). 

3. LARGE EXCESSES ABOVE THE 
INSTABILITY THRESHOLD 

The numerical experiment revealed important 
qualitative differences in the transient behavior 
of the system for small (hV - y << y )  and large 
(hV - y >> y) excesses above the threshold (Figs. 
3 and 4 for hV = 4y) during the second -nonlinear - 
stage of the transient process. 

The packet nk(t) does not behave a s  a single 
whole; when the amplitude Znk i s  not small com- 
pared with No, a second maximum of the function 

I I I 

LJk-LJplZ=Z TNo 0 LJk-LJp/Z=-ZTNO 

Fig. 3. Distribution fuilction q ( t )  for hV = 4 y .  1) Linear stage 
(a = 1 / 6 ,  a = 1); 2 ,  3) nonlinear stage (a = 1 / 6 ,  a = 1, respec- 
tively); 4 ,  5 )  asymptotic stage (a = 1 / 6 ,  1 ,  respectively). 

Fig. 4. Total amplitude N as a functioil cf the t i m e  for hV = 1.47. 
a: 1) 1/6; 2) 1. 
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nk(t) ngoes upn at the point where zk = 0 at a given 
instant of time. The amplitude of the second maxi- 
mum then grows and that of the f i rs t  decreases. In 
Fig. 3 for t = 6 ( l / y )  the second maximum is al- 
ready greater than the first. In addition, as  can 
be seen from Fig. 4, the total amplitude oscillates, 
approaching No. In the limiting case of a nondis- 
sipative medium, when y /LV-- 0, the system of 
parametric spin waves does not reach a stationary 
state a t  all, but oscillates forever. This is because 
for y = 0 an integral of the motion exists: 

Z = 2 {x iUk - f ) nk + 2 Tkk.nknk. 

k kk' 

+ 2,hvknk #k -k 2 skkjnkr cos ($k - qkr)  , 
k kk' I 

which can be interpreted a s  the Hamiltonian for the 
canonical variables nk and +k. It i s  readily seen 
that Eqs. (9) a r e  obtained by varying % in accord- 
ance with the rule 

i.e., X Is indeed an integral of the motion. At the 
initial instant of time, X = 0 and i t  does not coin- 
cide with the value % = -(2T + s ) ~ !  in the sta- 
tionary state of the S model, which i s  therefore 
unattainable if y = 0. 

In the last - asymptotic - stage, it can be seen 
from Fig. 3 that the packet nk is Gaussian. This 
one would expect, since this stzge i s  described 
by Eqs. ( lo ) ,  which have the self-similar solution 
(11) - a Gaussian packet. Indeed, the condition for 
(10) to be valid is S(N - Nd /y << 1. In accordance 
with the asymptotic behavior (13), N(t) approaches 

- - - - 

N o  from above o r  below, as  can be seen in Fig. 4, 
depending on the value of T/S. 

Let us now discuss the nature of the oscilla- 
tions N (t) in the transient regime. To determine 
the frequency and the decay constant of the oscilla- 
tions let us consider the behavior of the parametric 
spin waves for small deviations of the amplitudes 
and the phases froin the stationary values (3). Ex- 
panding Skkl, Tkkl, &Ik, and 6% in series in 
spherical Fourier harmonics, we obtain from (7) 
an expression for the growth rate rp [6 np, 6qp - 
exp ( rp t ) ]  of the harmonic with number p: 

We consider here the stable situation, when 
Re Tp < 0 for all p. It can be seen from (15) that 
for large excesses the system of parametrically 
excited waves can be characterized by the set  of 
frequencies 

e, = 2 d s ,  ('T, + s,) N,, (16) 

corresponding to different collective degrees of 
freedom. Note that the resonance excitation of the 
zeroth harmonic an0 = 2 ank, 89, = 8 9 ,  has been 

k 

studied experimentally and theoretically in [6 I. The 
oscillations of N(t)  in the transient regime (see 
Fig. 4) obviously correspond to shock excitation 
of this mode. The decay constant of these oscilla- 
tions is, as can be seen from (15), equal to y and 
the number of oscillations is obviously of order 
Q O / Y  = hV/y. 

4. EVOLUTION OF A SYSTEM THAF 
DOES NOT POSSESS INTERNAL 
STABILITY 

In contrast to the foregoing sections, we shall 
here study the behavior of parametric spin waves 
that do not have internal stability against the zeroth 
harmonic. 

A numerical experiment showed that in this 
case the total amplitude of the pairs N(t) grows un- 
restrictedly. 

Figure 5 shows a typical time dependence (hV = 

1 . 4 ~ ;  To  = -S 0) 

At small excesses the system a s  a whole i s  
"ejectedn from the resonance surface wk = wp/2; 
at large excesses new maxima are  formed suc- 
cessively ever further from this surfacer a short 
time -l/SNo after the beginning of the nonlinear 
stage the system has departed a distance SN,. 

Fig. 5. Total amplitude N as the fuilction of the t ime for hV = l A y  
r, = - 7 t 4-p - 4 s p  (2Tp + sp) NZ. (15) (SO/T0 = -1). 
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