ON THE COMPLETE INTEGRABILITY OF A
NONLINEAR SCHRODINGER EQUATION

V. E. Zakharov and S. V. Manakov

It is shown that a nonlinear Schrddinger equation, regarded as the Hamiltonian of a system,
is completely integrable. A transition to angle and action variables is made by means of the
S matrix of the one-dimensional Dirac operator,

INTRODUCTION

In recent time, the theory of classical nonlinear fields has attracted the attention of ever more in-
vestigators, largely because of the extraordinary variety of physical applications. Particular attention is
devoted to the problem of statistical description of wave fields. Fields are regarded in this case as con-
servative Hamiltonian systems with infinitely many degrees of freedom, and their statistical description is
based on the hypothesis of ergodicity of this system.

On the other hand, in recent years considerable progress has been achieved in the investiga-~
tion of certain classes of one-dimensional nonlinear fields. This progress is related to the use of "quan-
tum-mechanical” methods for the study of nonlinear systems. The essence of the new approach, which
has been called the "method of the inverse scattering problem" is the following. One associates with a con-
sidered classical field a certain differential operator with coefficients from this field whose spectral char-
acteristics (S matrix, spectrum) change in time in a known manner. The Cauchy problem for the nonlinear
field equations is thus reduced to the study of the direct and the inverse spectral problem for a linear opera-
tor (direct and inverse scattering problem).

The method of the inverse scattering problem was first applied by Kruskal et al. [1] to the Korteweg-
de Vries equation:

Ut BUU T U =0, (1)

which arose already in the last century in connection with problems of waves on the surface of a liquid. A
one-dimensional Schrddinger operator is associated with Eq. (1).

Subsequently this approach was applied by Shabat and one of the present authors (V. Z.) to the non-
linear Schrodinger equation [2, 3]

it [ ] *p=0. (2)

Equation (2) arose in a study of different physical problems; it arises, for example, in the theory of a
weakly nonideal Bose gas at T =0 [4, 5]. The same equation describes the two-dimensional selffocusing of
a strong light beam in a nonlinear medium and other effects [6, 7]. The nonlinear equation (2) can be in-
vestigated by means of the one-dimensional Dirac operator, which we write in the form

= () (1Y) e

Systems described by Egs. (1) and (2) are Hamilton systems. They have an exceptional property,
being completely integrable, i.e., there exist canonical variables that are single-valued "functions" of the
field variables (angle and action variables) in which the equations of motion (1)~(2) take the form
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8i=0, Op=-—; H=H(S,}. 4)
3 k 6Sk 2
For Eq. (1) this fact was established by Zakharov and Faddeev [8]. The variables S and & are related
simply to the scattering matrix of the associated operator. The proof of the complete integrability of the

nonlinear Schrdédinger equation (2) is the main content of the present paper.

With regard to the problem of a statistical description, complete integrability of considered systems
means that there is no stochastization in the system; nonlinear interaction does not lead to a redistribution
of energy between the different "modes." The time of "phase mixing" of a certain system is thus deter-
mined not by the magnitude of the nonlinearity but by the " depérture" from the "nearest" completely inte-
grable system.

Great interest also attaches to the problem of describing a whole class of fields for whose study one
can apply the method of the inverse scattering problem. For eguations that are integrable by means of a
Schrddinger operator this problem was solved in [8], where it was shown that all systems whose Hamilton-
ians are traces of polynomials of the associated operator with time dependent coefficients are completely
integrable. There exists simple recursive formulas for the calculation of these Hamiltonians. A similar
result is obtained below for the operator (3).

In connection with the fact that the method we use differs from that employed in [8], we give the
scheme of the new proof of complete integrability of the Korteweg-de Vries equation. We note also that
for one special case of the problem we consider (y — 0, ® < 0 for Ix| — «) the theorem of complete inte-
grability of Eq. (2) was proved by Takhtadzhyan.

1. Angle and Action Variables for the Nonlinear

Schrodinger Equation (m > 0)

We consider Eq. (2) on the infinite interval —« <x < = for n > 0. A physically sensible statement of
the problem in this case requires vanishing of the field at infinity.

We write Eq. (2) in the Hamilton form

6H
= 2L = ®)
N 5%
where the Hamiltonian H is
(1ol
H—L_( el I\pl‘)d:c. (6)
We shall denote the naturally defined Poisson brackets of the two functionals @ and g by {a, Bk
< [ba 8
{a, pY=i Id“ {_“_fL_E"i._E} . (7)
s Lop &7 by Oy
Further, we consider the eigenvalue problem for the operator I in (3):
~ P
o=t o= (') ®)
P=Ap, ¢ P

and make the substitution

N Py — A
g:=Y1—pexp (—i 1 2:t:)uz, g.=Vi+pexp (—zi = z)ul.
—p —

Equation (8) takes the form

a d
_u.: + igu‘zq (x) s, ,—uz - igu,z:—q‘ (;1;) Uy, (9)
0z oz

where ¢ = Ap(L—p)~L, q(x) = i(1—p?) 1/2%yx). If q(x) decreases sufficiently rapidly at infinity, each solu-
tion of the system (9) for real ¢ is uniquely determined by one of its asymptotic behaviors as x — +« or

x — —o, The scattering problem for the operator 1. consists of determining one of these asymptotic be-
haviors given the other. By the inverse scattering problem we shall understand the problem of recover-
ing q(x) from the data of the scattering problem (i.e., from the S matrix). The direct and the inverse
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problem were studied in detail in [2] and we shall therefore not dwell on the justification of the assertions
made below.

The Jost functions ¢, £) and ¥, ¢), defined as the solutions of (9) with the asymptotic behaviors
(p(i. g)_, (é ) e~ as z—>+oo,

NS () P—
allow analytic continuation into the upper half-plane of ¢ for every x.
Ifu= (u. ) is the solution of (9) for real &, then ﬁdef = ( e _)is also a solution of the system (9).
: 123 ~—Us

The functions ¥(x, &) and @(x, £) form a complete set for the system (9), and therefore

¢(z, &) =a ()9 (=, §) +b(E)¥(z, B). (10)
The elements a(£) and b(¢) of the S matrix can be expressed as follows in terms of the Jost functions:
a(®) =(@ub—qaps) (%, 8), b(E)=(h:s@—Tepr) (x, §), (11)

where a(£) is analytic in the upper half-plane of & a(¢) — 1as £ — «, Im¢ = 0. The unitarity relation for
the S matrix in the considered case has the form

la(8) |*+]b(E) |*=1. (12)
The zeros of a(§) in the upper half-plane correspond to the eigenvalues of the problem (9); at the same
time
9(z, &) =cp(z,5) (a(8)=0). (13)

The "potential” g (x) can be recovered from the scattering matrix a(£), b(¢) and the set of quantities ¢ at
each zero of a¢(§), Im& = 0. A necessary and sufficient condition of solvability of the inverse problem is
the relation (12) and analyticity of a(¢) for Im ¢ = 0.

Let us calculate the Poisson brackets between the elements of the S matrix. To determine the varia-
tional derivatives da(£)/6q(x), 6a/dq* 6b/dq, 6b/0q* we use the representation (11):

da(E) &
dq(z)  6q()
The expression in the brackets does not depend on y. One can therefore set y =x + 0. Since J(x, &) is de-

termined by the asymptotic behavior as x — +w, it follows that 8y(y, {)/6qx) = 0 if y >x. The expressions
for lim 09 (v, £)/8q(x) are readily found from (9):

— @ (1, &) 9o (4, B) — 2 (y, E) 0 (3, B) ].

Y—+x-+0 8
lim 2 = y(2,8), lim —2%=0,
yrxt0 Gq y>x+0
and thus
8
a(g) = CPz (xv E) 'lpz (.’E, E) . (143)
g (z). :
All the remaining variational derivatives are calculated similarly:
8a(E)
a @) ———=q.(2,E) P, (2, 8),
85 () 8b(8) aan
GQ(Z) =’ﬂ3z($»§)¢2(x, g)l 6_q,(—x)=_‘pl(x9 g){pi(xyg)-

To calculate the integrals that determine the Poisson brackets, we note that if u') and u® are two arbi-
trary solutions of the system (9) for ¢ = &4, and v(i) and v®) are solutions for £ =t¢&,, then

(B, (2) )y () (1) (2) (1) (2) i d (1) (1) (1) {1) 2) (2 (2) (z)
{ul y vz Vg —Uz2 UWx U b o P—-—[ ( 1 ! U2 ! —Uy Uy ) ( g Vs —Us ) 1 (15)
2 (Ei—gz) dz

The relation (15) follows directly from (9). Using (15), we readily see that all the integrands that arise
are total derivatives. Calculating, for example, {a(t), b(t")}, we find that
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2'(&—% e

{a(g),b(& )=~
a(&),b(") e E)a(i)b(éH—éxw T ———a(E)b(E).

itz
Using the well known relation P (th)Z 7id(¢), we obtain

x>0

8a(®), 0 )= 70 a(E)b(E)——~ma(E)b(§)b(§ £).

4(% &)

Proceeding similarly, we can find the Poisson brackets between all possible pairs of elements of the S
matrix, after which it is readily seen that the quantities

2.1 _1y/2
P;=V—%—lnm, QE—‘;‘-‘/ 7argb(§) (16)

have canonical "commutation relations"

{P:, Py} ={0Q:, 0} =0, {P;, Q'}=0(E-E).

If a(£) does not have zeros in the upper half-plane of £, then the set Pg, Qg (—= < ¢ <) is complete, i.e.,
q(x) can be uniquely recovered from the given set P, Q, since it completely determines the S matrix.

In the case when a(£) has N zeros in the upper half-plane, which we shall assume are simple, the
variables P, and Q, must be augmented with a discrete set of canonical variables associated with the zeros
of a(¢). Suppose a(t)) =0, Im¢g, >0, n=1,2,..., N. Atthe point £ = &, we have X, §,) =cp¥&, &).
For a finite~-range potential q(x), the functions a(¢) and b(£) are analytic in the whole of the complex plane,
and the variational derivatives 6cn/6q (x) and 6cy, /69 * can be obtained by analytic continuation of 6b/6q and
8b/6q*, which gives

dca 8¢,
2@ —— == (2, L.) 92(z, Ln), -—Gq———ilh(x E) iz, a).
We also find 6<pn/6q (x), using standard perturbation theory for the system (9):
TR D) b =g () a8 (z—2)
op"
e = H(EHOE) b =—q" ()91, P12’ (F0)=0.

The solution of these equations has the form

,_ f ex(z,E+8L), 2>z,
'{czw(x,m;), z<z.

Fitting of the solutions at the point x = z gives
crPi—C2i=0gc s, CﬂPz—CzCPz=0-
A nontrivial solution of this system exists if

detl B0l R
Pz, — P2

but
det I . e | = —aterot)=—a @)L,
'lpz, — P2
from which we find
8L./8 () =— (@’ (5)) s (2, £) @1 (= §).
Similarly,
8L./8" (2) == (@' () s (=, L) @2, €.

It is now easy to see that

{G P} ={Gr Qi) ={Cn, Pe}={cn, Os} =0,
{Cm Cn'} ={Cn, Cn’} ==(),
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In addition, {g,, ¢y} =0, where n = n',

We calculate {¢ ), Incy}:

{&w Incal=——— [ (@prtoup) de. )

an Cpn

Generally,

d , .
(2, 8) 92(2,8) +0a (2, L) 91 (2, §) =i (E—1") o~ (1 (@, D) 92 (2,T) =2, D 91 (2,8

as §' —~ ¢

201(2, ) a2, L) = (@R )]

. 0 [
=
a(t—t") =
We now integrate (17) in finite limits, differentiate with respect to £ — ¢', and make the passage to the limit
¢' — &, after which we let the limits of integration tend to infinity, remembering that a(¢) = 0. As a re-
sult, we obtain {gn, In cn} = w/4. Thus, the discrete set of canonical variables has the form
2 21
p'n= —_Cns Qn= —ln'_z—v n=1127'“1n' (18)
n ? Cn

We note that the variables (18) are complex.

The set of variables (16) and (18) is complete; for suppose ¢y, ..., &N, Im &y > 0 are zeros of a(f).
N

Then the function a;(¢) = a(¢) [] (¢ — §I’;)/(§ - ¢y) is analytic in the upper half-plane and does not vanish in the
n=i
region Im { = 0; therefore Inay(¢) is analytic in this region. On the real axis, Inay(¢) = Inla(¢)! + iarga,(£),

and analyticity of Ina,(¢) gives
1 Inla(E") 14’
arga,(§)=—?P j-rl—z%i,

but
E—Cn

n
.
=

3

1 N
arga, (E)=arga(g)+ T; In

Thus, a(£) can be completely recovered from the set P, (—= < ¢ < =) and Pp,n=1,2,..., N. The quan-
tity b(¢) can be determined trivially from the unitarity relation and Qg:

b(8)=(1—|a(8) )" exp (i (/2)"Qs).

It remains to find an expression for the Hamiltonian H in terms of the new canonical variables. For
this, we represent u; from (9) in the form u; = exp (—ifx + ®(x)) and, eliminating u, (assuming at the same
time u,(—«) = 0), we obtain an equation for & (x):

d (1
2i§®’=|q|2+®"+q—&;—(—q—® ) (19)

which enables one to calculate in a regular manner the coefficients of the asymptotic expansion of ®x, £)

in powers of 1/¢: & (x, £) = Z £,)/2i£)". To determine £, (x) we have recursion relations that follow
from (19): =t

d ;1
fn+1=9(-75)—d; (?fn) + Z‘ fifw. (20)
The function Ina(¢) also allows asymptotic expansion in powers of 1/¢ and £ — =, Im¢ = 0;

Ina(g)= 'Zch/gk.

It is obvious that Cy = (2i)'k S f (x)dx. On the other hand, the Cy can be readily expressed in terms

—

of Pg in (16) and P}, in (18):
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ch~—-—( ) jpgghidg Z( )hp B @1)

nwmi
By virtue of the recursion formula (20), the Cjx are polynomials in ¥ and ¢* and their derivatives with re-
spect to x. We give the first four Cy:

Ci=~»———-5hp|2dx,

Com = [ b0 e,

(2)z
Co=— (2)3 - j(|¢,|2——|¢|*)dx,

C.= ( 2;4 j. (ﬂnpm mplpx‘hpiz) dz.

Note that C; is to within a factor the Hamiltonian (6) for Eq. (2).

Since all the Ck (including Cj) can be expressed solely in terms of Py and Py and the transformation
from ¥ and 4* to the variables P and @ in (16) and (18) is obviously canonical, the nonlinear equation (2)
can be written in the variables P and Q in the form (4), i.e., these variables are angle and action variables
for the considered system.

Together with the Eq. (2), all the nonlinear fields whose Hamiltonians can be represented in the form
of linear combinations of Ci with coefficients that are in general time dependent are completely integrable.
For example, the equation generated by Hamiltonian C, is the Korteweg-de Vries equation with cubic non-
linearity.

To conclude this section we note that, assuming that the zeros of a({) are simple, we did not at all
reduce the generality of the treatment; as is readily seen, the potentials q(x) that lead to multiple zeros
of a(¢) can be approximated with arbitrary accuracy by potentials with close but simple zeros of a(¢).

2. Angle and Action Variables for a Nonlinear

Schrbddinger Equation (n < 0)

The case % < 0 requires special treatment, since the physically interesting solutions of Eq. (2) with
% < 0 belong to the class ¢} — const as x| — =, The formalism of the direct and inverse scattering prob-
lems for such potentials developed in [3] differs significantly from that described in the foregoing section.

Let us consider the elgenvalue problem for the o erator L. in (3): i(p = E¢, and make the substitu-
tion v; = p—1)" 1/2 exp (~iEx/(? = 1))@y, vy = (0 + 1)"1/2exp (~eEx /(@ —1))¢,. The system Ly = E¢ is re-
duced by it to the form

a E dv .

i-—vi + q*Uz=7\:Un A= I: , i = +‘1l’4 Az, q=\P(PZ—1)_”- (22)
oz p—1 ox

We shall assume that lg| — 1 as x — +», Without loss of generality one can also assume that q — 1 as

x — +o; then, generally speaking, g(—«) = ele,

The role of the Jost functions for the system (22) is played by the solutions of (22) with asymptotic
behaviors

e (ew(;—x) ) e )

1
Pre = ( oy ), z—too,

where £ (\} =VAZ—1 is a two-valued function of A, We note that if v = (v‘)is a solution of (22), then vdef
Uy

*

= ( v ) is also a solution of this system. The functions % and § are a complete set of solutions of (22), and
Uy

therefore @ (x, A) = a(}, c)z,b(x, M) +b@, O¥(x, A. And, as follows directly from the system (22),

)=S0 =3
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where W{u, v} is the Wronskian of the two solutions (22): W, v) = u;v,—u,vy, and it obviously does not
depend on x.

The function ¢(}) is defined on a two-sheeted Riemann surface with cuts (-, ~1), (1 +«); on the up-
per sheet, Im ¢ > 0. ‘As is shown in [3], the Jost functions ¢ and § are analytic on the upper sheet of the
Riemann surface; (24) then guarantees analyticity of a(A) on this sheet. The zeros of a(}) correspond to
the eigenvalues of the system (22). Since the system is selfadjoint, the zeros are distributed on the real
axis —1 <A <1and are simple. If a(A,) =0, then

®(2, ) =0 (2, ). (25)

Note also that a(A, —g) =a* (A, ‘g)eio‘, b(A, —&) =b*Q, g)eio‘ for real A and {. Here, « is a phase of q&x)
as x.— —«, which, as can be shown (see [3]), is completely determined by the zeros of a(}):

AtV 1—A2
—H : (a(h)=0).
A—iVI=—A2

Study of the inverse scattering problem for the system (22) shows that q(x) can be uniquely recovered
from the sets a(A, ¢) and b(A, ¢), the eigenvalues X of the system (22), and the corresponding quantities

b, (see (25)).

The introduction of canonical variables associated with the S matrix of the system (22) is performed
as in the foregoing section. The variational derivatives of the elements of the S matrix are calculated on
the basis of the representation (24). The details of the calculations are almost identical to those given
above; we therefore omit them.

It can be shown that the Poisson brackets (7) of the quantities

1 2
P,=—1Inla(®, )%, Qr=——argb,
" . T (26)
P.=h,, Q.=—Iln—
% bn

are {P;, Py}=1{@,Qx}1=0, {P,, Qul=05-n. Here §,_y is 6(A— 1) for the continuous spectrum and
the Kronecker delta for the discrete spectrum. The values of a(A, ¢) and b(A, &) in (26) are taken on the
boundaries of the cut in the A plane on which the sign of £(A) is the same as the sign of A. The complete
8 matrix can be recovered in an obvious manner from the set P and Q.

The integrals of motion of the system (2) can be obtained, as in the case ¥ — 0 as x| — =, by ex~
panding Ina(A) in powers of 1/A, Im A = 0. They have the form L = j[fn(x) —fj()]dx, where £, are de-

—co

termined from the recursion relations (20).

3. Complete Integrability of the

Korteweg~de Vries Equation

We apply the above approach to Eq. (1). This equation can be represented in the form

a oH
"3z oulz)’
where H = y(u}?(/z —uddx. The Poisson brackets therefore have the form

U, ==

1 [6a 5 6 o o Ga]d
6u 9z Ou 6u 9z bu

We consider further the scattering problem for the one-dimensional Schroédinger operator
¢
_lp + u(z) p+E9=0. @7
dz?

All the facts mentioned below relating to the direct and inverse spectral problems for the operator
(27) can be found in [10]. The solutions of (27) with the asymptotic behaviors
p~e~®*  as g->—oo,

Ppoze as z—>+oo
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(Jost functions) are analytic in the upper half-plane of the complex variable k. On the real axis,

Y= -+ by,
P P L s L 28)
* 2k 2k

from which it can be seen that a (k) is analytic in the upper half-plane of k. The unitary relation for the S
matrix gives IakI2 = Ib 2= 1. The zeros of a(k) are situated on the imaginary axis, and they correspond to
eigenvalues of the problem (27). At them y(x, in,) = by@ (X, iny). The role of the relation (15) is played
in this case by the identity )

1 7]
{(Bytos—U1ala) (v wa—vav 1) 3,

7] a
() g o) = o) 5 Q) = 5

where uy, v, and u,, v, are arbitrary pairs of solutions of (27) with k? = k? and k3, respectively.

The variational derivatives of a) and by can be calculated on the basis of the representation (28) in
the same way as was done in the first section. The integrals that determine the Poisson brackets are, as
above, integrals of total derivatives, which enables one to find readily the brackets between all elements of
the S matrix. By direct calculation one can show further that the quantities

k
Pk == ““lnlak!z, Ok=arg bkv
b {29

a
P,.=%n2, Qn=ibn -(,)—Ea(k) |k=ium n=1, 2, ey N,

satisfy canonical commutation relations.

Asymptotic expansion of In gy in powers of 1/k has as its coefficients integrals of certain polynomials
in u(x) and its derivatives, which can be found directly from 27). On the other hand, these coefficients
can obviously be expressed solely in terms of Py and P;, i.e., one has a situation identical to that con-
sidered in the first section. One of these polynomials is equal to the Hamiltonian for the equation (1), and
this expresses the complete integrability of the latter. Since the arguments of this paragraph differ in no
way from those given in [8], we omit the corresponding calculations.

CONCLUSIONS

The above results give the solution of the problem of integrability of Egs, (1) and {2) considered on
the infinite interval ~» < x < +w», though they are not applicable on finite intervals with any boundary con-
ditions. In this case, the question of the integrability of the systems (1) and (2) remains open. One can,
nevertheless, give some arguments that indicate integrability of the considered fields on finite intervals.

Let us consider, for example, the nonlinear Schrddinger equation on the interval [0, I] with periodic
boundary conditions. It is not difficult to see (see [2]) that this equation is identical to the following opera-
tor relation:

L _ i Al (30)
Py

where 1, is the one-dimensional Dirac operator (3), and the operator A has the form
~ & 2 (1+ s
i L 4 ( byl {( p), i ) '
—l'lpx, “Ilplz/(i—p)

dx*
The relation (30) and the Hermiticity of the operator 1. in (3) then guarantee conservation in time of the
eigenvalues of the eigenvalue problem for the operator L:

Lpe=han 9.0 =g (), n=1,2,... 8h

Thus, we have a countable set of integrals of motion of the system (2). We show that all the A; "commute."
Expressions for 6A,/6¢ and 6, /6y* are found directly from (31):

1
8 = [ {@n) 80" (@)t (@) B0 (@) Jdz

-
(it is assumed that lipll = g(ffrcpdx)d 2= 1; itis easy to achieve conservation in time of such a normalization).
d .
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Thus, 6A,/6y = (@n)s" (@g)1 and Mg /OY* = (@p){ (Pn)e. Now, calculating the Poisson brackets (7) of the
quantities A, and Ay, and using the analog of the relation (15), we see that for the periodic problem (31)
{}‘n, 7\m} = 0.

For a dynamical system with finitely many degrees of freedom the existence of commuting integrals
of the motion in a number equal to the number of degrees of freedom is equivalent to complete integrabil-
ity of this system (Liouville's theorem). In the considered case the number of degrees of freedom is count-
able; the existence of a countable set of conservation laws is at least a necessary condition of integrability.

Similar assertions can also be justified for the Korteweg-de Vries equaticn (1).
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