GENERALIZATION OF THE INVERSE SCATTERING PROBLEM METHOD
V.E. Zakharov and S.V. Manakov

It is shown that every one-dimensional differential operator whose coefficient functions
depend on an arbitrary set of parameters is associated with a series of multidimensional
nonlinear partial differential equations which can be integrated by means of the inverse
scattering problem method.

The inverse scattering problem method was discovered in 1967 by Kruskal, Gardner, Green, and
Miura (1], who integrated the well-known Korteweg—de Vries equation by means of a transformation from the
potential of the one-dimensional stationary Schrédinger operator to its scattering matrix. Subsequently, in [2]
a nonlinear Schridinger equation was integrated in an analogous manner by means of the one-dimensional
Dirac operator. In the following papers [3-6] it was shown that these operators are associated with infinite
classes of integrable equations which can be calculated algorithmetically. In [7], a procedure was proposed
for calculating these equations, together with a description of their method of solution for arbitary matrix
operators of any order.

In recent papers (see [8]), Calogero has proposed a generalization of the inverse scattering problem
method and he has shown that by means of the Schrodinger and Dirac operators and their matrix analogs one
can integrate new classes of nonlinear differential equations which contain functions of an arbitrary number of
arguments. In the present paper, we generalize Calogero’s result to the case of arbitrary matrix operators
of any order, and we also give a simpler proof of this result. Our approach is based to a large extent on [7].

Suppose we are given an arbitrary integral operator ¥ and an operator K which is a Volterra
operator from the right, these acting on vector functions y,(x), == < x < =, 1 = n = N, the kernels of the
operators F(x,y) and K(x, y) being related by -

F(a,y) +K (2, 0)+ [ B(2,5)F (s, y) ds=0), &)
and the operators themselves by
F+K+K-F=0. (2)
The functions #(x) and the operators K and F also depend on the vector parameter z =v(z1, .. .., z;)

Suppose we are given an operator M that is differential with respect to x and z, defined on_ oix, z),
and which commutes with the operator F: MF — FM = 0. Then (see [7]) there exists an operator M,
differential with respect to x and z, such that for K related to F by the condition (2),

MK—KM=0.
Here M=M+ Q, where Q is an operator subordinated to M; the coefficients of the operator Q can be cal-
culated from the conditions of vanishing of the terms outside the integral in the relation

M (w(x, z)+ j:K(z, s)p (s, z)ds) = (M) (z,z)+ jK(x, s) (M) (s, z) ds, (3)

and they can be expressed by means of recursion relations in terms of a finite number of derivatives with
respect to x and z of the kernel K(x, y, z) taken at y = x, the set of which we denote by £{(x, z). Equa-
tion (1) is the Gel’fand—Levitan equation, which solves the inverse scattering problem for the operator M,

Suppose further that there exist two operators M ) and M2 such that the equations for F
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(M, F]1=0, [M., F]=0 (4)
have a simultaneous solution. Then the following equations are compatible:
ME~KM,=0, M.K~KM,=0. 5)

The condition of their compatibility is a system of nonlinear differential equations for the £{x, z;'s which
combine the sets £(x, z) and gz(x z) associated with the operators M, and M_. This system is the
desired integrable system Every solution F of the system (4) after K has been found from Eq. {1) and
£(x, z) has been calculated generates an exact solution of this system.

The problem of enumerating the systems which can be integrated by means of Eq.{1) thus reduces
to the problem of enumerating the pairs of operators M and M, for which Eqgs. (4} have r:.xmultaneou
solutions. In [7], a study is made of the class of such operator pairs defined on functions ¢,{x, z
(z = (z, 2,)) and having the form

v By
! 0 7}
M1=’—‘+L17 M2=

03, 2,

+ Ly,

where L 19 = L . 2(x, z, 0/0x) are matrix operators that are differential with respect to x and satisfy the
condition’

k]

M, M,]=0. ‘

(o]
=

The corresponding operators M . and Mz have the form

F] _ 9 .
=t [ My=—+ 1,
Mi aZL Zh Bl 3z2 2
where L . and IN‘z are alsc operators that are differential with respect to x and depend on

()= (- =) K

,  i=1,2,...,p—1,
w=y
where p is the higher of the orders of the operators’ L and L The operators 2?([1 and 1‘712 also satisfy
the condition (6), which can be rewritten in the form
oL, 8L,

(721 aZZ

+[Z17 E2]=07

which is a generalization of Lax’s relation [3]. The majority of the previously discovered sysiems that
can be integrated by the inverse scattering problem method belong to this class.

The systems described by Calogero correspond to a different choice of the pair M o Mz' Suppose

9 .
M=L=L (:c z,-—)v, (z=(25...,20)) 7
oz

is an arbitrary matrix operator differential with respect to x:

a . ‘
i, =Y file L) ——, =t ©
1 Z:

where f;(z, L) is a polynomial in L with coefficients that are vector functions of z. We show that the
operators (7) and (8) can be chosen as the pair (4). The condition [L, FI = 0 means that the kernel F(x,y)
satisfies the differential equation

L(x,z, )F(xy) L*(y, y)F(r,y>=0, (9)

where L% is the adjoint of thé operator L; the matrices in Lt are multiplied by F from the right.

It obviously follows from the condition [LF] = 0 that [f;{z, L}, ¥] = 0. Therefore, the con-
dition [Mz, F] = 0 reduces to the condition

ar
Y f@n—=o,
p 52;-

i.e., to the differential equation
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Zf(z, ( ))%(:”—y) 0 (10)

A function F satisfying the conditions (9) and (10) commutes with M. and M,. To calculate a system that
can be integrated by means of the operators M . and M, we must find the operators M , and M2 This can
be done by using the relation (3). It is readily verified that M =L =1L+ Q M =M, + Q where Q
and Q are operators that contain differentiation only with respect to x. The coefﬁments of Q and Q
can be calculated by means of recursion relations. After the construction of I, and M the required
integrable system can be found from the relation

[L, M,]=0. {11)

One can combine the two considered classes of system by taking M1 in the form (7) and M, in the form
7, a
M,= f;(Z,L)-—+L2(J:,Z,———), (12)
’ Z‘ 0z ox

where [ L, L2] = 0; in particular, one can set L2 = gl(z, L). If the derivative with respect to one of the
parameters t = t(z) is explicitly separated out in the operator (12),

M,=d/8t+M,
then the relation (11) can be written in the form of Lax’s relation [3]
orL/ot=[L, F1,

which however implies conservation of the spectrum of the operator L if this spectrum at t = 0 does not
depend on z.

As an example, we take

a, 0"
B 9 . @ 8 2
L_z< . )5}’ MQ‘E,JFL&J%ZL

0 ay
1t then follows from (9) and (1) that (A = diag(a,, ..., ay))
0K K
A ;:y) +42 a(x’y)A+i[A,K(:c,x)]K(x,_y)=O; (13)

the second of the equations (7) in this example has the form

0K(zy) . OK(zy) . FK(zy)

5 5792 D20y A+i[A, K(z,2) |K.(z,y) + i(AK.(z,2) TK.(z,2) A) K (2, y) =0. (14)

Equations (13) and (14) mean that the matrix u(x, t, z) = K(x, x) satisfies the evolution equation

fuy 2ta? 9%u, a—a 6u du;
B BTG TG L 9i(a +aJ) -2l (u,,+u,,),u1,+12 2, % 4 Zzw LI
at a—a; 0x 03 al-—aj - 0z a;—a; 0z

k) LSS

for i # j. For the diagonal elements of u, we obtain directly from (13)

duy;
a; LA Z (2:—as) Balips.
B

dz
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