
ON THE COMPLETE INTEGRABILITY OF 

NONLINEAR SCHR()DINGER EQUATION 

V. E.  Z a k h a r o v  a n d  S. V. M a n a k o v  

A 

It is shown that a nonlinear Schrbdinger  equation, regarded  as the Hamiltonian of a system,  
is completely integrable.  A transi t ion to angle and action var iables  is made by means  of the 
S matr ix  of the one-dimensional  Dirae operator .  

INTRODUCTION 

In recent time, the theory of classical nonlinear fields has attracted the attention of ever more in- 
vestigators, largely because of the extraordinary variety of physical applications. Particular attention is 
devoted to the problem of statistical description of wave fields. Fields are regarded in this case as con- 
servative Hamiltonian systems with infinitely many degrees of freedom, and their statistical description is 
based on the hypothesis of ergodicity of this system. 

On the other hand, in recent years considerable progress has been achieved in the investiga- 
tion of certain classes of one-dimensional nonlinear fields. This progress is related to the use of "quan- 
tum-mechanical" methods for the study of nonlinear systems. The essence of the new approach, which 
has been called the "method of the inverse scattering problem" is the following. One associates with a con- 
sidered classical field a certain differential operator with coefficients from this field whose spectral char- 
acteristics (S matrix, spectrum) change in time in a known manner. The Cauchy problem for the nonlinear 

field equations is thus reduced to the study of the direct and the inverse spectral problem for a linear opera- 
tor (direct and inverse scattering problem). 

The method of the inverse scattering problem was first applied by Kruskal et al. [I] to the Korteweg- 
de Vries equation: 

ut+6uu~+u=~=O, (1) 

which arose  aIready in the last  century in connection with problems of waves on the surface of a liquid. A 
one-dimensional  SchrSdinger opera tor  is assoc ia ted  with Eq. (1). 

Subsequently this approach was applied by Shabat and one of the presen t  authors (V. Z. ) to the non-  
l inear  SehrSdinger equation [2, 3] 

i,,+%x+• ] ,  12~b=O. (2) 

Equation (2) a rose  in a study of different physical  problems;  tt a r i ses ,  for example, ~n the theory of a 
weakly nonideal Bose gas at T = 0 [4, 5]. The same equation descr ibes  the two-dimensional  selffocustng of 
a s t rong light beam in a nonlinear medium and other effects [6, 7]. The nonlinear equation (2) can be in- 
vest igated by means of the one-dimensional  Dirac operator ,  which we write in the form 

0 t - p  Ox ~ 0 ' •  (3) 

Systems descr ibed by Eqs. (1) and (2) are  Hamilton sys tems .  They have an exceptional proper ty ,  
being completely integrable, t . e . ,  there exist  canonical var iables  that are s ingle-valued "functions" of the 
field var iables  (angle and action variables)  in which the equations of motion (1)-(2) take the form 
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S~=O, $h =5-~H" H~-H{Sk}. (4) 
5S~ ' 

For  Eq. (1) this fact was es tabl ished by Zakharov and Faddeev [8]. The var iables  S and �9 are  related 
simply to the scat ter ing matr ix  of the associa ted  operator .  The proof of the complete integrability of the 
nonlinear SchrSdinger equation (2) is the main content of the present  paper.  

With regard  to the problem of a stat ist ical  description, complete integrabili ty of considered sys tems 
means  that there is no stochastization in the system; nonlinear interaction does not lead to a redistr ibution 
of energy between the different "modes."  The time of "phase mixing" of a cer ta in  system is thus de ter -  
mined not by the magnitude of the nonlinearity but by the "departure" f rom the "neares t  '~ completely tnte- 
grable system.  

Great  interest  also at taches to the problem of describing a whole c lass  of fields for whose study one 
can apply the method of the inverse scat ter ing problem. For  equations that are  integrable by means  of a 
SchrSdinger opera tor  this problem was solved in [8], where it was shown that all sys tems  whose Hamilton- 
ians are  t r aces  of polynomials  of the associa ted  opera tor  with time dependent coefficients are completely 
integrable. There exists  simple recurs ive  formulas  for the calculation of these Hamiltonians. A s imi lar  
resul t  is obtained below for the opera tor  (3). 

In connection with the fact that the method we use differs f rom that employed in [8], we give the 
scheme of the new proof  of complete integrability of the Korteweg-de Vries equation. We note also that 
for  one special case of the problem we consider  (r ~ 0, ~ < 0 for  Ixl ~ r the theorem of complete inte-  
grabil i ty of Eq. (2) was proved by Takhtadzhyan. 

1. A n g l e  a n d  A c t i o n  V a r i a b l e s  f o r  t h e  N o n l i n e a r  

S c h r S d i n g e r  E q u a t i o n  (n  > 0) 

We consider  Eq. (2) on the infinite interval - ~ < x < ~ for  n > 0. 
the problem in this case requi res  vanishing of the field at infinity. 

We write Eq. (2) in the Hamilton form 

6H 5H 

where the Hamiltonian H is 

A physically sensible statement of 

We shall denote the naturally defined Poisson brackets  of the two funetionals ~ and fi by {a, fl~. 

Fur ther ,  we consider  the eigenvatue problem for the operator  L in (3): 

and make the substitution 

r (p2~ ~ t-]-P' exp (--g l_-~p2 x ) ai �9 

Equation (8) takes the fo rm 

(s) 

(6) 

(7) 

(s) 

.0u~ + i~u,=q (x) as, ~ '~  -- i~u2-----q* (x) ui, (9) 
Ox " ax 

where ~ = ~p(1-p2) -1, q(x) = i(1-p2)-l/2@(x). If q(x) dec reases  sufficiently rapidly at infinity, each solu-  
tion of the sys tem (9) for  real  r is uniquely determined by one of its asymptotic behaviors  as x ~ +co or  
x ~ - -~ .  The scat ter ing problem for  the opera tor  L consis ts  of determining one of these asymptotic be-  
haviors  given the other.  By the inverse scat ter ing problem we shall unders tand the problem of r e c o v e r -  
ing q(x) f rom the data of the sca t ter ing problem (i. e . ,  f rom the S matrix).  The direct  and the inverse 
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p r o b l e m  were  s tudied  in detai l  in [2] and we shal l  t h e r e f o r e  not dwell on the jus t i f ica t ion  of  the a s s e r t i o n s  
m a d e  below. 

The J o s t  funct ions  r ~) and r ~), def ined as  the solut ions  of (9) with the a sympto t i c  b e h a v i o r s  

( t )  e- '~ as x - ~ + %  
r o 

r 1 7 6  ~ x~-o% 
1 

al low ana ly t ic  cont inuat ion  into the upper  ha l f -p lane  of ~ fo r  e v e r y  x. (o,) 
If u = is the solut ion of (9) f o r  r ea l  ~, then t~ def is  a lso  a solut ion of the s y s t e m  (9). 

The func t ions  ~b(x, ~) and ~(x, ~) f o r m  a comple te  se t  fo r  the s y s t e m  (9), and t h e r e f o r e  

r ~)=a(~)~(z, ~)+b(~)r ~). (10) 

The e l e m e n t s  a(~) and b(~) of the S m a t r i x  can be e x p r e s s e d  as  fol lows in t e r m s  of the J o s t  funct ions:  

a(~) =(r162 (x, [),  b ( [ ) = ( ~ , q % - ~ % )  (z, ~), 

where  a(~) is ana ly t ic  in the u p p e r  ha l f -p lane  of ~; 
the S m a t r i x  in the c o n s i d e r e d  c a s e  has  the f o r m  

(11) 

a(~) ~ 1 as  ~ -~ % Im~ -> 0. The un i t a r i ty  r e l a t ion  for  

la(~) ]~-1- [ b (~) 1~:1. 
The z e r o s  of a(~) in the uppe r  ha l f -p lane  c o r r e s p o n d  to the e igenva lues  of the p r o b l e m  (9); at  the same  
t ime 

(12) 

q~(x, ~)=cr ~) (a(~)=0).  (13) 

The "potent ia l"  q(x) can be r e c o v e r e d  f r o m  the s c a t t e r i n g  m a t r i x  a(~), b(~) and the se t  of quant i t ies  c at 
each  z e r o  of a(~), Im ~ -> 0. A n e c e s s a r y  and suf f ic ien t  condit ion of so lvabi l i ty  of the inve r se  p r o b l e m  is 
the r e l a t ion  (12) and ana ly t ic i ty  of a(~) fo r  Im ~ -> 0. 

Let  u s  ca lcu la te  the P o i s s o n  b r a c k e t s  between the e l e m e n t s  of the S ma t r i x .  To d e t e r m i n e  the v a r i a -  
t ional  de r iva t i ve s  5a(~)/6q(x),  6a/Sq*, 6b/6q, 6b/6q* we use  the r e p r e s e n t a t i o n  (11): 

~a(~) 
- -  = ~ [ ~ ,  (y, ~) r ~)-r  (y, ~) r (y, ~) 1. ~q (z) ~q (z) 

The e x p r e s s i o n  in the b r a c k e t s  does  not depend on y. One can t h e r e f o r e  se t  y = x + 0. Since ~(x, ~) is de -  
t e r m i n e d  by the a sympto t i c  b e h a v i o r  as  x --~ +0% it fol lows that  6r ~)/6q(x) = 0 if y > x. The e x p r e s s i o n s  
for  l im 6r ~, ~)/Sq(x) a r e  r ead i ly  found f r o m  (9): 

y~x+O 

lim 6 ~  = % (x, ~), lim 6 % =  0, 
~ + o  6q ~-*~+o 6q 

and thus 

~a(~) 
r ~)r ~). 

6q (x): 
All the r e m a i n i n g  va r i a t iona l  de r i va t i ve s  a r e  ca l cu l a t ed  s imi l a r l y :  

6a(~) 
~,(x,~)r 6q'(z) 

6b(~) 6b(~) - - = - ~ ( x , ~ ) ~ ( x , ~ ) ,  6q(x) @*(z) 

(14a) 

(14b) 

To ca lcu la t e  the in t eg ra l s  that  de t e rmine  the P o i s s o n  b r a c k e t s ,  we note that  if u0 )  and u(2) a r e  two a r b i -  
t r a r y  so lu t ions  of the s y s t e m  (9) f o r  } = ~l, and v (1) and v (2) a r e  so lu t ions  f o r  ~ = ~2, then 

u, u,  v: v2 - u ~  uz v ,  v ,  } = 2 ( ~ i - ~ 2 )  d tu, vz - a z  ku, us --an v, )1 .  (15) 

The re la t ion  (15) fol lows d i r ec t l y  f r o m  (9). Us ing  (15), we read i ly  see  that  all the i n t eg rands  that  a r i s e  
a r e  total  de r iva t i ve s .  Calcula t ing,  fo r  example ,  {a(~), b(U)}, we f ind that  

553 



{a(~) b ( ~ ' ) } = - - -  z • e ='(t-~')= 
' 4(~--~') a(~)b(~')+--lim~--zT-'c---~a(~')b(~)" 

e ~r \ 
Using the well known re la t ion  P ( l i m ~ / =  ~i5(~), we obtain 

{a(~), b(~ ')}= 4 (~_~,-------~ a (~) b (~') ----~ia(~.)b(~)6(~-~').  

Proceed ing  s imi l a r ly ,  we can find the Po i sson  b racke t s  between all poss ib le  p a i r s  of e l ements  of the S 
ma t r ix ,  a f te r  which it is readi ly  seen that the quant i t ies  

have canonical  "commuta t ion  re la t ions"  

( is)  

[P~, P~'} = {Qt, Qc} =0, {Pt, Qc} =5 (~-~') .  

If a(~) does not have ze ros  in the upper  half -plane of ~, then the set  P~, Q~ ( -  ~ < ~ < co) is complete ,  i . e . ,  
q(x) can be uniquely r e c o v e r e d  f r o m  the given set  P,  Q, since it comple te ly  de t e rmines  the S mat r ix .  

In the case  when a(~) has  N ze ros  in the upper  half-plane,  which we shall  a s sume  a re  s imple ,  the 
va r i ab l e s  P~ and Q~ mus t  be augmented  with a d i sc re te  set  of canonical v a r i a b l e s  a s soc ia t ed  with the ze ros  
ofa(~) .  Sul3posea(~ n ) = 0 ,  Irn~n > 0, n = l ,  2 . . . . .  N. At the po in t~  = ~ n w e h a v e  r ~n)=Cn~(X, ~n)" 
F o r  a f in i te - range  potential  q(x), the functions a(~) and b(~) a re  analytic in the whole of the complex plane, 
and the var ia t iona l  de r iva t ives  5Cn/Sq(x) and 8Cn/5 q* can be obtained by analytic continuation of 5b/Sq and 
6b/Tq*,  which g ives  

8c. 8c~ 
- -  - ~ ( x ,  ~ , , )~ , (z ,  ~ . ) ,  ~ , ( z ,  r ; . ) r  t . .) .  
8q(x) 6q" 

We also find 6~n/Sq(x), using s tandard  per tu rba t ion  theory  for  the s y s t e m  (9): 

0 , (  + , + . . �9 ~(~ ~),, = q ( z ) , ~  +@8(z-z),~, 
Ox 

- ~ ( ~ + 8 ~ ) , ; = - q ' ( z ) r  , , / ( •  
Ox 

The solution of these equations has  the f o r m  

, , = {  c,r z>z, 
c,~(z, ~+8~), z<z. 

Fitt ing of the solutions at the point x = z g ives  

A nontr ivia l  solution of this s y s t e m  ex i s t s  if 

dot] *r@% .-qD' I=0, 
,2, -q~ 

but 

f r o m  which we find 

det [ *~' --(P~ ]=--a(~+6~)=--a ' (~)6~j ,  
$~, --qo~ 

Simi lar ly ,  

5~,J6q(x)=-(a'(~.))-~r ~.)r 

6~J6q" (x) =-- (a" (~,) )-~,~ (x, ~n) r (x, ~,.). 

It is now easy  to see that 

{~-, Pt} = {~-, Qt} = {e., Pt} = {c., Q~} = 0 ,  
{~o, ~. ,} = {c., c . ,}  =0 .  
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In addit ion,  {~n, Cn'} = 0, whe re  n ~ n ' .  

We ca l cu la t e  {~n, In Cn}: 

{~., In c.}= - - - -  

Genera l ly ,  

T ((p~q)~+%cpJ dx. 2 a,~ c,, 

, d 
~, (x, t)r t ')+r t)~,  (~, t ' ) = i  ( ; - t ) - ' - ~ - x  (~' (x, t )~ (~ ,  t ) - ~  (z, ; )~,  (z, V)); 

(17) 

as ~' --* 

0 0 ' ( t ' ) ]  
- -  [-~-x ( r  2~,(z, ~)%(x, ~ )=  i 0 (~-~ ' )  _ :=:' 

We now in teg ra te  (17) in finite l imi t s ,  d i f fe ren t ia te  with r e s p e c t  to ~ -  ~', and make  the p a s s a g e  to the l imi t  
~' ~ ~, a f t e r  which we iet  the l im i t s  of in tegra t ion  tend to infinity, r e m e m b e r i n g  that  a(~) = 0. As  a r e -  
sult,  we obtain {~n, l n c n } =  ~'J4. Thus,  the d i s c r e t e  se t  of canonica l  v a r i a b l e s  has  the f o r m  

2 1 
P , = V - ~ , ,  O,, = y ~ / l n  c-~- 2 , n = l ,  2 , . . . , n .  (18) 

We note  that  the v a r i a b l e s  (18) a r e  complex .  

The se t  of v a r i a b l e s  (16) and (18) is comple te ;  fo r  suppose  ~t . . . . .  ~N, Im ~n > 0 a r e  z e r o s  of a(~). 
N 

Then the funct ion at(~) = a(~)1-[ (~ - ~ ) / ( ~  - ~n) is analyt ic  in the upper  ha l f -p l ane  and does  not  van ish  in the 
n - ~  1 

reg ion  Im~ -> 0; t h e r e f o r e  lnat(~) is ana ly t ic  in this  region.  On the r ea l  axis ,  Inat(~) = lnla(~)l + i a r g a t ( ~ ) ,  
and ana ly t ic  ity of I n a  t (~) give s 

A lnla(~') Ida' 
a rga , (~ )= - -  P J ~ , 

but  

a r g a t ( ~ ) = a r g a ( ~ ) + m 2  In ~.-----~. 

Thus, a(~) can be c o m p l e t e l y  r e c o v e r e d  f r o m  the se t  P~ ( -  ca < ~ < ~o) and Pn, n = 1, 2 . . . . .  N. The quan-  
t i ty b(~) can be d e t e r m i n e d  t r iv i a l ly  f r o m  the un i t a r i t y  r e l a t ion  and Q~: 

b (~) = ( t -  l a (~) 12) '/2 exp (in (• �9 

It r e m a i n s  to f ind an e x p r e s s i o n  fo r  the Hami l ton ian  H in t e r m s  of the new canon ica l  v a r i a b l e s .  F o r  
this ,  we r e p r e s e n t  ul  f r o m  (9) in the f o r m  u 1 = exp ( - i~x  + #(x)) and, e l imina t ing  u 2 (assuming  at the s a m e  
t ime  u2(-~o ) = 0), we obtain an equat ion  fo r  6(x): 

2i~@'=]qlZ+O"+q d_~__.( i___ @,), (19) 
ax ~q 

which enab le s  one to ca lcu la t e  in a r e g u l a r  m a n n e r  the coe f f i c i en t s  of the a s y m p t o t i c  expans ion  of ~(x, ~) 

in p o w e r s  of 1/r  ~ (x, ~) = ~-~ fn(X)/(2i~) n. To de t e rmine  fn(X) we have r e e u r s i o n  r e l a t ions  that fol low 
f r o m  (19): ~ .... 

d 1 

The funct ion lna(~)  a l so  a l lows a s y m p t o t i c  expans ion  in power s  of 1/6 and ~ ~ ~, Im ~ -> 0: 

It is obvious  that  C k = (2i) - k  I fk(x)dx" 

of PC in (16) and Pn  in (18): 

In a (~) = ~ C~/~ k. 

On the o the r  hand, the 0 k can be r ead i ly  e x p r e s s e d  in t e r m s  

(20) 
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By v i r tue  of the r e c u r s i o n  f o r m u l a  (20), the Ck a r e  po lynomia l s  in r and r and the i r  de r iva t ives  with r e -  
spec t  to x. We give the f i r s t  four  Ck: 

i • 

i " J.(,',=-**:)d=, 
C=='- (2i) '  4- 

i • -~-I , l ' )  dx, 
(2,), 

dx. 

Note that  C3 is to within a f a c t o r  the Hami l ton ian  (6) fo r  Eq. (2). 

Since all the Ck (including C3) can be e x p r e s s e d  so le ly  in t e r m s  of P~ and Pn  and the t r a n s f o r m a t i o n  
f r o m  ~ and ~* to the v a r i a b l e s  P and Q in (16) and (18) is obviously  canonica l ,  the non l inea r  equat ion (2) 
can be wr i t t en  in the v a r i a b l e s  P and Q in the f o r m  (4), i . e . ,  these  v a r i a b l e s  a r e  angle and act ion v a r i a b l e s  
fo r  the c o n s i d e r e d  sy s t e m .  

Toge the r  with the Eq. (2), all  the non l inea r  f ie lds  whose  Hami l ton ians  can be r e p r e s e n t e d  in the f o r m  
of l i nea r  combina t ions  of C k with coe f f i c i en t s  that  a r e  in gene ra l  t ime  dependent  a r e  comple te ly  tn tegrable .  
F o r  example ,  the equat ion g e n e r a t e d  by Hami l ton ian  C~ is the Kor t eweg-de  Vr ies  equat ion with cubic non-  
l inea r i ty .  

To conclude  this  sec t ion  we note  that,  a s s u m i n g  that  the z e r o s  of a(~) a r e  s imple ,  we did not at  all 
r educe  the gene ra l i t y  of the t r e a tmen t :  as  is r ead i ly  seen,  the po ten t i a l s  q(x) that  l ead  to mult iple  z e r o s  
of a(~) can  be a p p r o x i m a t e d  with a r b i t r a r y  a c c u r a c y  by potent ia l s  with c lose  but s imple  z e r o s  of a(O.  

2 .  A n g l e  a n d  A c t i o n  V a r i a b l e s  f o r  a N o n l i n e a r  

S c h r S d i n g e r  E q u a t i o n  ( ~  < 0) 

The c a s e  ~ < 0 r e q u i r e s  spec ia l  t r e a t m e n t ,  
< 0 belong to the c l a s s  I~l ~ cons t  as  Ix1 --- ~o. 

l e m s  for  s u c h  potent ia l s  developed in [3] d i f fe rs  s igni f icant ly  f r o m  that  d e s c r i b e d  in the fo rego ing  sect ion.  

Le t  us  c o n s i d e r  the e igenva lue  p r o b l e m  f o r  the o p e r a t o r  L in (3): L r  = E r  and make  the subs t i t u -  
t ion v 1 = ( p -  1) -1/2 exp ( - i E x / ( p  2 -  1))~l, v 2 = (p + 1 ) - l /2exp  ( - e E x / ( p 2 _  1))r The s y s t e m  L r  = E r  is r e -  
duced  by it to the f o r m  

�9 Ov~ + q*v~=~v,, ~= pE Ov~ +qv,=t,v~, q=~(pZ--l)-'I' .  (22) 
t Ox p-~--t '  --i  Ox 

We shall  a s s u m e  that  Iql ~ 1 as  x --* • Without l o s s  of g e n e r a l i t y  one can a l so  a s s u m e  that  q ~ 1 as  
x ~ +~; then, g e n e r a l l y  speaking,  q ( - ~ )  = e i~. 

The ro le  of the J o s t  funct ions  fo r  the s y s t e m  (22) is p l ayed  by the so lu t ions  of (22) with a sympto t i c  
b e h a v i o r s  

s ince  the phys ica l ly  in te res t ing  so lu t ions  of Eq. (2) with 
The f o r m a l i s m  of the d i r ec t  and inve r se  s c a t t e r i n g  p r o b -  

~ e - ' ~  (e, (~_7~)), x -~-oo , 

~--,-e-';~( I ) ,  x ~ +  oo. 

(23) 

= ~2--~-- 1 is a t w o - v a l u e d  funct ion of ~,. We note that  if v = "~ v'}is" a solut ion of (22), then 9 def whe re  (~) 
\ /'21 

{ v2*~ " is a l so  a solut ion of this  sy s t e m .  The funct ions  ~ and ~ a r e  a comple t e  se t  of solut ions  of (22), and 
\ Ui* ! 

t h e r e f o r e  q~(x, ~) = a(~, ~)~(x, ~) + b(~, ~)r ~). And, as  fol lows d i rec t ly  f r o m  the s y s t e m  (22), 

W{~, ~} b (k) = W{~, 4} (24) 
a (X) 2~ (~,-~) ' - 2~ (~.-~) ' 

556 



where  W{u, v} is the Wronsk ian  of the two solu t ions  (22): W(u, v) = ulv 2 - u 2 v  1, and it obv ious ly  does  not  
depend on x. 

The funct ion ~(~) is def ined on a t w o - s h e e t e d  Riemann  s u r f a c e  with cu t s  ( - %  - 1 ) ,  (1 +~); on the u p -  
pe r  sheet ,  Im C > 0. A s  is shown in [3], the J o s t  funct ions  ~0 and r a r e  ana ly t i c  on the uppe r  shee t  of the 
R iemann  su r face ;  (24) then g u a r a n t e e s  ana ly t i c i ty  of a(~) on this  sheet .  The z e r o s  of a(~) c o r r e s p o n d  to 
the e igenva lues  of  the s y s t e m  (22). Since the s y s t e m  is se l fadjoint ,  the z e r o s  a r e  d i s t r i bu ted  on the r e a l  
a x i s - 1  < ~ < l a n d a r e  s imple .  I f a ( ~ a ) = 0 ,  then 

r ~,,)=b,~(x, ~,~). (25) 

Note a l so  that  a(?`, - g )  = a*(?`, De in ,  b(?`, - g )  = b*(?`, g)e ice fo r  r e a l  ?  ̀and g. Here ,  ce is a phase  of q(x) 
as  x ~  - %  which,  as  can  be shown (see [3]), is  comple t e ly  d e t e r m i n e d  by the z e r o s  of a(?`): 

e~ ~ = f i  ~,~+~r t-~______~ ~ (a(;,j) =0) .  
~ . t  

Study of the i n v e r s e  s c a t t e r i n g  p r o b l e m  fo r  the s y s t e m  (22) shows that  q(x) can be uniquely  r e c o v e r e d  
f r o m  the se t s  a(~, D and b(?`, ~), the e igenva lues  ~ of the s y s t e m  (22), and the c o r r e s p o n d i n g  quant i t ies  
b n (see (25)). 

The in t roduct ion  of canon ica l  v a r i a b l e s  a s s o c i a t e d  with the S m a t r i x  of the s y s t e m  (22) is p e r f o r m e d  
as  in the fo rego ing  sec t ion .  The va r i a t i ona l  d e r i v a t i v e s  of the e l e m e n t s  of the S m a t r i x  a r e  c a l c u l a t e d  on 
the bas i s  of the r e p r e s e n t a t i o n  (24). The de ta i l s  of  the ca l cu l a t i ons  a r e  a l m o s t  iden t ica l  to those  given 
above;  we t h e r e f o r e  omi t  them.  

It can  be shown that  the P o i s s o n  b r a c k e t s  (7) of the quant i t i es  

1 2 
P~ = - - l n l a  (~, ~)[z, Q~ = - - - a r g  bx, 

X 

Z O= 

a r e  {PZ, p?,,} = {QzQ~,,} = 0, {p~, Q?`,} = 6~,_~,. Here  6?,_?`, is  6 (? , -  ?`,) fo r  the con t inuous  s p e c t r u m  and 
the K r o n e c k e r  del ta  fo r  the d i s c r e t e  s p e c t r u m .  The va lues  of a(~, ~) and b(~, ~) in (26) a r e  taken on the 
bounda r i e s  of the cut  in the ~ plane on which the sign of ~(Z) is the s a m e  as  the sign of ~. The c o m p l e t e  
S m a t r i x  can be r e c o v e r e d  in an obvious  m a n n e r  f r o m  the se t  P and Q. 

The i n t eg ra l s  of mot ion  of the s y s t e m  (2) can  be obtained,  as  in the c a s e  ~ ~ 0 a s  !xl ~ ~, by e x -  

panding lna(X) in p o w e r s  of 1/~,  Im ?, _> 0. They  have the f o r m  I n = S[fn(x)-fn(~o)]dx,  where  fn a r e  d e -  

t e r m i n e d  f r o m  the r e c u r s i o n  r e l a t ions  (20). 

3 .  C o m p l e t e  I n t e g r a b i l i t y  o f  t h e  

K o r t e w e g - d e  V r i e s  E q u a t i o n  

We apply the above a p p r o a c h  to Eq. (1). This  equat ion  can be r e p r e s e n t e d  in the f o r m  

0 5H 
Ut Ox 6u(x) ' 

where  H = S (U2x/2 -u3 )  dx. The P o i s s o n  b r a c k e t s  t h e r e f o r e  have the f o r m  

{ a , ~ } = - - ~ -  6a Ox 5a 6~z ~x 5a_dx" 

We c o n s i d e r  f u r t h e r  the s c a t t e r i n g  p r o b l e m  fo r  the o n e - d i m e n s i o n a l  Sch rhd inge r  o p e r a t o r  

d-~2 -t- a (x) r (27) 

All  the f ac t s  m e n t i o n e d  below re l a t ing  to the d i r ec t  and i n v e r s e  s p e c t r a l  p r o b l e m s  fo r  the o p e r a t o r  
(27) can be found in [10]. The so lu t ions  of (27) with the a s y m p t o t i c  b e h a v i o r s  

q)---~e -~-~ a s  x --)- - oo , 

~ ' e  ~h~" a s  x--*- q - ~ 1 7 6  
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(Jost functions) a re  analytic in the upper  ha l f -p lane  of the complex  va r i ab le  k. On the rea!  axis ,  

r 1 6 2  q r 1 6 2  (28) 
ak-- - - ,  b~ = 

2tk 2ik 

f r o m  which it can be seen that a (k) is analytic in the upper  hal f -p lane  of k. The uni tary  re la t ion  fo r  the S 
m a t r i x  g ives  lak 12- Ibk Iz = 1. The ze ros  of a(k) a r e  s i tuated on the imag ina ry  axis ,  and they c o r r e s p o n d  to 
e igenvalues  of the p r o b l e m  (27). At them ~(x, i n  n) = bn~P(x, i~n). The role  of the re la t ion  (15) is p layed 
in this  case  by the identity 

0 0 t 0 
(uivi)'~x (uzvz)-- (u~v2)-~x (TZ:vl) . . . .  k,~-kz ~ Ox { (ata~-zzi~u~) (viv~,--v2vi,) }, 

where  u l, v~ and u 2, v 2 a re  a r b i t r a r y  p a i r s  of solutions of (27) with k 2 = k~ and k~, respec t ive ly .  

The var ia t ional  de r iva t ives  of a k and b k can be ca lcula ted  on the ba s i s  of the r ep resen ta t ion  (28) in 
the same way as  was done in the f i r s t  sect ion.  The in tegra ls  that de te rmine  the Po i s son  b r acke t s  a re ,  as  
above, in tegra l s  of total  der iva t ives ,  which enables  one to find readi ly  the b racke t s  between all e l emen t s  of 
the S ma t r ix .  By d i rec t  calculat ion one can show fu r the r  that the quant i t ies  

Pk---- k---ln[a~IZ, Q~=arg b~, 
u (29) 

p,,=• Q , = i b ~ k a ( k ) [ ~ = ~ ,  n=l ,  2 . . . . .  N, 

sa t i s fy  canonical  commuta t ion  re la t ions .  

Asymptot ic  expansion of l n a  k in powers  of 1/k has  as  i ts  coeff ic ients  in tegra l s  of ce r ta in  polynomials  
in u(x) and i ts  der iva t ives ,  which can be found d i rec t ly  f r o m  (27). On the other  hand, these coeff ic ients  
can obviously be e x p r e s s e d  solely in t e r m s  of P k  and Pn '  i . e . ,  one has  a s i tuat ion identical to that  con-  
s ide red  in the f i r s t  sect ion.  One of these  po lynomia ls  is equal to the Hamil tonian for  the equation (1), and 
this  e x p r e s s e s  the comple te  in tegrabi l i ty  of the la t te r .  Since the a rgumen t s  of this p a r a g r a p h  differ  in no 
way f r o m  those given in [8], we omi t  the co r respond ing  calculat ions.  

C O N C L U S I O N S  

The above r e su l t s  give the solution of the p rob l em of in tegrabi l i ty  of Eqs.  (1) and (2) cons ide red  on 
the infinite in terva l  - ~  < x < +co, though they a re  not appl icable  on finite in te rva ls  with any boundary con-  
ditions. In this case ,  the question of the integrabi l i ty  of the s y s t e m s  (1) and (2) r e m a i n s  open. One can, 
neve r the l e s s ,  give some a rgumen t s  that  indicate in tegrabi l i ty  of the cons ide red  f ie lds  on finite in te rva ls .  

Let  us  consider ,  for  example ,  the nonl inear  Schr6dinger  equation on the in terva l  [0, l] with per iodic  
boundary conditions. It is not difficult to see (see [2]) that this  equation is identical  to the following o p e r a -  

tor  relation: 

- ~[/~, X] ,  (30) 
ot 

where  L is the one-d imens iona l  Di rac  o p e r a t o r  (3), and the ope ra to r  A has the f o r m  

_~ a 2 ( I ~ W  ( t+p) ,  t$2 
A=-P-~x~ + - ~ ,  - I $ 1 v ( l - p )  ~ " 

The re la t ion  (30) and the Hermi t i c i ty  of the o p e r a t o r  L in (3) then guarantee  conserva t ion  in t ime  of the 
e igenvalues  of the eigenvalue p r o b l e m  for  the ope ra to r  L: 

L%,=~%~, r  n= i ,  2 . . . .  

Thus, we have a countable set  of in tegra l s  of motion of the s y s t e m  (2). 
Exp re s s ions  for  6~,n/5~ and 6~n/5~b* a re  found di rec t ly  f r o m  (31): 

! 

6L~ ~ ~ I (%~) C6~" (r ~+ (%0 ~*6tp (cpn) ,}dx 
o 

t 

(it is a s s u m e d  that I1~o11 = ~(~o+~odx) 1/2 = 1; 
0 

(31) 

We show that  all the ~'n "commute . "  

it is e a sy  to achieve conserva t ion  in t ime of such a normal iza t ion) .  
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Thus, 6An/65 = (q~n)2* (qn)l and 6An/6r = (~0nh*(q~n)2. Now, calculating the Poisson brackets  (7) of the 
quantit ies A n and k m and using the analog of the relat ion (15), we see that for  the periodic problem (31) 
{An, Am}= 0. 

F or  a dynamical sys tem with finitely many degrees  of f r eedom the exis tence  of commuting integrals  
of the motion in a number  equal to the number  of degrees  of f r eedom is equivalent to complete i n t e g r a b i l -  
ity of this sys tem (Liouvil le 's  theorem) .  In the cons ide red  case  the number  of degrees  of f reedom is count-  
able; the exis tence of a countable set  of conservat ion laws is at leas t  a n e c e s s a r y  condition of integrabil i ty.  

S imi la r  a s se r t ions  can also be just if ied for  the Kor teweg-de  Vries equation (1). 
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