EQUIVALENCE OF THE NONLINEAR SCHRODINGER
EQUATION AND THE EQUATION OF A HEISENBERG
FERROMAGNET

V.E. Zakharov and L.A, Takhtadzhyan

The concept of gauge equivalence is introduced for nonlinear equations that can be
integrated by the inverse scattering technique. It is shown that the nonlinear
Schrodinger equation is equivalent to a continuous isotropic chain of Heisenberg
spins.

The equations mentioned in the title have the form
Pt 2| Pl p=0, —oo<z, t<oo, (1)
which is the nonlinear Schridinger equation in the case of attraction, and
$,=8XS.,, 8(z, £)€R’, §*=1, 2)

for a continuous chain of Heisenberg spins in the isotropic case, the isotropic Heisenberg ferromagnet.
Equation (1) is encountered in nonlinear optics and in plasma physics, and its quantum variant describes a
many-particle system with delta~function interaction. In [1], the method of the inverse scattering problem
was applied to the nonlinear Schridinger equation and in [2] complete integrability was proved; in [3], quasi-
classical quantization of Eq. (1) was carried out. In [4], the inverse scattering method was applied to the
Heisenberg ferromagnet, and in [5] a connection between the solutions of Eqs. (1) and (2} was established.
Namely, it was shown in [5] that the energy and momentum densities for the solution of Eq. (2) are essentially
the square of the modulus and the derivative of the argument of the solution of Eq. (1).

In the present paper, using the results of [1, 4], we prove gauge equivalence of Egs. (1) and (2). In
particular, the results of [5], with which we were acquainted after we had completed this paper, are simple
consequences of this equivalence.

To introduce the concept of gauge equivalence of nonlinear equations that are integrable by the
inverse scattering technique, we recall the main features of this method. It is applied to equations that arise
as consistency conditions of a system of linear differential equations,

©.=U(z,t, )0, O,=V(z, {10, (3)
where ®€GL(n, C), U, V&éM (n, C), AEC. The consistency conditions have the form
U~V A+U, V]=0 4)

for all A € C, and under the assumption that U and V are meromorphic functions of A they give a system
of nonlinear partial differential equations for the coefficients of the Laurent expansions of the functions U
and V. These equations can be integrated by means of the inverse scattering technique using the system 3).
From the geometrical point of view, the functions U and V can be interpreted as connection coefficients in
the fiber bundle with base R’ and fiber GL(n, C); Eq.(4) means that the curvature of this connection is zero
(i.e., the connection is flat).

Two systems of nonlinear equations that are integrable by the inverse scattering method are said
to be gauge equivalent if the corresponding flat connections U, V, j=1, 2, are defined in the same fiber
bundle and are obtained from each other by a A-independent gauge transformation, i.e., if

U=gU,g'+g.g7", Vi=gV.g~'+g.g7",

whevre g(z, t)6GL(n, C). It is clear that in the corresponding systems of linear differential equations we then
have ©,=g®,.
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The plan of the present paper is as follows. In the first section, we give the necessary results from
{1,4] in a convenient form. In the second section, we prove the gauge equivalence of Eqs. (1) and 2}, and in
the third we find expressions for the first conservation laws of Eq. (2) in terms of the scattering data.

We are grateful to P, P. Kulish and L. D, Faddeev for a helpful discussion of the results and to
J. Corones, who drew our attention to [5].

1. Method of the Inverse Scattering Problem

for the Nonlinear Schriodinger Equation and the

Heisenberg Ferromagnet

It is well known (see [1], and also [6]) that Eq. (1) is the consistency condition for the system

O.,=U (2, { 1) D,, (Dtt=V1(xy tvh)q)h (5)
where
O P i_lz —-Qx
Ui=ActiAs. Vi=BotAB 1By A= ( . 'é’) A,=io,, B.,=%(‘p‘p _ﬁplz) , B,=24,, B.=24,. (6)

Here, o 0,, 0, are the Pauli matrices,

1’ 3
G__(01) {0 - G_(i 0)
Ao/ "2_(1' 0)‘ AU
Under the condition that the function ¥(x) decreases sufficiently rapidly when x| — =, the first equation
in (5) for matrix solutions has the matrix Jost solutions f,(x, A), g:(z, ), which admit the integral representa-

tions

n

fi(e ) =eot (K (. p)e™dy, gu(z,n)=e™t [N, (5,y)e™ody.

These solutions are related by the transition matrix Ti(k):

fi(z, }\') =gl(x’ 7") Ti(x)v ——oo<},,<oo, (7)
and this matrix has the form
a,(x) —b(h)
I= (b,(x) a!(x)')'

The transition matrix is unimodular and the coefficient a,(1) can be analytically continued into the half-plane
Im A = 0, where it has the asymptotic behavior a,(h)=1+O0(1/[A]) as IA]l = =. Its zeros in the upper half-

plane T, j=1,...,n, are eigenvalues of the discrete spectrum of the first equation in (5). We introduce the
reflection coefficient r,(A)=b,(A)/a,(A). The scattering data for our problem is the set {ri(d), —=o<i<o, L,
my, Im§,;>0, j=14,...,n,}, and the corresponding Gel’fand—Levitan—Marchenko equation is

K,(z,y)+F, (z+y) + [ K, (2, 2) P (s+y) da=0 ®

for x = y, where

15 . - ,
Fi(z)=iIm@.(z) -0, +iReq,(z) 02, . (x)= o jri (*) e“"d?nHZ1 mye'tre, (9

FE=T

For complete description of the solutions of Eq. (1), it remains to point out that the matrix A can be found
from the relation A,(r)=0,K,(z, z)0;~K,(x, z), and that the dependence of the scattering data on t is deter-
mined by the second equation in (5) and given by

2. (A t) =ai(}, 0), bR, 1) =e"Mh (A, 0), Lult)=Ly(0), mu(t)=e""my(0), j=1,..., n. 10)
We now turn to Eq. (2). Using the Pauli matrices, we write it in the form
S1=1" [S1 Sx:]v (11)
2i
where S=(8, o), 0=(0,, 0, C3),
St=], §=8*, tr §=0. (12)
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1t is readily seen (see [4]) that Eq. (11)-(12) is the consistency condition for the system

@,.=U,(z, t. 7\>(Dz, (I)zz‘—'Vz(x, t,A) 0., (13)
where

We note, although we shall not require this fact in what follows, that Eq. (11) is the consistency condition for
the system (13)-(14) in the case of matrices S of arbitrary (even infinite) dimension subject to the single
condition § =1,

For Eq. (2), natural boundary conditions are

lim S (.'ZI, t) =s07 SD= (07 01 1) ’

1&{~>co

lim S(z, t)=0s. (15)

|®]=>00

If S(x) tends sufficiently rapidly to its limit in (15), the Jost solutions f.(z, &), g(z, A) of the first equation
in (18) have the integral representations

fu(@ M) =e™ot | Ky (2, y)e™ody,  ga(z, 1) =e™ [ N, (z, y)e™ody,

—oo

where, for example, the kernel Kz(x, y) is a solution of the Goursat problem

K.0:+8(z)Kyy=0 for z<y, S(z)—06.—iK.(z, x)+iS(z)K.(x, z)0,=0. (16)
These solutions are related by the unimodular transition matrix Tz( A
fa(z, &) =gu(x, ) T2(R), a7
the matrix having the form
T,0) = ( az(M"’z(M) )

b:(A) a.(A)

In addition, T (0) = I and the coefficient a_(A) admits analytic continuation into the half-plane
Im A = 0, where it has the asymptotic behavior g,(3)=e*+0(1/[A]) as [A]—>w, and «€R'. The scattering data
are the set {r,(4), —oo<A<<oo, Ty, may, Im 020, j=1,...,n:}, where r(d)=b.{A)/2.{}} is the transmission
coefficient, ¢, are the zeros of @:.(A), and m, are normalizing factors for the eigenfunctions of the discrete
spectrum. In our case, the Gel’fand—Levitan—Marchenko equation has the form

K, (e, ) +Fy (a+y) + [ Ky (2, 2) Py (2+y) dz=0 (18)
for x =y, where
Fy(z) =i I @.(x) -6, i Re g:(2) -0 ()= At ﬂe"*"d}r“i| T it (19
2 @2 1 P2 2, P2 om0 x i T, .

The matrix S(x) has the form
S (z) = (iKy(x, x) +0:) 0: (iK, (2, x) +05) ~,
and the dependence of the scattering data on t is determined by the formulas
(b, £) =2 (3 0), Ba(h By =€ ¥by (A, 0), Tusl(t) =0o;(0), mas(t) =€ 'm,,(0), j=1,..., 7

We now turn to the main proposition of the paper — the proof that Egs. (1) and (2) are equivalent.

2. Gauge Equivalence

In this section we show that, using a A-independent gauge transformation, any flat connection of the
form (6) can be reduced to the form (14). For the proof that in this manner we obtain all flat connections of
the form (14), we show that any flat connection of the form (14) can be reduced by a gauge transformation to
the form (6). This will show that to every solution of Eq. (1) there corresponds a solution of (2} and vice
versa. The exact formulations of these propositions together with the boundary conditions are given in
Propositions 1 and 2. '
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PROPOSITION 1. Let ¥(x, t) be a solution of Eq. (1) with the boundary conditions lim {{z,t)=0,

fa|->o0

and g{(z,t)=0,(z,t,0), where ®,(z,#1) is a solution of the system (5). Then the function
S(z,8) =g " (2, 1) 08 (2, 1)

is a solution of Eq. (11). I ®(z,t,0)=f,(x,£,0), then lim S(z,t)=0,. But if also bl(O) = 0, then S(x,t)
—»+{-00
satisfies the condition (15).

Proof. In the system (5), we make the substitution ®,=~¢g®,. Since g, = A & the connection coeffi~

cient U1 goes over into U, = iAS, where S=g~'o;,g. Further, since g, = Bg, V, goes over under the action
of the transformation g into V.=Ag~'B,g+2ir*S. But since g 'B.g=2g~'4A.g=2g"'g. and

88.=—8.8=g"'g.—87"0:8:8 ' 0:g =g =g '0:A:0:8=2¢""gx,
because 0;4,0,=—4, we finally have V,=ASS,+2i)\S.

The vanishing of the curvature of the connection Uz’ V2 means that S is a solution of Eq.{11). Since
the matrices A0 and B_ are anti-Hermitian, g is unitary; thus, S is a Hermitian matrix. Finally, if

g(z,t) =f:(z,¢0) and B180) = 0, then

. . . % (0) 0
x—l»1-4I-Inln g (x’ t) —I, :Ll“l—nce g($7 t) a ( 0 ai (0) ) *

from which it follows that S(x, t) satisfies the conditions (15). We have proved the proposition,

PROPOSITION 2. Let S(x, t) be a solution of Eq. (11} with the boundary conditions lim S(z,¢)=S=,
Kt

where the matrices Sy satisfy the relations (12). To within multiplication from the right by a constant
unitary diagonal matrix, one can uniquely construct a unitary matrix g(x, t) such that S = gcrsg'I and the
diagonal elements of g‘lgx are zero, We set

0 —W)
v 0/
Then ¥(x, t) is a solution of Eq. (1) with the boundary conditions

g“gx= (

lim ¢ (z,t)=0
and e
I 25 L
§ g‘"‘( b —iapiz) ’

Moreover, if §.=a;, then bi(O) =0,

Proof. Suppose the unitary matrix g reduces S to diagonal form, S = gUBg'I. The matrix g is
defined to within multiplication from the right by an arbitrary diagonal unitary matrix g, By the choice of g,
we can arrange that there are zeros on the diagonal of g,7'g~"(ggs)., i.€., that

08078 (880) =+ 208" (880) 20:=0
or

20580:==— (0:87 "8« £7'8:55) go. (20)

Since the matrix o.g-'g.+g 'g.0: is diagonal and anti~-Hermitian, Eq. (20) determines a unitary diagonal
matrix g .. In the system (13), we now make the substitution ®,=~g®.. The coefficient U, then goes over into

U1=—g"g,+i7\.03=A u+7~A 1-

The coefficient V2 takes the form
Vi=—g g, +Ag'SS.g+2iN .

Since S = gazg"l,
S§S.=2g(g™")=—2¢:8""

and g-‘SS,g=2A‘,. Thus, V, takes the form
V=B, tAB,+A'B,,

where B,=-g 'g.. We now note that the connection Ui, V1 is flat since Uz’ V2 was, Thus, we have the
equations
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Bix=[Ai, Eo], 21)

Ag—Bo+[ Ao, Bi]=0. 922)
It follows from Eq. (21) that
0 P
o Bl=2( " )
from which we obtain
170
Bo= T( ¥ 0 ) ao,

Equation (22) now gives
— Pt iPe—2a0=0, @, Fi(PP.TPap) =0,

i.e., a=—i{%|> and ¥ satisfies Eq.(1). To complete the proof, it remains to note that if S.=S.=g,, then
we can choose the matrix g such that at +« it tends to the unit matrix and at ~« to a diagonal matrix. This
means that b, (0) = 0.

COROLLARY 1, Let S(x,t) be a solution of Eq. (2) and #(x, t) be the corresponding solution of (1).

Then
Si=4|yp|% 23)

Proof, Since SS.=2gd.g~,
Si=det S.=4 det A,=4|¢|*
The following corollary is as easily proved.

COROLLARY 2. Suppose that under the assumptions of Corollary 1 the solution S(x, t) satisfies
the condition (15), Then bi(O) = 0 and

T (M) =T,~H0)T:{X), ni=n.=n, L=Ly my=a,(0)my Jj=1i,....0
COROLLARY 3. Let ¢(x, t) be a solution of Eq. (1} with the boundary conditions lim ¥(z,t)=0,

jx}esc0

and S(x, t) be the corresponding solution of Eq. (2). Then
8.7 (arg ¥) «= (8, S X8.). 24)
Proof. From Egs. (6) we find that
tr AoBo=i (YPa—1p:P)
and since A.=g.g~!, B,=g.g~!, S=g~'0:g,
g 8.g=los, 4o}, g7'S:ig=l0,, Bl

Further, since o:d,0;=—A4,,
tr (S«S:) =—41r A.Bo.

Thus, using Eq. (11), we obtain
2 —
(S7 Sxxsxx) = T (W@“N’:) =4hplz (arg 'llJ):x

This proves the corollary.

Note that Eqs. (23)-(24) are the content of [5].

3. Conservation Laws

The nonlinear Schriédinger equation is a Hamiltonian system with Poisson brackets

{¥(z, 1), By, )} =id (z—y) (25)
and Hamiltonian

H,=j(|1px|2—hp]")dx. 26)
In [2], the complete integrability of Eq. (1) was proved and canonical action—angle variables obtained. An
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infinite series of conservation laws for the nonlinear Schrodinger equation was obtained in {1}. We give the
first of them, which are

N,= j [pleda, @7)

17
P=— :[m(wxﬂ:—wx) dz 28)

and they are the particle number and the momentum. Quasiclassical quantization of Eq. (1) was carried out
in [3] using the conservation laws for N, PI, and H ; expressed in terms of the scattering data.

Equation (2) can also be expressed in Hamiltonian form. The canonical Poisson brackets on the

two~dimensional sphere in R?,
{3:(x, t), Sul(y, t) }=epSi(2) 8 (z—y), 29)

where e, isthe completely antisymmetric tensor, and the Hamiltonian

1 ™
Hi=— 5 S.2dz (30)

generate Eq. (2) in accordance with the rules of Hamiltonian mechanics. It was shown in [4] that the Heisen-
berg ferromagnet has an infinite number of conservation laws. The first of them are

v 1 x_S:
P,= J§;92_._‘..fdx, 31)

1+S;

- 0o

M= j (S—S,)dx 32)

o1
and they are, respectively, the momentum and the magnetization. It is easy to see that 5 (8,8.X8.;), which
was introduced in Corollary 3, is related in a simple manner to the momentum density E,.

To obtain the infinite number of conservation laws one uses the standard technique of the inverse
scattering method based on the trace identities. Expanding Ine.(A) in an asymptotic series in inverse
powers of A as |Al = =, we obtain the first series of local conservation laws, which begins with B, B =
2arga.(>), after which there comes H, and, in general, we have a recursion relation for the densities c,
of these conservation laws:

oo

1n=fcndz, n=1,2,..., 33)
c =—%—S2 Cn=1P (c,._,) + Ve (34)
1 % x 9 n 1[3 . 4+kh_"_4]k-

Here, to express the coefficients ¢, in terms of the function S it is necessary to use Egs. (23) and (24). In
particular, we obtain the following expressions for F, and H, in terms of the scattering data:

2 tinla,(A)] -
S bl AN - 5
P, n_j ) dl+4; arg &;, (35)
i .
H—— ?jln lag (h) |dA+8 ; Im &;. (36)

The second series of conservation laws (which in general are not local) can be obtained by expanding In a.(})
in an asymptotic series in positive powers of A in the neighborhood of the origin. In this way one obtains
first the conservation law for M_, and for the following densities there are simple recursion relations, which
we do not give here because the resulting conservation laws do not have a perspicuous physical interpretation.
However, in this manner one cannot obtain M, and M, since they are not in involution with M,. We give a
regular method that is based essentially on Propositions 1 and 2 and makes it possible to express the mag-
netization vector M in terms of the scattering data.
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Let S be a solution of Eq. (11) with the boundary conditions (15). It follows from Propositions 1
and 2 that S=g~'0:g, where g(z,1)=f(z,t,0),

fe= (Ao‘i'ixo'a)fn (387
and f,(z,t,2)=¢"""+o(1) as z-+oo.
d
We differentiate Eq. (37) with respect to A and set A=0, g(z, )== 79% (z,2,A) limo. We find that g,=A4,5+

iasg. Representing ¢ in the form g(z, t)=g(r,1)C,(z,t), we obtain C..=ig~'c:g and, since C;~izo: as r—+oo,
C,=izua——i‘f (S—a;5)dz’.
On the other hand, §=7,~*(0)§'0:¢T.(0), where #(z,t)=g.(z,t,0). Similarly, we find that §=gC, where

Cor=iT(0)ST,~*(0) and C,~izo; as x = —«, Recalling that bi( 0) = 0, we obtain

T,-4(0)C,T, (0) =izo,+i j’ (S—a,) dz’.

We now differentiate Eq. (7) with respect to A and set A = 0, and we find that g=8T,(0)+§7,(0) or gC | =
gC.T,(0)+&7,(0), i.e., T,(0)C,—C,T:(0)=7:(0). Thus, we obtain

j (S—as) dz=iT~(0) 7, (0). (38)

From (38) we find that
Im ;,'

_zai(O)/ai(O)—-mz(O)———jlnmzo")l dh— 22 e (39)
RO 1
M=M1—le——i‘m— ; 5.(0). {40)

In conclusion, let us consider the proof of the complete integrability of Eq. (2). It is easy to show
directly, by calculating the variational derivatives of S with respect to the scattering data or by using the
already known canonical variables for Eq. (1) given in [2], and also Propositions 1 and 2, that the Heisenberg
ferromagnet is a completely integrable Hamiltonian system, and one can find the corresponding action—angle
variables. Using Eqs. (35), (36), and (39), we can readily carry out a quasiclassical quantization of Eq. (2)
in the same way as in [3]. We omit here these simple arguments, since they will soon appear in a paper of
P. P. Kulish and S. I. Pachevaya. We merely mention that, as usual in the case of completely integrable
systems, the quantum spectrum is identical with the quasiclassical spectrum. We also point out that just as
solitons were found to be bound states of the particles of the basic field for the nonlinear Schrédinger equation
the quanta of the basic field — the magnons — in the case of the Heisenberg ferromagnet can form bound
states with an arbitrary number of magnons,

LITERATURE CITED

Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz., 61, 118 (1971).

. Zakharov and S. V. Manakov, Teor. Mat. Fiz., 19, 3 (1974).

Kulish, S. V. Manakov, L. D. Faddeev, Teor. Mat, Fiz., 28, 38 (1976).
. Takhtajan, Phys. Lett. A, 64, 235 (1977).

akshmanan Phys. Lett. A, 61, 53 (1977).

E Zakharov, Funktsional’ Anahz i Ego Prilozhen. (1979) (in press).

O
Sgrmwss
acishs

23



