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The concept  of gauge equivalence is introduced for  nonl inear  equations that can be 
integrated by the inve r se  sca t t e r ing  technique.  It is shown that the nonl inear  
SchrSdinger equation is equivalent  to a continuous isot ropic  chain of Heisenberg  
spins .  

The equations mentioned in the title have the f o r m  

i , , + ~ + 2 1 , 1 ~ = o ,  - ~ < z ,  t<,,o, (1) 

which is  the nonl inear  Schr~Sdinger equation in the case  of  a t t rac t ion ,  and 

S,=SXS=, S (x, t) ~R ~, S2=i, (2) 

for  a continuous chain of He isenberg  spins in the i sot ropic  case ,  the i so t ropic  Heisenberg  f e r r o m a g n e t .  
Equation (1) is encountered in nonl inear  opt ics  and in p l a sma  phys ics ,  and its quantum va r i an t  d e s c r i b e s  a 
many -pa r t i c l e  s y s t e m  with del ta-funct ion interact ion.  In [1], the method of the inverse  sca t te r ing  p ro b l em 
was applied to the nonl inear  SchrSdinger  equation and in [2] comple te  in tegrabi l i ty  was proved;  in [3], q u as i -  
c l a s s i ca l  quantization of Eq. (1) was c a r r i e d  out. In [4], the inve r se  sca t te r ing  method was applied to the 
Heisenberg  f e r romagne t ,  and in [5] a connection between the solutions of Eqs.  (1) and (2) was es tabl i shed.  
Namely ,  it was shown in [5] that the ene rgy  and momentum densi t ies  for  the solution of Eq. (2) a re  essen t i a l ly  
the square  of the modulus and the der iva t ive  of the a rgument  of the solution of Eq. (1). 

In the p re sen t  paper ,  using the r e su l t s  of [1, 41, we prove  gauge equivalence of Eqs.  (1) and (2). In 
pa r t i cu la r ,  the r e su l t s  of [5], with which we were  acquainted a f t e r  we had completed this paper ,  a re  s imple  
consequences  of this equivalence.  

To introduce the concept  of gauge equivalence of nonl inear  equations that a re  in tegrable  by the 
inverse  sca t te r ing  technique, we reca l l  the main f ea tu res  of this method.  It is applied to equations that a r i s e  
as  cons is tency  conditions of a s y s t e m  of l inea r  differential  equations,  

r  t, ~)r ~ ,=V(x,  t,X)~, (3) 

where  r E), U, VOM(n, C), ~.SC. The cons is tency  conditions have the f o r m  

U,-V~+[U, v ] = 0  (4) 

for  all X E C, and under  the assumpt ion  that U and V a re  meromorph ic  functions of X they give a s y s t e m  
of nonl inear  par t ia l  different ial  equations for  the coeff ic ients  of the Laurent  expansions  of the functions U 
and V. These  equations can be in tegrated by means  of the inverse  sca t te r ing  technique using the s y s t e m  (3). 
F r o m  the geome t r i ca l  point of view, the functions U and V can be in te rpre ted  as  connection coeff ic ients  in 
the f ibe r  bundle with base  R 2 and f ibe r  GL(n,  C);  Eq. (4) means  that the curva tu re  of this connection is zero  
( i . e . ,  the connection is flat) .  

Two s y s t e m s  of nonlinear  equations that a re  in tegrable  by the inverse  sca t te r ing  method a re  said 
to be gauge equivalent  if the cor responding  flat  connections U~, V~, ]= t ,  2, a re  defined in the same f iber  
bundle and a r e  obtained f r o m  each o ther  by a X-independent gauge t r ans fo rmat ion ,  i . e . ,  if 

U~=gU~g-'+g~g-', V~=gV:g-'+gtg -l, 

where g(x, t)6GL(n, C). It is c l e a r  that in the cor responding  s y s t e m s  of l inear  differential  equations we then 
h a v e  dP ~=g(I)~. 
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The plan of the p resen t  paper  is as follows. In the f i r s t  section,  we give the n e c e s s a r y  r e su l t s  f r o m  
[1,4] in a convenient  fo rm.  In the second section,  we prove  the gauge equivalence of Eqs.  (1) and (2), and in 
the third we find exp re s s ions  for  the f i r s t  conserva t ion  laws of Eq. (2) in t e r m s  of the sca t te r ing  data .  

We a re  gra tefu l  to P. P. Kulish and L. D. Faddeev for  a helpful d iscuss ion of the r e su l t s  and to 
J .  Corones ,  who drew ou r  at tention to [5]. 

1 .  M e t h o d  o f  t h e  I n v e r s e  S c a t t e r i n g  P r o b l e m  

f o r  t h e  N o n l i n e a r  S c h r S d i n g e r  E q u a t i o n  a n d  t h e  

H e i s e n b e r g  F e r r o m a g n e t  

It is well known (see [1], and also [6]) that Eq. (1) is the cons is tency  condition for  the s y s t e m  

(I),~=U~(x, t ~Offh, ag.=V,(x, t,&)(Ih, (5) 
whe re 

{~l ~ ~ ( U,=Ao+~A,. Ao= 
" -g2 0 ' 

Here ,  ~ ,  e2, e3 a r e  the Pauli  m a t r i c e s ,  

- i  

Under the condition that the function r  d e c r e a s e s  sufficiently rapidly  when {xl -~ ~,  the f i r s t  equation 
in (5) for  ma t r ix  solutions has the ma t r ix  Jos t  solutions ],(x, ~), g~(x, ~), which admit  the integral  r e p r e s e n t a -  
t ions 

These  solutions a re  re la ted  by the t rans i t ion  ma t r ix  TI(X): 

l:(z, z) =g,(z, x) r,(x), - = < Z < o %  <7) 

and this mat r ix  has the f o r m  
/ a,(~,) --b,(~.) ~ 

r,(~) = \ b,(Z) a~(X) /" 

The t ransi t ion mat r ix  is unimodular  and the coeff icient  a,(X) can be analyt ica l ly  continued into the hal f -p lane  
Im X -> 0, where  it has  the asympto t ic  behav io r  a,(X) = l + O ( l / [ g ] )  as  { XI ~ ~o. I ts  z e ro s  in the upper  ha l f -  
plane ~j, /-----t,..., n,, a r e  e igenvalues  of the d i sc re te  s p e c t r u m  of the f i r s t  equation in (5). We introduce the 
ref lect ion coeff icient  rt(s The sca t t e r ing  data for  our  p rob lem is  the set  {rt(~), --~o-~,<oo, ~,i, 
ra,~, Im {~>0, ] = t  . . . .  , nt}, and the cor responding  G e l ' f a n d - L e v i t a n - M a r c h e n k o  equation is 

K, (x, y) +F, (x+y) + SK, (x, ~)F, (~.+y) d~.=0 (8) 

for  x <- y, where  
n t  

Ft (X) = / I m  qh (x)-et+i Re qg, (x).as, % (x) = - ~  ~ r~ (~)e~d)~+, 2 mije~:"L (9) 

For  comple te  descr ip t ion  of the solutions of Eq. (1), it r e m a i n s  to point out that the mat r ix  A 0 can be found 
f r o m  the relat ion Ao(x)=osK,(x, x)o~-K,(x, x), and that the dependence of the sca t te r ing  data on t is d e t e r -  
mined by the second equation in (5) and given by 

~.,_ (~. t) =a,(~, 0), bi(;~, t) =e"~tb~(~, 0), ~,~(t) - ~ ( O ) ,  m,~(t) =e":,,2~m~(O), ]=i . . . . .  n~. (10) 

We now turn to Eq. (2). Using the Pauli  ma t r i ce s ,  we wri te  it in the f o r m  

s ,=  -i 7 is, s~], (11) 

where S=(S, a), a=(~,,  o.., v3), 
S~=I, S=S +, tr S=O. (12) 
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It is readi ly  seen (see [4]) that  Eq. (11)-(12) is  the cons i s tency  condition for  the s y s t e m  

r t. Z)r @~=V~(x, t, ~)~9~, (13) 
where  

U~=i~.S, V~=~.SS~+2ik~S. (14) 

We note, although we shall not requi re  this fact  in what follows, that  Eq. (11) is the cons i s t ency  condition for  
the s y s t e m  (13)-(14) in the case  of m a t r i c e s  S of a r b i t r a r y  (even infinite) dimension subject  to the single 
condition S 2 = I .  

For  Eq. (2), na tura l  boundary  condit ions a r e  

lira S (x, t) =S0, 
l ~ l . ~  ~ 

i . e . ,  

So= (0, 0, t), 

lira S (x, t)----(~,. (15) 

If S(x)  tends sufficiently rapidly  to its l imi t  in (15), the Jos t  solutions 12(x, ~,), g2(x, X) of the f i r s t  equation 
in (13) have the in tegral  r ep re sen t a t i ons  

]~(x,~.)=e*~*~ i K2(x,y)e'~dy, g2(x,~.)=e'~*~ N2(x y)e~~ 

where ,  for  example ,  the kerne l  K 2 (x, y)  is a solution of the Goursa t  p rob lem 

K~.a~+S(x)K2~=O for  x<~y, S(x)-o~-iK~(x, x)+iS(x)K~(x, x)a~=O. (16) 

These  solutions a r e  re la ted  by the unimodular  t rans i t ion ma t r ix  T2(X): 

/~( x, ~) =-g,..(:c, z) r~(~), (17) 
the ma t r ix  having the f o r m  

a , (~) -b ,  (~)) ( T~ (~) 
" b,(~) a~(~) / 

In addition, T ( 0 )  = I and the coeff icient  a2(X) admi t s  analytic continuation into the half -plane 
Im k >- 0, where  it has  the asympto t ic  behav ior  a,(s as l~.] ~ ,  and aeRL The sca t te r ing  data 
a r e  the set  {r~(Z), _oo<~<oo, ~ ,  m~, Im ~ > 0 ,  i=1  . . . . .  n~}, where  r~(~.)=b~(~.)/a~(i.) is the t r a n s m i s s i o n  
coeff icient ,  ~ a r e  the z e r o s  of a.(s and m~ a re  normal iz ing  f ac to r s  for  the eigenfunctions of the d i sc re t e  
spec t rum.  In our  ease ,  the G e l ' f a n d - L e v i t a n - M a r c h e n k o  equation has  the f o r m  

K~ (x, ~) +F~ (x+y) + ~ K~ (x, z)F~ (z+y) d~=O (lS) 

for  x -< y, where  

F2(x) =i  ha ~2(x) .(~,+i Re q)2(x) -a2, qh(x)= ~ - ~  r~(~)~, eiX*d~+~'~L--J m~, #::~. (19) 

The mat r ix  S(x)  has  the f o r m  

S (x) = (~K2 (x, x) -bo~) ~ (iK~ (x, z) +~) -', 

and the dependence of the sca t te r ing  data on t is de te rmined  by the fo rmu la s  

a~(~,t)=a2(;.,O), b2(~,t)=e~*'b2(~,,O), ~ ( t )  =~2j(0), m2j(t) =e '~"mzj(O), ]=t . . . . .  n~. 

We now turn to the main proposi t ion of the pape r  - the proof  that Eqs .  (1) and (2) a re  equivaient .  

2 .  G a u g e  E q u i v a l e n c e  

In this sect ion we show that, using a X-independent gauge t r ans fo rmat ion ,  any flat  connection of the 
f o r m  (6) can be reduced to the fo rm (14). For  the proof  that in this manner  we obtain all flat connect ions of 
the fo rm (14), we show that any flat  connection of the f o r m  (14) can be reduced by a gauge t r ans fo rma t ion  to 
the f o r m  (6). This  will show that to e v e r y  solution of Eq. (1) there  c o r r e s p o n d s  a solution of (2) and vice 
v e r s a .  The exact  formula t ions  of  these  propos i t ions  toge ther  with the boundary conditions a re  given in 
Vroposif ions  1 and 2. 
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PROPOSITION 1. 

and g(x, t) =(I)~(x, t, 0), where  (I)i(x, t,3,) is a solution of the s y s t e m  (5). 

S(x, t) =g-t(x, t)osg(x, t) 

is  a solution of Eq. (11). If r then lira S(x,t)=o~. 
~q-oo 

sa t i s f i es  the condition (15). 

Let  r  t )  be a solution of Eq. (1) with the boundary conditions lira ~p(z, t)--0, 

Then the function 

But if a lso b l (0 )  = 0, then S(x, t )  

Proof .  In the s y s t e m  (5), we make the substi tution Oi=gq)=. Since gx = AOg, the connection coef f i -  
cient U s goes  o v e r  into U 2 = ikS, where  S=g-khg. Fur ther ,  since gt = Bog, V1 goes  ove r  under  the action 
of the t r ans fo rma t ion  g into V2=3`g-~B~g+2i32S. But since g-IB~g=2g-tAog=2g-lg~ and 

SS==--S=S=g-ig~--g-tc~g=g-l(~g=g-!g~-g-io3Aoo3g=2g-tg~, 

because  o~A0o~=-A0, we finally have V2=3`SS~+2i~S. 

The vanishing of the cu rva tu re  of the connection U2, V 2 means  that S is a solution of Eq. (11). Since 
the ma t r i c e s  A 0 and B.o a re  an t i -Hermi t i an ,  g is uni tary;  thus, S is a Hermi t i an  mat r ix .  Finally,  if 
g(x, t) =/l (x, t, O) and Bt (0)  = 0, then 

lim g(x,t)-~I, lim g(z , t )= ( al~) 0 ) 
~.+ . . . . .  at (0) , 

f r o m  which it follows that S(x, t )  sa t i s f i e s  the conditions (15). We have proved the proposi t ion.  

PROPOSITION 2. Let  S(x, t )  be a solution of Eq. (11) with the boundary conditions lira S(x, t)=S~, 

where the m a t r i c e s  S+ sa t i s fy  the re la t ions  (12). To within mult ipl icat ion f r o m  the r ight  by a constant  
uni tary  diagonal mat r ix ,  one can uniquely cons t ruc t  a uni ta ry  ma t r ix  g(x,  t )  such that S = ga3g-i and the 
diagonal e l ements  of g-~gx a re  ze ro .  We set  

0?) 
Then r t ) is a solution of Eq. (1) with the boundary conditions 

lira ~(x, t) =0 
a n d  i x l ~  

Cx - I r  ~ )  �9 g-tg~=i 

Moreover ,  if S• then bl(O) = O. 

Proof .  Suppose the uni ta ry  ma t r ix  g reduces  S to diagonal form,  S = ge3g-~. 
defined to within mult ipl icat ion f r o m  the r ight  by an a r b i t r a r y  diagonal uni tary  mat r ix  go" 
we can a r r ange  that there  a re  ze ro s  on the diagonal of gC'g-~(gg0)~, i . e . ,  that 

O -I -t  + - i  -I  ~go g (ggo)~ go g (g~o)~o~=0 
o r  

203g0~=-- (osg-ig~Wg-ig~o3) go. 

-1 ..]_ -1 Since the ma t r ix  ~3g g~ g g~o~ is  diagonal and an t i -Hermi t i an ,  Eq. (20) de t e rmines  a uni tary  diagonal 
mat r ix  go" In the s y s t e m  (13), we now make the substitution O~=g@~. The coefficient  U 2 then goes  o v e r  into 

U l ~ - g - t  g:+ iLa3=A o + )~A l. 

The coefficient  V 2 takes  the f o r m  

- 1  
Since S = g(r3g , 

and g-'SS~g=2Ao. Thus,  V t takes  the f o r m  

The mat r ix  g is 
By the choice of go 

(20) 

Thus,  we have the 

VI = -g-igt-i-)~g-tSS~g+2i)~zos. 

SS~=2g(g-i)~=-2g~g -' 

Vi =Bo+3`B,+L2B2, 

where Bo=-g- 'g ,  We now note that the connection U~, V1 is flat  since U2, V 2 was.  
equations 

20 



It follows f r om Eq. (21) that 

f rom which we obtain 

Equation (22) now gives 

B,~=[A,,/~0l, (21) 

Ao,--Bo~+ [Ao, ~0] =0. (22) 

i . e . ,  a = - i i * l : ,  and r sat isf ies  Eq. (1). To complete the proof,  it r emains  to note that if S+~-S_=(~s, then 
we can choose the mat r ix  g such that at +r it tends to the unit mat r ix  and at -~r to a diagonal mat r ix .  This  
means that b~(0) = 0. 

Then 

s : = 4 1 , l  =. 

Proof .  Since SS==2gAog -~, 

S.~=det S,=4 det A0=4I~[ =. 

The following co ro l l a ry  is as eas i ly  proved.  

COROLLARY 2. Suppose that under  the assumptions of Coro l la ry  1 the solution S(x, t)  sat isf ies  
the condition (15). Then b~(0) = 0 and 

T~.(X)=T~-~(O)Ti(~,), ni=n2=n, ~iJ=~25, m2j=ai(O)m~j, ]=l . . . . .  n. 

COROLLARY 3. Let  r t)  be a solution of Eq. (1) with the boundary conditions lira r t) =0, 

and 

COROLLARY 1. Let  S(x, t )  be a solution of Eq. (2) and r t)  be the corresponding solution of (1). 

(23) 

S(x, t )  be the corresponding solution of Eq. (2). Then 

S~ ~. (arg , ) ~  (S, S~• 

Proof .  F rom Eqs.  (6) we find that 

and since A e=g:g-~, Bo=g~g-~, S=g-~(~3g, 

tr AoB0=~(~N.-r 

g-~S,g=[zz, Ao], g-'S,g=[o~, Bo]. 

tr (S~St)=-4trAoBo. 
Fur ther ,  since o2A0o3=-A0, 

Thus, using Eq. (11), we obtain 

3 .  

and Hamiltonian 

(S, S~XS=) = 2 (r162 r 

This proves  the coro l l a ry .  

Note that Eqs.  (23)-(24) are  the content of [5]. 

C o n s e r v a t i o n  L a w s  

The nonlinear SchrSdinger equation is a Hamiltonian sys tem with Poisson brackets  

{r t), ~(y, t) } =i6(~-y)  

/ / i=  S( l~12-lr  

the complete integrabil i ty  of Eq. (1) was proved and canonical ac t ion-angle  var iables  obtained. An [2], 

(24) 

(25) 

(26) 
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infinite s e r i e s  of conserva t ion  laws for  the nonl inear  SchrSdinger equation was obtained in [1]. 
f i r s t  of them,  which a re  

We give the 

7 
NI= j I,[2dx, (27) 

and they a re  the par t i c le  number  and the momentum.  Quas ic l a s s i ca l  quantization of Eq. (1) was ca r r i e d  out 
in [3] using the conserva t ion  laws for  N, P~, and H~ e x p r e s s e d  in t e r m s  of the sca t t e r ing  data.  

Equation (2) can also be e x p r e s s e d  in Hamil tonian fo rm.  The canonical  Poisson b racke t s  on the 
two-dimens ional  sphere  in R 3, 

{S~(z, t), Sh(y, t) } =e~k~S~ (x) 6 (x--y), (29) 

where  ejh~ is the comple te ly  a n t i s y m m e t r i c  t ensor ,  and the Hamil tonian 
r 1 6 2  

genera te  Eq. (2) in accordance  with the ru les  of Hamil tonian mechan ics .  It was  shown in [4] that the He i sen -  
be rg  f e r romagne t  has  an infinite num ber  of  conserva t ion  laws.  The f i r s t  of them a re  

 2=j (31) 

M= S (S-S0)dx (32) 

and they a re ,  r e spec t ive ly ,  the momen tum and the magnet izat ion,  tt is easy  to see that i i (S,S~• which 

was introduced in Coro l l a ry  3, is re la ted  in a s imple  manner  to the momentum densi ty t) 2. 

To obtain the infinite num ber  of conserva t ion  laws one uses  the s tandard technique of the inverse  
sca t t e r ing  method based  on the t r ace  ident i t ies .  Expanding In a2(~) in an asympto t ic  s e r i e s  in inverse  
powers  of ~. as  I kl -~ ~,  we obtain the f i r s t  s e r i e s  of local  conserva t ion  laws,  which begins with P2, P2 = 
2argaz(=),  a f t e r  which there  comes  H 2 and, in genera l ,  we have a r ecurs ion  re la t ion for  the densi t ies  c~ 
of these  conserva t ion  laws:  

l~=Sc~dz, n = t , 2  . . . .  , (33) 

c, = ~ -S=  2, IC,,-,\ (34) 

in t e r m s  of the function S it is n e c e s s a r y  to use  Eqs.  (23) and (24). In Here ,  to e x p r e s s  the coeff ic ients  c n 
pa r t i cu la r ,  we obtain the following exp res s ions  for  P2 and H 2 in t e r m s  of the sca t te r ing  data: 

n 

The second s e r i e s  of conserva t ion  laws (which in genera l  a re  not local) can be obtained by expanding In a~(k) 
in an asympto t ic  s e r i e s  in posi t ive powers  of k in the neighborhood of the or igin .  In this way one obtains 
f i r s t  the conserva t ion  law for  M3, and for  the following densi t ies  there  a r e  s imple  r ecurs ion  re la t ions ,  which 
we do not give here  because  the resul t ing  conserva t ion  laws do not have a pe rsp icuous  physical  in te rpre ta t ion .  
However, in this manner one cannot obtain M and M2, since they are not in involution with M 3. We give a 
regular method that is based essentially on Propositions I and 2 and makes it possible to express the mag- 

netization vector M in terms of the scattering data. 
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Let S be a solution of Eq. (11) with the boundary conditions (15). It follows f r o m  Propos i t ions  1 
and 2 that S=g-~z,g, where  g(x, t) =]~(x, t, 0), 

l~,= (A 0+i~,) l~, (37) 

and /,(x,t,~.)=e"~~ as  x ~ +  ~176 

We di f ferent ia te  Eq. (37) with r e s pec t  to X and set  ~.=0, g(x, t) == 0 !  (x, t,)~)l~=0. We find that $~=A0g+ 
UA 

t - - g  g ia3g. Represen t ing  ~ in the f o r m  g(x,t)=g(x,t)C~(x,t), we obtain C~-i -~(~ and, since C~ix~3 as  x-~+~,  

Ci=ix(~,-i~ (S-as) dx'. 
x 

On the o the r  hand, S=T,-~(O)~,-kJ~T,(O), where ~(x, t) =g,(x, t, 0). S imilar ly ,  we find that ~=$C~, where  
C2~=iT,(O)ST~-'(O) and C2~ix(~3 as  x ---) - ~ .  Recall ing that b~(0) = 0, we obtain 

T~:' (0) CzT, (0) =ix(~,+i i (S-(~s) dx'. 

W e  now different ia te  E q .  (7) with r e s pec t  to X and set  X = 0,  and we find that g----~Ti(0)+~T,(0) o r  gC~ 
~C2Ti(0)+~fi(0), i . e . ,  Tt(O)Ci-C2T~(O)=f,(O). Thus,  we obtain 

S (S-as) dx=ff f ~ (0) 1'~ (0). (38) 

From (38) we find that 

Ms=idl(O)/a,(O)=id2(O)=--~- o. -~ dk-2 1~t2- , 
- ~  ) = t  

(39) 

M=M,-iM2= ~,(0). (40) 
i at(0) i 

In conclusion,  let  us cons ide r  the proof  of the comple te  in tegrabi l i ty  of Eq. (2). It is e a sy  to show 
di rec t ly ,  by calculat ing the var ia t ional  de r iva t ives  of S with r e spec t  to the sca t t e r ing  data or  by using the 
a l r eady  known canonical  v a r i a b l e s  for  Eq. (1) given in [2], and also Propos i t ions  1 and 2, that the Heisenberg  
f e r r o m a g n e t  is a comple te ly  in tegrable  Hamil tonian sys t em,  and one can find the cor responding  ac t ion -ang le  
v a r i a b l e s .  Using Eqs.  (35), (36), and (39), we can read i ly  c a r r y  out a quas i c l a s s i ca l  quantization of Eq. (2) 
in the same  way as  in [3]. We omit  he re  these s imple  a rgumen t s ,  since they will soon appea r  in a p a p e r  of 
P.  P .  Kulish and S. I. Pachevaya .  We m e r e l y  mention that, as  usual in the case  of comple te ly  in tegrable  
sy s t ems ,  the quantum s p e c t r u m  is identical  with the quas i c l a s s i ca l  spec t rum.  We also point out that just  as  
soli tons were  found to be bound s ta tes  of the pa r t i c l e s  of the bas ic  field for  the nonl inear  SchrSdinger equation 
the quanta of the basic  field - the magnons - in the case  of the Heisenberg  f e r r o m a g n e t  can f o r m  bound 
s ta tes  with an a r b i t r a r y  num ber  of magnons.  

LITERATURE CITED 

1. V. E. Zakharov and A. B. Shabat, Zh. Eksp.  Teor .  F i z . ,  61, 118 (1971). 
2. V. E. Zakharov and S. V. Manakov, T e o r .  Mat. F i z . ,  19, 3 (1974). 
3. P. P. Kulish, S. V. Manakov, L. D. Faddeev,  T e o r .  Mat. F i z . ,  28, 38 (1976). 
4. L. A. Takhtajan,  Phys.  Let t .  A, 64, 235 (1977). 
5. M. Lakshmanan,  Phys .  Let t .  A, 61, 53 (1977). 
6. V. E.  Zakharov,  Funkts ional '  Analiz i Ego Pr i lozhen .  (1979) (in p r e s s ) .  

23 


