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1 .  T h e  H a m i l t o n i a n  F o r m a l i s m  

In studying wave phenomena in var ious  nonl inear  media  the i r  s i m i l a r i t y  is s t r ik ing.  Such p r o c e s s e s  
as,  for  example ,  p a r a m e t r i c  ins tabi l i t ies ,  se l f - focusing,  and genera t ion  of h igher  ha rmon ic s  may occur  
for  the pas sage  of powerful  light pulses  through t r anspa ren t  d ie lec t r i cs ,  for  propagat ion of f in i te-ampl i tude 
waves in a p lasma ,  and for  propagat ion of spin waves in f e r r o m a g n e t s  or  gravi ta t ional  waves along the s u r -  
face of a fluid. 

T h e r e f o r e  a compel l ing neces s i t y  a r i s e s  for  formulat ing a genera l  theory  of waves in nonl inear  media  
which could t r ea t  all  of these p r o c e s s e s  f rom a unified point of view while avoiding the spec i f ics  of the 
medium.  A sample  of such a theory  may  be found in the c l a s s i ca l  mechanics  fo rmula ted  in the language of 
canonical  va r i ab l e s .  The r e fe rence  to c laSsical  mechanics  a lso  del ineates  the f r a m e w o r k  within which one 
should cons t ruc t  the genera l  theory  of nonl inear  waves;  it is c l ea r  that one may  hope for  se r ious  success  
only by assuming  that the d iss ipa t ive  ef fec ts  a re  sma l l  (absent en t i re ly  in the f i r s t  approximation)  - i .e . ,  
one should l imit  the analys is  to conserva t ive  s y s t e m s .  

F r o m  the fundamental  point of view the formulat ion of a genera l  theory of waves in nonl inear  con-  
se rva t ive  media  is  no more  than the genera l iza t ion  of c l a s s i ca l  mechanics  for  the case  of s y s t e m s  with a 
continuous number  of deg rees  of f r eedom.  

Such a genera l iza t ion  is made in c l a s s i ca l  field theory  which preceded,  for  example ,  quantum e l ec -  
t rodynamics .  Under these conditions it is usual ly  a s sumed  that the field has  a local Lagrangian  densi ty 
which depends on a finite number  of de r iva t ives  with r e spec t  to the space  va r i ab l e s .  At tempts  at f o rmu la t -  
ing a genera l  theory  of waves  in nonl inear  media  according to the prototype of c l a s s i ca l  field theory  have 
been made recent ly  by Whigham [1], Lighthill  [2], and a s e r i e s  of other  authors  (viz., for  example,  [3]). 

However ,  the theory  s ta r t ing  f r o m  a local  Lagrangian  does not have a degree  of genera l i ty  sufficient 
to encompass  the examples  given above. In the ma jo r i ty  of p rac t i ca l  ca ses  the Lagrangian  is nonlocal (or it 
i s  local  but r equ i res  fulfi l lment of additional conditions which g rea t ly  compl ica te  the p rob lem) .  T h e r e f o r e  
it is reasonable  to s t a r t  f rom the mos t  genera l  of the f o r m a U s m s  of c l a s s i ca l  mechanics  - the Hamil tonian 
f o r m a l i s m .  

*Here we p resen t  the contents of just  the f i r s t  pa r t  of the lec ture  course  under  the genera l  heading , T h e  
Hamii tonian F o r m a l i s m  and Exac t  Methods in the Phys ic s  of Waves in Nonlinear  Media Having D i s p e r s i o n . "  
The exposi t ion of the second par t ,  which is devoted to exact  methods,  wi l l  be published l a t e r  in the f o r m  
of a s epa ra t e  su rvey .  
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The p r e sen t  p a p e r  contains a consis tent  (and the re fo re  to a cons iderable  degree  t r ivial)  c a r r y o v e r  of 
the ideas of c l a s s i c a l  Hamil tonian  mechan ics  to the case  of a continuous number  of deg rees  of f r eedom and 
a t r ans l a t iona l ly - inva r i an t  Hamil tonian  in the gene ra l  fo rm.  

The mos t  difficult  f ea tu re  in a l l  of this p rocedure  is to wri te  the equations for  the var ious  s p e c i f i c  
med ia  in the canonical  v a r i a b l e s  (Section 5) - these  va r i ab l e s  a re  often re la ted  in a ve ry  b i z a r r e  way to 
the "na tura l "  phys ica l  v a r i a b l e s  which desc r ibe  the nonl inear  medium.  

As the f i r s t  example  of the use of the Hamil tonian f o r m a l i s m  for  continuous media  let us cons ider  the 
equation for  potent ial  flow of an ideal c o m p r e s s i b l e  fluid in which the p r e s s u r e  i s  a unique function of the 
densi ty  p(p). These  equations may be wr i t ten  in the f o r m  

~t + 2 ( V O ) '  --k w(O) ---- O, Ptq" d ivpvq)=O.  (1) 

He re  r is the ve loc i ty  potential ;  w(p) = i ( 1 /p ) (dp /dp )d / i s  the specif ic  energy  of the fluid. The s y s t e m  of 
Eqs .  (1) c o n s e r v e s  the ene rgy  of the fluid 

H-----.I" - ~ p ( v r  dr, r (2) 

It is not difficult  to check the fact  that E qs. (1) may  be wri t ten  in the f o r m  

Op ~H 0 r  ~H (3) 
Ot ~r ' c)t ~"  

Here  the symbols  6 / 6 r  and 6/6p denote va r i a t ion  of de r iva t ives .  

E quations (3) const i tute a d i r ec t  analog of the Hamil tonian equations of c l a s s i ca l  mechanics  - a pa i r  
of canonical ly  conjugate quanti t ies (the genera l ized  coordinate  p(r, t) and the genera l ized  momentum r  
t)) a r e  s t ipulated at each point in space .  

A d i r ec t  genera l i za t ion  of the cons idered  example  is the case  in which the med ium can be desc r ibed  
by two functions of the coordina tes  and t ime  - the genera l ized  coordinates  q(r, t) and the genera l ized  
m o m e n t u m  p{r, t) which a r e  governed by the equations 

Oq ~H @ ~H 
0"~= ~p at = - -  ~q' (4) 

where  H is a ce r t a in  functional of p(r ,  t), q(r, t) (usually it has  the meaning of the ene rgy  of the medium).  
Equations (4) in gene ra l  a re  not d i f ferent ia l  in the space  coordinate .  

Let us cons ider  the expansion of the Hamil tonian H in powers  of p and q. If the medium is not subject  
to ex te rna l  fo rces ,  then this expansion begins with t e r m s  that a re  quadrat ic  in p, q: 

H =  Ho + H, + .... 

In a spa t ia l ly  homogeneous med ium the f i r s t  t e r m  of the expansion has  the f o r m  

Ho=-~]l {A(r--r ' )prPr,  + 2 B ( r - , r ' ) p ,  qr, + C ( r - - r ' )  X q, q,,}drdr', (5) 

where A(r), B(r) and C(r) a re  ce r t a in  s t ruc tu r a l  functions.  It is obvious that A(r) = A ( - r ) ,  C(r) -- C ( - r ) .  
P e r f o r m i n g  a F o u r i e r  t r an s fo rm a t i on  in the coordinates  

we reduce  H 0 to the f o r m  

Here  A k = 

1 P �9 , 
Pr = (2  ~)312 ~ Pk el~" dk, _k=pk ,  

1 qe eihr q = (2~)~a S dk, q_~=q*~, 

1 , , , H o = -~ ~ {A .p .p .  + 2B.p.q,  + Caqkq . } dk. 

A(r)e ikrdr ,  and B k and C k a re  defined analogously.  We have 

B~ = Blk -k iB~ ,  

A_~ = A~ As, C_k ~=C,, 

B_~=B'_~, BI_ ~ = B,k, B2_ ~ = --  B2k. 

(6) 

(7) 
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The Hamil t0nian E qs. (4) in the va r i ab l e s  Pk, 

o t  ' 

Substituting H = H 0 f rom E q. (5) into (8), we have 
@, 

Ot = - c , , q ~  - B , p , ,  

Assuming p, q Ne xt in the s y s t e m  (9) we find 

for  ~. 

qk have the fo rm 

Oqk ~ H 

ot ~ F, 
i8) 

, O q~ = B*~q~ + A~p~. (9) 
Ot 

The medium is s table  re la t ive  to buildup of sma l l  pe r tu rba t ions  if 

At~ C~ > B~. (lO) 

The stability condition (I 0) will henceforth be assumed fulfilled, whence it follows that A k and C k have 
identical signs. If the medium is invariant relative to reflection of the coordinates, then B(-r) = B(r) and 
B2k = 0. In such a medium _)~z = AkCk_B2k. From the variables Pk and qk we perform a conver- 
sion to the new variables ak, a~ according to the formulas 

a ~ = % p h + ~ % ,  ~ - ~ = % '  (11) 
* " * ~ h q ~ ,  = 

and require  fulfi l lment of the condition 

k ~k i" ( 1 2 )  

Condition (I 2) leads to a situation in which the equations for ak have the form 

Oa k + ~ H 
....... i ~  = O. (13) 
at ~ a*~ 

We fur ther  r equ i re  that in the new va r i ab le s  the Hamil tonian H 0 have the fo rm 

Ho :: S t ok% a*kdk, (13a) 

where ~-iw k is one of the functions Xi,2. E x p r e s s i n g  Pk and qk f r o m  (11), we make  use of the condition (11) 
to obtain the following resu l t  a f t e r  pe r fo rming  subst i tut ion into (6): 

Ak C k [%r 2 =  , t~kl '  
2 too (k) 2 to o (k)' (14) 

B1,. 
4 + % ~ k  % ( k ) '  

where wo(k ) = ~/AkCk-B2k; the sign in front  of the rad ica l  mus t  coincide with the sign of A k. The genera l  
solution of the s y s t e m  of E qs. (14) has the fo rm 

% = '  2too(k) exp (i ~k), ~k---  2.4k~o (k) (B~k + g%(k)) exp (iO~), 

where  ~k is an a r b i t r a r y  phase  mul t ip l ie r .  Under these conditions 

to~ = - -  B s ( k ) +  (sign A k) t, / A k  C ~ - -  B~a . (15) 

The sign of o.~ de te rmined  f r o m  Eq.  (15) (the wave d i spe r s ion  law) coincides with the sign of the ene rgy  of 
the waves in a nonl inear  medium.  

Assuming for  s impl ic i ty  that r  = 0, we exp re s s  Pk and qk in t e r m s  of Ok, ak: 

Pk --  - i 2 A ~ % ( k )  / (8~'  - -  i too(e))  a~ - -  (Bx~ + i too(~) )a ;  }, 

% [/ ~-'7"~',~, (a~ --  a*_l,). 
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Let us substitute (16) into the cubic t e rm of the expansion of the Hamiltonian H in powers of a k and a k. We 
have H, = S {Vk k, k a**ak ak + V* a* a* , k, k, ~, ak k, k, } ~k--k,--k, l-[ dk, 

i 

1 H * a* a* a* 1-~ dk~ -~- (17) 
i 

The functions V and U have s y m m e t r y  proper t ies :  

L . , . , , .  = v , . , . , ,  u , , . , .  = u , , . , .  = v , . , , , .  (is) 

In the ease when the medium can be descr ibed by severa l  pairs  of canonical var iables  the problem of 
diagonalizing the quadratic par t  of the Hamiltonian is less t r ivial .  

This problem may be solved if, for example, H 0 has the form 

H o = ~, f {V:j(r -- r ' )p , (r)pj(r ' )  + Qtl(r - r ' )qj(r)qj(r ' )}  d r d r '  

and one of the ma t r i ces  Vii and Qij is posit ive-definite.  In this case the diagonalization of the Hamiltonian 
is equivalent to the problem of finding the normal  var iables  in an osci l la tory  sys tem with N degrees  of f r ee -  
dom. In such a medium there are  N wave modes having the dispers ion laws wi(k ) and the amplitudes ai(k). 

All of the preceding reasoning has res ted on the assumption that the equations of the medium are 
writ ten in canonical  var iables .  As a rule, the "natural"  physical  var iables  in which the equations of con- 
tinuous media  are  writ ten (the components of the velocit ies,  displacements,  e lect r ic  and magnetic fields) 
are  not canonical.  Note, however,  that the equations of a medium that allow the introduction of canonical 
var iables  must (if they are  equations of the f i rs t  o rder  in time) have the following form in the a rb i t r a ry  
coordinates An(r  , t): 

~ G . . , ( r ,  "OA ' ( r ' )  d r ' =  ~H (19) 
,~ , r )  Ot ~ A,(r------)' 

where Gn,m(r , r ' )  is the kernel  of a nondegenerate l inear opera tor  (with coefficients that in general  depend 
on An(r)) which sat isf ies  the conditions 

Gn, m (r, r') = -- Gin, m (r, r') (the asymmetry condition); 

Pn {r) ~ Pm (r') (the closure condition). 
G~. ~ (r, r') ~ A= (r') ~ A~ (r) 

Under these conditions the functional H is a Hamiltonian and is conserved, while Gn,m(r , r ' )  is governed by 
the relationship 

G,. m (r ,  r ')  . ~ Gk. .  (r" r )  ~ G~. k (r" r") 
~A..(r") -t- ~ f4: ( -~  -1- ~ A . ( r - ~  = O. 

Equations (19) minimize the action 

S = ~, ~ d t +  dr {p~ (r)A~(r) } + ~ Halt, (9~0) 
n 

which consti tutes a l inear  function of the f i rs t  derivative of the coordinates with respec t  to t ime.  It may be 
proved that if the medium allows the variat ional  principle and the action depends solely on the finite order  
of the time der ivat ives  of the var iables  descr ibing the medium, then canonical var iables  may also be in- 
troduced in it [4]; 

2.  C a n o n i c a l  T r a n s f o r m a t i o n s  

Let us consider  the t ransformat ion  f rom the var iables  a k to the new variables  bk, and let us require  
that the equations of these var iables  have the form (13) with the same Hamiltonian H. It is easy  to check 
the fact that for this purpose the desi red t ransformat ions  must  sat isfy the following conditions: 

~ { ~ a  k ~a~,,, ~ a  k. 8 a k , , J d k , = O  ' 
b~, ~b~, b k, ~b e, 

. - -  . �9 O k _ k r .  

~b w ~b k, ~b* u, ~b~ d k ' =  

(21) 
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Conditions (21) are  the conditions for canonicity of the p o i s s o n  brackets  which ensure  canonicity of the 
t ransformat ions .  Let us represent  the canonical t ransformat ion f rom a k to b k in the fo rm of an in tegro-  
power ser ies  

�9 "" t*t~,t~,t*, s, bthbk,} dktdk~dk~., (22) 

Equations (21) impose specific constraints  on the coefficients of the se r i e s  (22). Thus, the functions V(l), 
V(2), V (~) must Satisfy the conditions 

V! ~) , - -  2I~.O) V!~) - -  V(~) v (a  (23)  S ,k~ ,ka  ~ I ~ , k k ~  ) k k t k ~  - -  S t k a k  ~"  - - k k ~ k ~  

while the functions W (i) must sat isfy the conditions 
kk~k2k 3 

_ V~?~ v(,)  ~ d # '  = ~'~,r~,  3WOi, , . ,~k -t- 4 ! (Vi},'i,,,, Vifa:, k, " ' k , --* '**,~ k.~,, 

V(,)* + V(kgk, V'a) . _  *a) ~,) V(S)* / d k '  = w/*(~) (24) 

~ kk~', kj k~ I~' k kt k~ k g~r kL k~ l~r k,~ 

The canonical t ransformat ions  written in the form of the se r ies  (22) allow simplification of the wave- 
interaction Hamiltonians by excluding ,nonessent ia l  w t e rms  f rom them. Thus, the t ransformat ion 

(3) 1 Us*k, s, (25) 
Va) = V (~) = 0, Vk k, s~ = 3 ~s + ~s,  + c~ ~k+s,+k, 

excludes the second two t e rms  in the Hamiltonian (17), whereas the t ransformat ion  

V, s, *~ (26) 
(~S  - -  0 ) k l  - -  t0k~ 

excludes the f i rs t  pair  of t e rms  in the Hamiltonian (17). The procedure  of success ive  exclusion of t e rms  
of the Hamiltonian by means of canonical t ransformat ions  is called the c lass ica l  perturbat ion theory (viz., 
for example, [5]). A charac te r i s t ic  difficulty of the c lass ica l  per turbat ion theory and problems with a finite 
number  of degrees  of f reedom is the appearance of . s m a l l  denomina to r s . .  In the physics of nonlinear waves 
this difficulty is manifested in the fo rm of the appearance of nonintegrable singulari t ies  in the coefficients 
of the canonical t ransformat ions .  Thus, for  fulfillment of the conditions 

k'-t- #1 -[- k~ = O, (27)  
% + % + %, = 0 

a singularity a r i ses  in the coefficient V (3) ." , while when the conditions 
kkll~ 2 

k = kt -k k2, (28) 
t~ k = 0 ) k ~ - 4 -  t 0 k ,  

are fulfilled a s ingulari ty appears in the coefficient V (l) 
kkik 2" 

Fulfillment of conditious (27) is possible only in a medium where w k changes sign (i.e., if  waves with 
negative energy may exist in the medium). In media which allow only waves with a positive energy a Hamil-  
tonian of the type ~ U s * a ' a *  + . . .  may always be excluded and in this sense is . nones sen t i a l . .  

The possibil i ty of the existence of solutions of the sys tem (28) depends on the fo rm of the flmction 
oa k. If w 0 = 0 and 04 > 0, then the sys tem (28) has solutions for  r > 0 and has no solutions if w~ < 0; for  
w 0 ~ 0 this problem is more  complicated.  If the sys tem (28) has s-61utions, then the principal  te~m of the 
wave-interact ion Hamiltonian has the form 

Hin t ~= ~ { V k ~  a**a k a k ~ +  Vkk, k~ah a~ * o , * k~ ak~ } ~k--k,--k~ dk  d k l  dk~.  (29) 

Under these conditions the function Vt~ k ~. is r igorously  definite only on the surface (28) ; off this surface it 
l r ~ 2  " " a e te may be changed by an appropriate  t r ans formatmn of the form (22) whlch dds th rm  - ( 0 a . - o a .  - o a .  ) 

�9 r .  �9 ~ 1  ~ " 2  
�9 v (0  to v . . . .  The form of V.(i. ) . ma be chosen on the basis  of convenience cons ldera tmns .  
-- kklk 2 --lr~lK 2 - KKIK 2 Y 
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If the s y s t e m  (27) has no solutions,  then the cubic t e r m s  may  be excluded f r o m  the in terac t ion  H a m i l -  
tonian. 

Under these  conditions, however ,  fourth o rde r  t e r m s  appea r  among which l ikewise not all  of them 
a r e  essen t ia l .  The Hamil tonian 

1 
H,.t = --~ j' r~ k, k~ k, a** a**, ak, a~o Bk.,,_k_k~ dk  dkl  dk._. ak3 (30) 

is e ssen t ia l .  In an a t tempt  to exclude this Hamil tonian  a s ingular i ty  develops which is concent ra ted  on the 
manifold defined by the s y s t e m  of equations 

/r + ks = k2 + ks, (31) 

The s y s t e m  (30) has  solutions r e g a r d l e s s  of dependence on the f o r m  of Tkklklk  ~. 

Let us r e p r e s e n t  an explici t  express ion  for  Tkklk2k3, which is caused by the cubic t e r m s  in the H ami l -  
tonian: 

Tk k, t~, k., 
t%+k~ "F o) k -~- t%, o)k+k~ - -  L% ~ wk~ 

OJka__k ~ - ~  ~Okl - -  (Oka (Ok~__ k - r  O) k - -  OJk~ 

- - 2  ' ' ' -  . . . . . .  - - - 2  . . . .  ( 3 2 )  
c%_~ + r --  ~ cok,.__~ ~ -~- (%, - -  o~k~ 

for  w k + Wkl = Wk2 + r In der iv ing Eq. (30) it was a s sumed  that the waves have a low ampli tude 

IT[ lal ~ .~ ~,,'~k. (33) 

The use  of canonical  t r an s fo rm a t i ons  al lows the ent i re  d ive r s i ty  of I-Iamiltonians for  nonl inear  media  
to be reduced to a sma l l  number  of ~s tandard .  o r  - e s s e n t i a l .  Hamil tonians .  Thus,  in a med ium with waves  
having pos i t ive  ene rgy  the s tandard  in te rac t ion  I-Iamiltonian has  the f o r m  (29) if the law for  the d i spe r s ion  
of .0~ has  decay  (i.e., p r o c e s s e s  of the type (28) a re  allowed, or  the f o r m  (30) holds if these p r o c e s s e s  a r e  
forbidden).  Under these conditions the coeff icients  of the functions V and T, which en te r  into the H a m i l -  
tonian, a r e  r igo rous ly  definite only on the " r e sonance  s u r f a c e s .  (28) and (31), and may  be chosen a r b i -  
t r a r i l y  f a r  away f r o m  these  s u r f a c e s .  Analogous s tandard  f o r m s  of the Hamil tonian may  a lso  exis t  for  
o ther  m o r e  complex cases .  Let  us p re sen t  the s tandard  I-Iamiltonian of the medium for  the impor tan t  p rob -  
l em of the in te rac t ion  of h igh- f requency  waves having an ampli tude a k with low-frequency waves  having an 
ampli tude b k [6]! 

H,., = ,; { t,, + v ; ,  % } (34) 

The Hamil tonian of the type (34) desc r ibes ,  for  example ,  in terac t ion  of light and sound in d i e l e c t r i c s ,  the 
in te rac t ion  of Langmui r  and ion-sound waves in a p lasma ,  of spin and acoust ic  waves in a f e r romagne t ,  
e tc .  

3 .  T h e  I n s t a b i l i t y  o f  S t a t i o n a r y  L o w - A m p l i t u d e  W a v e s  

The calcula t ion of the f i r s t  s e v e r a l  coeff icients  in the expansion of the Hamil tonian H of the med ium 
in the powers  of the canonical  va r i ab l e s  a k and a~ automat ica l ly  allows the solutfon of a s e r i e s  of i m p o r -  
tant p r o b l e m s  as soc ia t ed  with the nonl inear  in terac t ion  of waves .  F i r s t  of all, this applies  to the p ro b l em 
of the s tabi l i ty  of low-ampli tude s t a t iona ry  waves .  Waves a re  usual ly called s t a t ionary  in those  pa r t i cu l a r  
c a se s  of motion of a nonl inear  medium when all quanti t ies descr ib ing  the medium depend sole ly  on the c o m -  
bination x--vt .  Under these conditions it is obvious that ak(t ) = c(k)e- ikvt .  

The equations of motion of the med ium in the l inear  approximat ion  has  the f o r m  

- - -  + i ~  a~ = O, 
Ot 

fo r  a s t a t ionary  wave they yield 

( %  - -  k v )  a ~  = O. ( 3 5 )  
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If the dispers ion law is not linear, w k ~ ck, then c k = aS(k-k0),is  the sole solution of Eq. (35); here  k 0 is the 
ze ro  of the express ion Wk-kV. In a l inear medium with dispers ion all  s ta t ionary quantities are  monochro-  
matic .  

For  a fa i r ly  low amplitude a this is also valid in a nonlinear medium. Since nei ther  Eqs.  (27) nor  
Eqs.  (28) for ~ ~ ck can be satisfied if two of the vectors  (k, kl, k2) a re  equal to the same vector  k0, one 
should use the Hamiltonian (30) to descr ibe  a monochromat ic  wave. 

The equations for  the medium within the f ramework  of this Hamiltonian have the form 

Oak + 
- - -  i % a k + i " * " Ot ) Trek'' a. ~ ak, ak, ah~ %+k.--k~--k~ dkl dk 2 dIr (36) 

and allow the solution ak(t ) = a5(k-k0)eik0 vt, where 

boy o~ + T ia]2 ~_ ~)ko" (36a) 

The nonlinearity of the medium is manifested f i rs t  of all in the appearance of a quadratic dependence of the 
velocity of the monochromatic  wave on amplitude. Equation (36a) is t rue if the effects of nonlinearity a re  
smal le r  than the effects of d ispers ion (i.e., for T la[ 2 << k2Wk, ). Otherwise the shape of the s ta t ionary wave 
is far  f rom sinusoidal. 

Let us consider  the problem of the development of per turbat ions in a medium having a low (but finite) 
amplitude. For  this purpose we go over  to a f rame of reference  in which the s ta t ionary wave is at res t  
after  performing the substitution of var iables  a k = cke-ikvt  and the Hamiltonian t ransformat ion  

ha the variables  c k we have 

Oc k ~ H 
()t + i ~ -  k + Tack = 0. (37) 

In Eq. (37) we introduce damping Yk of the phenomenological waves. 

Let us now place 

G = a ~ ( k - - k o ) + %  (%k 3<<a) (38) 

and let Us retain only the t e rms  which are  quadratic in cv k in the Hamiltonian H. We have 

/~ = S (% --  kv) % ~.; dk + / ~ , ,  (38a) 

where the Hamiltonian H1 vanishes along with the amplitude a of the s ta t ionary wave. 

In the Hamiltonian HI one should retain only the , e s sen t i a l ,  t e rms  which are not excluded by the 
canonicaI t ransformat ion.  In a medium in which three-wave p rocesses  (28) are  allowed one should use 
the Hamiltonian (29) and Hint, and for Ht we have 

fi, : aS ( Vkok:,, %. ~'~, + V,*a,k,a*k ~*k.) ~,,--k.--*. dk '  dk~ + 2a y (V,,,0, a;, %, + Vk*,ok ~.,. ~;, ) ~,._,._, dk, dkv (39) 

The f i rs t  t e rm of the Hamiltonian (39) is essent ial  near  the surface 

/~0 = kl  + k2,  (40) 

~ko ~ t%, -]- ~k, �9 
The second is essent ial  near  the surface 

ko = kt - -  k~,  
(42) 

If these surfaces  are  spaced sufficiently far  apart, only one of the t e rms  of the Hamiltonian (39) is e s sen-  
tial. 

Limiting ourselves  to the f i r s t  term, we have 

0 a k 
a~ -~ + i(% - -  av) % + 2 iava." ' ~* = o. k0--k, k ko--k + 7~ % 0. (42) 
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Considering the solution of this equation in the fo rm a k = e At, we a r r ive  at a well-known formula  for  the 
growth ra te  7 of pa r ame t r i c  instabil i ty [7, 8]: 

whe re 

- ( = R e } , =  l (], ~-'(z)-~ ~ / /  1 ~2+ "'2 4 (~  ", 
- -  -~ --  .~- ,max + - -  72) ~ , 

7max= 2[V~,~.~0_~a, "[1 : 7k, "(c : ~k,--k" 

(43) 

Equation (43) demons t ra tes  the existence of instability if 

~max ~ ~'l 73 

with a maximum growth rate on the surface  (27) (5 = 0). It is important  to note that the growth rate of 
pa r ame t r i c  decay instabili ty of the f i rs t  o rder  can be expressed d i rec t ly  in t e rms  of the coefficient Vkklk 1 
of the Hamiltonian (29). 

An analysis  of the Hamiitonian which is essent ia l  near  the surface (41) shows that this Hamiltonian 
does not lead to instabili ty.  A simple mnemonic rule exists  which allows separat ion of the t e rms  in the 
interact ion Hamiltonian which lead to instability. Note that this canonical var iables  a k may be t reated as 
the c lass ica l  analog of the quantum annihilation opera tors  of the quanta of a Bose field which develops as 
a resul t  of quantization of a c lass ica l  field with the Hamiltonian H, while the var iables  a~ may be treated 
as the c lass ica l  analogs of the reduction opera tors  of the same quanta. Since instability means growth of 
coupled pai rs  of waves, the t e r m .  responsiblen for this instability in the Hamiltonian is the te rm containing 

the products  akt ~k2. 

If decay p roces se s  are  forbidden in the medium, then it is n e c e s s a r y  to use the Hamiltonian (30) to 
study instabili ty.  In this case  decay instabil i ty of the second o rde r  occurs  in the medium [9]. Instability 
holds for waves a k whose vec tors  are  concentrated near  the surface:  

2/~0 : kl ~/~.~, (44) 

while the growth rate is given as previously  by Eq. (43) where, however,  it is n e c e s s a r y  to assume 

In the express ion  for  5 = 2r - c~.-  ~ ,  k one should now take into account the quadratic cor rec t ions  to 
~ N  - ~ ~ 0 -  

the frequencies of the w a v e s /  The cor rec t ion  to ~k0 is given by Eq. (36), while the cor rec t ions  to ~)k and 
r k can be calculated di rec t ly  f rom theHamiltonian H!: 

~ = u,, + 2 T,,,o,,.,0 t a t  

For  k 1 and k 2 which are  not too close to k 0 one may achieve 6 = 0 by means of a shift f rom the surface (44) 
by the amount 6k ~ T [a[2/w,k; then in the absence of damping 7 = ~/max; for  k - -  k 0 one should take account 
of 6. In the s imples t  case, when the coefficients of the Hamiltonian Tkk0,kk0 and Tk0,k0,k,2k0, - k  are  con-  
tinuous for  k - -  k 0 Eq. (48) yields the following result  in the absence of damping: 

Re~,= | / T A - - 1 A "  ~. (45) 
4 

Here A = 82w/Skacgkfl[k=ko 6kaSk  fl, 6k = k - k  0. In an isotropic medium A = q(0)]Sk[ 2, where 0 is the angle 
between 6k and k0, 

1 r sin 2 0 q(0) = ~cos'0 + ~ 

Equation (45) descr ibes  modulation or  se l f - focusing instabili ty [10, 15]. In more  complicated eases  the 
l imits of the quantities T k 1. ,k,k for  k - -  k 0 depend (as can easi ly  be verified f rom Eq. (32)) on the d i r ec -  

a ~0 0 
tion 5k. In this c se (as s'l~own in [6D Eq. (45) remains  in force,  but the coefficient T becomes a function 
of the angle 0. In all cases  the instability growth rates  can easi ly be calculated f rom the coefficients of 
the thi rd-  and fou r th -o rde r  t e rms  in the expansion of the Hamiltonian in a k and a* 

k" 
Let us once more  mention the case of the decay of a high-frequency wave into high-frequency and low- 

frequency waves within the f ramework  of the Hamiltonian (34) (if w 0 = 0, then the role of the low-frequency 
wave will be played by a wave of the same kind as the high-frequency wave if this low-frequency wave has a 
smal l  wave vector) .  In this case it follows that if the amplitude of the high-frequency wave is sufficiently 
small,  conventional decay instabil i ty with a maximum growth rate  takes place:  
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7max= ] Va~, k, k,,--k] 'a (Tmax(~ ~)"  
! 

Here  9 k is the d i spe r s ion  law for  low-f requency  W~tves. In the opposite l imit ing case  k ~  >> Ymax >> ~k 
it is imposs ib le  to separa te  the su r f aces  (40) and (41), and it is n e c e s s a r y  to re ta in  both t e r m s  in the 
Hamil tonian (39)�9 Under these  conditions the growth ra te  is de te rmined  f r o m  a fou r th -o rde r  equation, and 
its analys is  leads to the detect ion of instabi l i ty with a growth ra te  

7 ~ t.,,2 O '~l~ (46) 
"max"a' 

(modified decay instability). This result was obtained by many authors (viz., for example, [II, 6]) [26]. 

4. The , , A b r i d g e d , ,  E q u a t i o n s  

Using the Hamiltonian formalism, it is easy to derive the "abridged w equations that describe the 
simplified models of nonlinear media in various approximations. Let us consider, for example, the in- 
teraction of three spectrally narrow wave packets having the characteristic wave vectors kl, k2, k 3 in a 
nonlinear medium. In order for this interaction to be substantial it is necessary that these vectors lie 
close to the resonance surface (28). Assuming that the relationship k I = k 2 + k3, w I = 0) 2 + w 3 is fulfilled, 
we r e p r e s e n t  a(k) in the f o r m  

a(tr = a~(/r + :~) + a~ (tr + x) + a3(/~.~ + :~). 

Substituting (47) into the Hamil tonian (29) and excluding nonessent ia l  t e r m s ,  we obtain 

H,,. = 2 V j" { a* (x,) a (z~_) a (z3) + a (z ,)  a* ( ~ )  a* (x~) } ~,._~_~ dx,  dz~ dxa. 

Further ,  

(47) 

(48) 

using the na r rowness  of the packets ,  we use the following expansion in the quadrat ic  Hamiltonian:  

0 m 
0 , ( k , + ~ )  : o ) ( / r  v , =  '~tOK (i---- 1,2,3) 

and go over  to va r i ab l e s  a i = ciex p [(-iw(ki)t ]. In the va r i ab les  e i 

i 

i 

Now it is convenient to p e r f o r m  the inverse  Fou r i e r  t r ans fo rma t ion  of the coordina tes .  
�9 ~)-~/2~ t ~ c i (k)e- ikrdk  and operat ing according  to the rule 

OOi + ir . . . . .  0, (50) 

we obtain the wel l -known equation fo r  resonance  in te rac t ion  [13]: 

0 O, (v, iV 
Ot + v )  % = - -  

0*2 + (v~ V) ~ 2 = __ iV__ ~, '~3,* (51) 
at 2~: 

iV) , 

Assuming r >> r Ca in (51), it is e a sy  to obtain Eq. (43) which was a l r eady  der ived  e a r l i e r  for  the growth 
ra te  of decay instabi l i ty .  

If waves having a negat ive energy  may exis t  in the medium, then resonance  in te rac t ion  between three  
wave packets  whose c h a r a c t e r i s t i c  wave number s  sa t i s fy  condition (27) is poss ib le .  P roceed ing  as p r e -  
viously,  we revea l  that the pr inc ipa l  role  is  now played by the Hamil tonian 

1 

while the equations fo r  the ampl i tudes  of the wave packets  have the f o r m  

_ _ _  i n *  
a ~, + (v, v)  ~, = - - -  ~ :  ~;, 

at 2 

092 iU* , . . 
0-T + (~2 v) r 2 = % % 

(49) 

Assuming el(r) = (2 
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0 ~  t- (v3v)% iU* .... (52) . . . .  ~ l .  
Ot 2 

Equations (51) have the solut ion r = r =r = Ae- i~ ,  

= ~ 1 2r, (53) 
6 + argU,  A ( t ) = l U l ( t o _ t  ). 

This  solution goes  to infinity a t  a finite t ime t = to, and Eqs .  (52) de sc r i be  , exp los ion .  ins tabi l i ty  [12]. The 
. g rowth  rate* of this ins tabi l i ty  2~r/U can l ikewise be e x p r e s s e d  d i r ec t ly  in t e r m s  of the coeff icient  of the 
cubic Hamil tonlan .  F r o m  the quan tum-mechan ics  point of view the t e r m  in the Hamil tonlan 

J" Uku, k, ak, ak~ ak, ~+k,+k~ dk dk I dk~, 

which is r espons ib le  for  explosion instabi l i ty  d e s c r i b e s  the s imul taneous  product ion of three  quanta of the 
wave f ie ld  f r o m  the vacuum.  By means  of the Hamil tonian  f o r m a l i s m  it is l ikewise ea sy  to desc r ibe  the 
n h i g h e r - r a n k ,  explosion ins tabi l i ty  ( t e rms  of the type a*a*a*a*), explosion ins tabi l i t ies  of f in i te -ampl i tude  
waves  ( t e rms  of the type aa*a*a*), etc .  

The next example  of an . a b r i d g e d .  equation may  be obtained by s t a r t ing  f r o m  the Hamil tonian  (30) and 
a s suming  that the wave field const i tu tes  a single s p e c t r a l l y - n a r r o w  wave packet .  Let  the ave rage  wave vec -  
tor  of the packet  be k0; then, a s suming  that 

a(k) = c(k o + z) exp (-- io~(ko)t), 

H--- H = H - -  ~o (~o) f Icl(k)l '  ak, 

1 03 ,0 
~o (k) = ~ (t~ o + z) : ,o (t~o) + z v + - -  ~ ,~, 

2 Ok, Ok~ 

we obtain 
0'~ 02to 0~+~ iT 
0-7 + (v v)  ~ + i Oko ok;~ ox~ Ox~ ~- - - ( 2  ~)~ I ~ ['-' ~ = o 

for  r Equation (53) d e s c r i b e s  the , s e l f - a c t i o n .  of s p e c t r a l l y - n a r r o w  wave packets  in a nonl inear  m e -  
dium; Eq.  (45) fo r  modulat ion ins tabi l i ty  may  be der ived  d i r ec t ly  f r o m  (53). 

A v e r y  in te res t ing  example  of a s imple  model  of a nonl inear  med ium cons is t s  of the equations for  the 
in te rac t ion  of a s p e c t r a l l y - n a r r o w  h igh- f requency  wave packet  of an a r b i t r a r y  kind with sound. The nature  
of this in te rac t ion  r e s ides  in the fact  that in the p r e sence  of var ia t ions  of the veloci ty  and densi ty  of the 
med ium c rea ted  by the sound waves  the law for  the d i spe r s ion  of 04k for  the h igh- f requency  wave v a r i e s .  
This  fact  al lows the Hamil tonian  for  the in te rac t ion  of the h igh- f requency  waves with sound to be wr i t ten  
immedia te ly :  

Hi.t = i' I '~' i s (~,~ + ~ V r dr, 

In this fo rmula  the f i r s t  t e r m  d e s c r i b e s  the va r ia t ion  of the f requency of the h igh- f requency  wave due to the 
va r ia t ion  of the densi ty  of the medium;  the second t e r m  d e s c r i b e s  the . en t r a inmen t  ef fec t ,  of the h i g h - f r e -  
quency wave by the moving med ium.  R e m e m b e r i n g  (Section 1) that 6p and �9 a re  canonical  v a r i a b l e s  for  a 
c o m p r e s s i b l e  fluid, we obtain the equation [6] 

i('h + vV+,) + - - 0 2 ' ~  02'~ (=~e + ~V ~) = 0, 
Ok~ Ok~ Ox~ Ox~ 

0 ~o + ,% + ~V I'? = O, A@ r ~ (55) 

0r 
. . . . . . . .  s ~ - -  ~ ],~l- " ' 
0t 

which was analyzed in deta i l  in [6]. 

Equations (55) desc r ibe ,  fo r  example ,  in terac t ing  Langmui r  and ion-sound waves in a p l a s m a  (ac-  
cording to the t e rmino logy  developed by V. I. Ka rpman  these  a re  "e lec t roacous t i c  waves . )  [14]. 

One may  ass ign  the un ive r sa l  equations which r eco rd  nonl inear  sound waves in media  having d i s p e r -  
s ion to this s a m e  ca tegory .  In o rde r  to obtain these equations we note that Eq.  (2) for  the energy  of a c o m -  
p r e s s i b l e  fluid during its potent ia l  flow m a y  be rewr i t t en  in the f o r m  
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1 ( p ( 9 r  d r  + ~in, H = - ~ .  

where ein is the in ternal  energy of the fluid and is a functional of its dens i ty .  This  functional may be r e -  
p resented  in, the fo rm of a se r i e s  in powers of Ap: 

V 2 

"c lass ica l .  gas-dynamics  cor responds  to the re tent ion of only the f i r s t  t e r m  of the se r i e s  (56), while for  
considerat ion of the second t e r m  we obtain the ]3oussinesq sys tem of equations: 

__OP + div p~ra) = 0, 
Ot 

c)~l, + 1 
(57) 

(for a detailed der ivat ion of this sys tem see  [16]). 

Equations (57) are  applicable for  a wave amplitude that is not too large;  the re fo re  one should place 

? = P0 + ~P, 

w(p,, + ~,p)-- w(Po) = ~'P'P ( l - : - ~ P  '). 
Pc \ Po / 

In the unidimensional case Eqs.  (57) a re  conveniently wri t ten in Lagrange coordinates .  
+ ~ and writing the continuity equation in the fo rm 

~o = (Po + ~P) (1 + 0~),  

and substituting the quantity 5p obtained f rom (58) into the equation 

0 I stB-----P-O( I + a~'--~ ~P,,}, 
Oz ( Pc k .Pc / 

we find 

within Small t e r m s .  

-:, - s~ }= + s'  (l  + ,) 0-- '.~ + %, ,  = 0 
o~ 

Introducing x = z 

(5S) 

(59) 

Equation (59) is likewise a Hamiltonian equation, and it may be rewri t ten  in the fo rm 
~H 

ut ~" r == B~ " (60) 

~H 
c~t = s"u-- .se (1 -]- <~)tt 2 --  ~tlz, gtt 

t i = l i ( t b ~ _ i _ s . u  2 s" ~3 - - - - ( 1  + ~)u ~ + ~u dz. 
3 

We shall call  Eq. (59) the 'equation for  a nonlinear s t r ing.  

Assuming in Eq. (59) that 

(61) 
,or " Oz / Oz " ~ ~,~ Oz u, 

which cor responds  to considerat ion of waves moving only in one direct ion,  we obtain the well-known Kor te -  
w e g - d e  Vries  equation 

O tt 2 0, 2S(Ut- -SUz)+S2(1  +~)-~Z +"~ uz'z = 

which it will be convenient for  us to write in dimensionless  fo rm in the f rame of r e fe rence  moving to the 
right at a veloci ty s: 

u t ~  6uu x + uxxx=O.  (62) 
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The K o r t e w e g - d e  Vr ies  (KdV) equation is l ikewise a Hamiltonian sys tem.  
the KdV equation in the fo rm 

0 ~H H =  u~+-g 
" = Ox ~--2' 

or  in the equivalent f o rm  

In o rde r  to ve r i fy  this we write 

Ou (x') ~ H 
_ ,~(x . x')  - - 2 i -  ax '  --- 

The notation of the KdV Eqs .  (63) according to Eqs .  (20)-(22) is manifes t ly  a Hamiltonian notation. 

(63) 

5 .  T h e  K i n e t i c  E q u a t i o n s  

If the ensemble  of interact ing waves has random phases  for  a low nonl inear i ty  level,  then this en-  
semble  may be desc r ibed  s ta t i s t ica l ly  by introducing the cor re la t ion  function 

< a k a~. ) = n k ~k-,,. 

The quantity n k is . t he  number  of quanta,  corresponding to a Bose field (accurate to within l / h )  and is 
governed by the kinetic equation. The Hamiltonian descr ip t ion  of the medium is also ve ry  convenient in 
deriving this kinetic equation. Let  us begin by consider ing the case of a decay spec t rum having the Hamil-  
tonian (29). The equations for  the medium have the following fo rm in this case:  

Oa t 
e)7- "~- i ,% a,  q- i t" { V, t,. k. a~,. at, ~',~-,.-t,o + 2 V*], ~,~at, a~,, r } dk~ d k . .  (64) 

Assume that the waves have infinitely sma l l  damping. Multiplying the equation by a~, adding it to the com-  
plex-conjugate  express ion,  and averaging over  the ensemble  of waves, we obtain 

On h 
Ot -t- 2 Im ~" I Vk ~ ~ I# ~, ,~ ~J,-k~-i,, Jr 2 V~ k _ . ~ - -  . *, Its, I, t~ %-t,~+k~ I dk ,  d k  2 . (65) 

H e r e  6k_k~_k 2 ikktk 2 = (a~akiak2) is the t h i r d - o r d e r  c o r r e l a t i o n  funct ion.  

Assuming that the odd co r re l a t ion  functions dec rease  rapidly with an increase  in the order ,  while the 
even co r re l a t ion  functions are  unlinked with improving accuracy  via the binary functions (this cor responds  
to the hypothesis  of phase randomness) ,  we assume that the f if th o rde r  cor re la t ion  function is absent and 
that among the co r re l a t ion  functions the pr incipal  role is played by 

< 6~* a *  ,, ,, at~ at, > ~ n~, n,, ( ~,,_,, 6,~-t, + ~,,-,.~,,-t~ ), (66) 

for  the t e r n a r y  co r re l a t ion  function we find 

Ol**'h'  i ( ~  - -  to,. - -  to,~) 1 , , . , ~  = - - : 2 i V t ~ ,  nh~ n ~  + 2 i V t . , h  ' n t nh. + 2 V * * . , .  n h n , .  
Ot 

Hence, neglect ing the slow var ia t ion  of Ikklk 2 with t ime and making use of the equation I.m(x + ia)-~= 7r6(x), 
we obtain 

Im I t , ,  t, = 2 ~ (tot - -  to,, - -  ~t~) IV* *, *, n,~ n , ,  - -  Vt, t , ,  n ,  %, - -  V t , ,  , ,  n ,  n, , )  (67) 

for  I. Substituting (67) into (65), we finally obtain 

Oft,__ = 4 ~ ~ [ 1t V ,  t, , .  ~" ~, - , . -*~ % - o , , - o , ,  (n*, n*. - -  n* n , ,  - -  n'~ n*..) } 
Ot �9 

+ 2 [ v t , ,  t, I ~ a, , - , -~ % , - ~  (nt, ~t, + " ,  n,, - n,  %)  ] ak, a ~ .  (66) 

The kerne l  of the kinetic equation can be exp re s sed  s imply in t e r m s  of the coefficient  function Vkk k 
�9 a " " 1 2 of the Hamlltoni  n. Analogously, m a medium in which t e r n a r y  p r o c e s s e s  a re  forbidden it is easy  to ob- 

tain the kinetic equation f rom the Hamiltonian (30): 
On h 
0-7 = 2,~ ; I r , , .  ~ t. I % , . - t , - , .  % +o,. -o,,-o,~ 

X (%. n,, %~ + n,  %: n,, - -  n t %, n~, - -  n,  %, %,) dk, dk~ d/~. (69) 
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An analysis, of the kinetic equations shows [17] that they may be used only for studying the interact ions of 
wave distributions that are  fair ly wide in k-space .  The charac te r i s t i c  distr ibution width n k must  sat isfy the 
conditions 

(70) 

Within the f ramework  of the Hamiltonian fo rma l i sm it is also convenient to const ruct  a more  exact 
theory of analytic descript ion of wave fields which is based, for  example,  on a d iagram technique of the 
Wild type. 

6.  T h e  C a n o n i c a l  V a r i a b l e s  

Let us present  a br ief  descript ion of the canonical var iables  for  severa l  of the most  important  models 
of continuous media. 

Here e is a cer tain functional of p. 
tropic fluid. 

For  Eqs.  (71) the pairs  of var iables  
sch variables  [18] which are defined f rom the condition 

k 
v = - -V~  + V O- 

P 

In these var iables  the Euler  equation decays into three equations: 

Ok ~H 
= - -  dlv ),v = - -  

o t  8~ : 
~H 

0__~ = _ (v  V )  ~ . . . .  
Ot 

~162 = - - !  ,,'~ + ~ (v v) 
dt 2 p ~p 

while the continuity equation may be writ ten in the form 

Op ~H 

oT = 

Let us begin with the general ized equations of ideal hydrodynamics:  

O._~p + dlvpv = 0 ,  
Ot (71) 

Ov + (vV) v + ~ 
oT = o. 

In the par t icu lar  case when e = S ~(p)dr, Eqs.  (71) descr ibes  a baro-  

(A, ~) and (p, r are  canonical - these are  the general ized Cleb- 

Ba 

(72) 

~H 

where 

1 fP v2dr + h '  = - ~  , 

is the total energy of the fluid. 

The var iables  (72) constitute the prototype according to which the Hamiltonian f o r m a l i s m  is introduced 
into various equations of the hydrodynamics  type - f i rs t  of all into hydrodynamic models for  the desc r ip -  
tion of a p lasma [17]. The two s implest  p lasma models - the hydrodynamics  of an e lectron gas and the 
hydrodynamics of ion sound (viz., for  example, [18]) belong di rec t ly  to the type (72). For  potential flows 
A = p = 0 we ar r ive  at the pai r  (p, r which has a l ready been encountered in Section 1 in connection with the 
Boussinesq Eqs.  (55). 

The var iables  (72) can easi ly be general ized for the case of relat ivist ic hydrodynamics,  for  which it 
is sufficient to replace v by p / m  = v / ~ - - ~  in (72), and also for  the case of the hydrodynamics  of a 
charged fluid which interacts  with an e lec t ron  field. In this case 

p_= ~__Vt ~ + v ~ -  e A ,  (73) 
m p mc 

where A is a new vector  canonic variable - the vector-potent ia l  of the e lectromagnet ic  field taken in the 
Coulomb gauge. The quantity that is the canonical conjugate of B is the vector  
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E 

4 ~ c '  
where E is the e lec t r ic  field intensity.  

The var iables  (73) allow immediate  computation of the expansion coefficients of the Hamiltonian of the 
p lasma energy  in powers  of the amplitudes of the Langmuir  waves ak, the e lect romagnet ic  waves Sk, and 
the ion-sound waves bk, and the finding of the principal  cha rac te r i s t i c s  of their  interaction in an isotropic 
p lasma [17]. It is curious that in the nonrelat ivis t ic  limit the Hamiltonian contains only quadratic and cubic 
t e rms .  

If a constant magnetic  field H0, is present  in the plasma,  then its corresponding vec tor  potential is a 
l inear function of the coordinates ,  and d i rec t  diagonalization of the quadratic Hamiltonian, which was des -  
cr ibed in Section 1, is impossible.  In this case it is n e c e s s a r y  to pe r fo rm a canonical t ransformat ion  
which excludes the constant par t  of the vec tor  potential A 0 = 2-1(- iy + jx)H0. After this t ransformat ion  the 
canonical  substitution has the fo rm 

p 1 
--m p,/2 ( -  i ~  - J ~ 0  + V r - mc + ~-~ (},VF - I'V)) �9 (74) 

Here  (X, #), (p, r and (A = A-A0 ,  B) are  new pai rs  of canonical var iables .  The use of the var iables  (74) 
allows successfu l  computat ion [19, 20] of the instabili ty growth rate and of the kernels  of the kinetic equa- 
tions for  the interact ion of waves in a magnetical ly active p lasma (their calculation by other methods is 
ex t remely  cumbersome) .  

For  the magnetohydrodynamics  equations 

0.__~ + dlv p 9 = 0, 
Ot 

0t q- (V V) V ---- -- V w (p) q- 1 [rot 11, 11], (75) 
4~p 

01 t  
- -  = rot l v, HI 
#t 

the t ransi t ion to canonical  var iables  is accomplished by means of the substitution 

9 --= 1 [11, rot S] q- Yr (76) 
P 

in which the pa i r s  (p, @) and (H, S) are  canonically conjugate. 

The magnetohydrodynamics  equations in these var iables  have the form 

#--~P = -- div p9 - - - -  ~H 
Ot Be ' (77) 

OH ~ H 
- - =  rot [viii  = 
Ot ~ S '  

OS 11 ~ H 
Ot 4 = + [9, rot S] - -  V9 = -- ~-~, 

,) b v 2 ~ H 
, ,  o t  - o w ( p ) - ( 9 v ) r  = -  a-p-" 

Here H =1 {PV2/2 + ~(p) + HZ/8~r- r  is the energy of the medium; r = (tI0, ' r)/47r is the gauge func- 

tion chosen on the basis  of convenience. For  the natural  conditions divS = 0 

.~ = 1 div [9, rot S] q- '30, '5'~o = 0. a 

Fo r  diagonalization of the Hamiltonian against  the background of a constant magnetic field H 0 is it con- 
venient to choose 

1 (H,, r). 9=4  
The var iables  (76) allow simple computation of the mat r ix  elements  in the interaction of magnetohydro-  
dynamic  waves and the growth rate of decay instabil i ty of the Alfven wave among the magnetohydrodynamic 
waves.  
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For  potential  osci l la t ions of the sur face  of a fluid which i s  s i tuated in a uni form gravi ta t ional  field 
g d i rec ted  downward along the z axis the canonical  pa i r  is ~(x, y, t) (the deviat ion of the su r face  of the fluid 
f rom the equi l ibr ium value) and r y, t) (the hydrodynamic  potential  on the surface)  (see [22]). 

The equation fo r  the osci l la t ion of the su r face  in these va r i ab l e s  has  the fo rm 

. . . .  (TS) 

He re 

It = 9 I" ~"~ dr  + t" G (s, s') ~ (s) ~ (s') ds ds'  (79) 
2 ~ 

is the total  energy  of the fluid; G(s, s ' )  is the Green,  s function of the Laplace  equation in the domain bounded 
by the sur face  of the fluid and the bot tom.  Assuming that the su r face  of the fluid devia tes  little f r o m  the 
plane, one may  expand G in a s e r i e s  in powers  of ~ (see [22]), and then by diagonalizing the quadrat ic  pa r t  
of the Hamil tonian one can calculate  the f i r s t  coefficients  of the expansion of the Hamil tonian H in powers  
of the complex ampli tudes  ak of the su r face  waves .  This  method allows us to take into account the effects  
of sur face  tension and is the mos t  economical  method of calculat ing the instabi l i ty  growth ra tes ,  the coeff i -  
cients of the abr idged equations,  and the kerne ls  of the kinetic equations fo r  the su r face  waves .  

For  spin waves in a f e r romagne t ,  which a r e  desc r ibed  by the phenomenological  L a n d a u - L i f s h i t s  
equation for  the densi ty  of the magnet ic  moment  

ot = g ' , I M [ = M . ,  (8o) 

where g is the gyromagnet ic  rat io ,  H is the total  ene rgy  of the f e r romagne t ;  the well-known Hols ta in  
- P r i m a k o f f  va r i ab l e s  [23] a re  the canonical  va r i ab l e s :  

M+ = M x + iMy = 9V'9-Mo a(r )  l / / 1 - - g l a [ 2  
F 2Mo 

In these va r i ab l e s  Eqs.  (80) take the f o r m  

8a ~ H 
- - + i - -  = 0. 
Ot ~ a* (r) 

The coeff icients  of expansion of the Hamil tonian of the f e r romagne t  in powers  of the no rma l  ampli tude Ok 
of the spin wave have been calculated (for cubic c rys ta l s )  in [24]. The values  of these coeff ic ients  al lows 
g rea t  p r o g r e s s  to be made in the theory  of nonl inear  in terac t ion  of spin waves .  

The equations of nonl inear  e l ee t rodynamics  in media  having d i spe r s ion  do not allow the exact  in t ro -  
duction of canonical  va r iab les ,  s ince they a r e  not d i f ferent ia l  with r e spec t  to t ime.  F o r  them, however ,  
an approximate  introduction of canonical  va r i ab l e s  is poss ib le  in the f o r m  of s e r i e s  in powers  of the 
. n a t u r a l .  va r i ab l e s  E(k, w) with coeff icients  calculated by means  of the nonl inear  suscept ib i l i ty  t en so r s .  
Such a calculation, which was p e r f o r m e d  in [25], al lows Hamil tonlan wave dynamics  to be incorpora ted  in 
this scheme a long  with nonl inear  e lec t rodynamics ,  provided only that the ampli tude of the e l ec t romagne t i c  
waves is not too g rea t .  As a whole, the use of canonical  va r i ab l e s  leads to a card ina l  s impl i f ica t ion  of the 
computat ions and to a c la r i f ica t ion  of the e s sen t i a l  f ea tu res  in studying the p r o c e s s e s  of in te rac t ion  of waves 
in var ious  nonl inear  media .  The unification of these  calcula t ions  al lows r e su l t s  obtained for  one med ium 
to be given a genera l  phys ica l  meaning eas i ly .  

7 .  T h e  Q u a s i l i n e a r  S t a t e s  

If the Hamil tonian of the medium is quadrat ic  and has the f o r m  (13a), then the genera l  solution of the 
equations of motion for  an unbounded med ium has  the f o r m  

ak (t ) = c (k)  exp (--  i,%t). 

In this case  the ampli tudes  of all  of the waves a re  independent of t ime .  

In consider ing the nonl inear  in terac t ion  the ampli tudes  of the waves  in genera l  become  t ime  functions.  
One may,  however ,  cons ider  spec ia l  initial  conditions for  which the ware  field has  the f o r m  

ak (t ) = ~ Ai~(k  - -  k~) exp ( ..... i ~ t )  + O(A~), (81) 
i ~ I  
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where the remanent  t e rm is uniformly smal l  in t ime.  The wave field of the fo rm (34) may be called a quasi-  
l inear  state.  All of the var iables  charac te r iz ing  a quasi l inear  state are  N-periodic functions of the coord i -  
nates  and of time, the spatial  period being stipulated by the numbers  k i and the time per iods  being depend- 
ent on the ampli tudes.  

The s imples t  quasiUnear state is a s ta t ionary  periodic wave - in this case N = 1 and 

a , ( t )  = As exp (-- i(,,~ t) ~ (k -- kl), (82) 

where wl = W(kl) + T ]al 2 (viz., (36a)). For  N = 2 thequas i l i nea r  state has the fo rm 

ak(t) = AI exp ( - -  i ~  t )~(k  -- k,)  + A.z exp ( - i ~ t ) ~ ( k  --  k2.). (83) 

Substituting (38) into (30) and excluding the t e rms  lying off the resonance surface (31), we find 

~, = ,o(k~) + T,,k,,~k, lA,  I ~ + 2 Tk,~,,h, ~,~ I A..I', (84) 

0, 2 = ,o(k~) + Tk, kok,~,lA..I 2 + 2 Tk,~k,~,lAl[ 2. 

The solution (83) (the biharmonic  field) exists only if the vec tors  k~ and k 2 do not lie near  the s u r -  
face (28) in a l ayer  having a width of the o rde r  of Vla l /w~k2;  in this case ,  a "secular"  var ia t ion 
of the amplitudes A~ and A 2 with time occurs .  Analogously, for  the existence of a quasi l inear  solu-  
tion for N = 3 it is n e c e s s a r y  for  the vector  k~, k2, k 3 not to lie near  the surface in a l aye r  having the 
thickness [al~r (31) and likewise for  a biharmonic  field to be possible  to construct  f rom each pai r  of vec-  
tors  (kl, k2)(klk3) and (k2k3). 

One may formulate  the conditions governing the existence of the N-wave quasi l inear state analogously.  
Such a state c rea te s  N ~dangerous zones, w each of which has a width of the o rder  of ( A w / N ) l / z w l / 2 / o ~ n . k  
equal to the resultant  f requency shift of each of the waves. For  N ~ k Z w n k / A w  the dangerous zones cover  
the entire region of the phase space in which the waves are  concentrated,  and a fur ther  increase  of N is 
impossible .  Besides  the ndangerous zonesn created by three-wave resonances ,  ~dangerous zonesw created 

four-wave p r o c e s s e s  of the type (31) exist .  These  zones have a width of the o rder  of A,w/k,'~N and are  by 
t k  

crea ted  by pai rs  of waves, so that their  number  is of the o rder  of N 2. For  N << w / A w  the overall  width of 
these zones 6k 2 ~ NAw/w~  is much smaller. . than the overal l  width of the dangerous zones crea ted  by th ree -  
wave  p r o c e s s e s :  6k 2 << 5k~ ~ (Awco/kw~)l/2N1/2.,~ For  N ~ k2w~/Aw ~ 1 the widths 6"lt 1 and 6k 2 are  c o m -  
p a r a b l e  and the zones overlap.  In the reasoning presented above it was assumed that all N waves have 
frequencies  of the same o rde r  of magnitude. In this case the dangerous zones crea ted  by the higher  r e s o -  
nances of the type nw 0 = 2w lie in the h igh-f requency range and do not enter  into the problem.  Thus, in a 
nonlinear  medium with d ispers ion  no more  than N ~ k2co~/Aw monochromat ic  waves may exist  r ega rd less  
of whether or  not decay p r o c e s s e s  are  allowed or  forbidden. The unidimensional case is an exception. In 
the unidimensional case  it follows that for  the condition that there  is only one wave mode three-wave r e s o -  
nances of the type (28) are  impossible,  while four-wave resonance conditions (31) yield k 2 = k, k 3 = k 1 or  
k 2 = kl, k 3 = k. This means that if the function a k is sufficiently smooth, then one may isolate the t e r m  

I4~, = f T~,, l a~ I~l a,, I s d~ak, (41) 

in the interact ion Hamiltonian and exclude the remaining par t  of the Hamiltonian by means of a canonical 
t ransformat ion .  The Hamiltonian (41) yields 

a,(t) ='~ [ c(/r e-~"(*~tdk. '~, = ~k + 2 ~ Tar  ]a,. [z dk' .  

This means that in the unidimensional case wide wave spec t ra  are quasi l inear  and allow complete exclusion 
of the Hamiltonian (30). All t ime var ia t ions  of the spec t rum take place due to Hamiltonians of the type 
VaZa .3 in this ease,  which yields an es t imate  of the charac te r i s t i c  var ia t ion t ime:  

- 

1 ~ \ ~  / .  

Let us a lso write that in a two-dimensional  and a three-dimensional  medium in the absence of d ispers ion  
the N-quas i l inear  solutions a re  obviously unstable - it is sufficient to place a -seeding~ smal l  wave In a 
~dangerous zone~ in o rde r  for  the amplitude of this wave to begin to grow. In a unidimensionai medium 
stable N-qua~silinear solutions a re  possible.  
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8.  C o m p l e t e l y  I n t e g r a b l e  S y s t e m s  a n d  St  o c h a s t i z a t i o n  

Dynamic sys tems  having a large number  of degrees  of f reedom as a rule "mix ,  over  a long t ime and 
behave s ta t is t ical ly .  Systems having abundant sets  of integrals  of motion (completely integrable sys tems  in 
the f i r s t  place} consti tute an exception. A complete ly  integrable sys tem with N degrees  of f reedom has N 
independent in tegra ls  of motion which a re  functions of the state (i.e., they do not depend explici t ly on time), 
all of these integrals  of motion being in the involution - i .e. ,  the Poisson  brackets  between all In are  equal 
to zero :  

(in, ~ }  = o. (85) 

The examples of integrable sys tems  are  a set  of N l inear  osci l la tors ,  the motion of a point in a cen t ra l ly -  
symmet r i ca l  field or  along the sur faces  of a body of rotation, f ree  motion of a rigid body, motion of a poInt 
in the field of two Coulomb centers ,  motion of a symmet r i ca l  top in a gravi ty  field, and cer ta in  cases  of the 
motion of a nonsymmetr ica l ly -heavy  top. If the dynamic sys tem is complete ly  integrable,  then the con- 
servat ion laws I n which are  in the involution may be taken as genera l ized  momenta.  Under these conditions 
the Hamiltonian H will not depend on the corresponding general ized coordinates  ~0 n (H = H(I 1 . . . . .  In)} whose 
equations have the form 

OH a'Z--c"at = ,~I.'~tt ~n(t) = ,~n(o) + ~ t, (86) 

where the var iables  In, Cn are  called action-angle and var iab les .  The  s impl ic i ty  of thei r  t ime dependence 
makes it des i rable  to solve the initial p roblem for  the integrable sys tem according to the following scheme:  

pn(0), q,(0) -~ I n, %(0) ~ In, ?n(t)  ~ p , ( t ) ,  qn(t) .  (87) 

During the f i r s t  stage of this scheme the t ransi t ion is accomplished f rom the original  var iables  Pn, qn and 
to action-angle var iables ,  and during the last  stage the t ransi t ion is made back again f ro m  the act ion-angle 
var iables  to the original  var iab les .  

Integrable sys tems  having a finite number  of degrees  of free.dora are  not s tochast ic ized;  instead of 
that they pe r f o r m  quasiperiodic motion with N per iods .  Note that under  these conditions there  may be un- 
stable equil ibrium points and types of motion in the integrable sys tem.  Thus, rotat ion of a rigid body r e l a -  
tive to an in termediate  iner t ia l  axis or  motion of a point along a minimal  d iamete r  on a sur face  of rotat ion 
lead to the appearance of a new periodic  motion with a large amplitude.  

All of the integrable sys tems  known until recent ly ,  with the exception of a sys tem of N-independent 
osci l la tors ,  had a finite number  (and a small  number  at that) degrees  of f reedom.  After  the work of the 
last  fewy years ,  however,  it has become c lea r  that there  is a large number  of complete ly  integrable 
Hamiltonian sys tems  with a continuous number  of degrees  of f reedom.  This  applies in the f i r s t  place to 
unidimensional sys tems  (the dist inction of unidimensional sys tems  is a l ready  c lea r  in the example of the 
study of quasi l inear  solutions) it turns  out that a lmost  all  unidimensional "s tandard-  Hamiltonians which 
develop in the physics  of nonlinear  waves a re  integrable,  and important  examples  of integrable two-dimen-  
sional and th ree-d imens iona l  Hamiltonians exis t .  This  fact  poses  anew the prob lem of s tochast izat ion of 
nonlinear wave fields.  In an integrable sys tem the evolution of an N-wave solution which is not quasi l inear  
or  the development of instabili ty of anN-quas i l inear  solution leads to the es tabl ishment  of a ce r ta in  quasi-  
per iodic  motion and - reve i ' s ib le  turbulence" (although possibly also with a large number  of periods} ra the r  
than to phase mixing. Systems which a re  not too close to complete ly  integrable sys tems  are  those which 
a re  actually stochastici~ed.  
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