
2b) Assume that X 8 = i, i.e., we consider a reduced element of the form djy[~ ~ Ka. C 
Wi,t,m+~. Since djyi~ ~ W~,t,m+2 and each element in Wi,t,m+2 has the form cix , this means that 

j = i, i.e., we consider a reduced element d~yfl = ci( ~ c))y~. It follows from the definition 

of c i and ~Z that d~y~s = ei~bz (ciy~), i.e., diy~ ~ ci~zW~. 

We have thus proved that each reduced element x~djyf, in the subspace K~. ---- W=. ~ J 
either belongs to the subspace c~Kz, or else to ci$zW=. Since the reduced elements of the 
form x~djy~ generate K~,, Eq. (I0) and also Proposition 12 are proved. 

i. 

2. 
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INTEGRATION OF NONLINEAR EQUATIONS OF MATHEMATICAL PHYSICS 

BY THE METHOD OF INVERSE SCATTERING. II* 

V. E. Zakharov and A. B. Shabat UDC 517.9 

INTRODUCTION 

In connection with the development of the method of the inverse scattering problem, 
the task of enumerating nonlinear differential equations which are integrable by this method 
is of fundamental interest. The first approach to the search for such equations is con- 
tained in the work [i], where the "principle" of "L--A" pairs is formulated; alternate ap- 
proaches are given in the works [2, 3]. After this work it became clear that there exist 
infinite series of integrable equations, although only the first several equations of each 
series are of interest in applications. 

In our previous work [4] a method was developed for constructing a broad class of in- 
tegrable equations possessing an "L--A" pair (the vesture method) together with an algorithm 
for obtaining exact solutions of them. Other equations having an "L--A" pair were subse- 
quently found by Calogero and his co-workers [5, 6]. The vesture method was extended to 
these equations in [7]. All integrable equations possessing an "L--A" pair represent condi- 
tions for the existence of a common spectrum and common eigenfunctions of two differential 
operators. However, right after the work [2] it became clear that it is possible to con- 
sider integrable equations representing conditions for the existence of a common spectrum 
of operator pencils depending rationally on the spectral parameter. It is also convenient 
to consider a number of physically interesting equations admitting an "L--A pair" (the sine- 
Gordon equation, the Bloch--Bloembergen equation, etc.) in the language of preservation of 
the spectrum of rational operator pencils. 

The present paper is devoted to carrying over the vesture method developed in [4] to 
the case of spectral problems depending rationally on the spectral parameter. We hereby 
obtain a description of new classes of equations integrable by the method of the inverse 
problem together with an algorithm for constructing exact solutions of them. In the work 
[4] we used to this end a factorization of integral operators; in the present work we use 
the dual language of the matrix Riemann problem of conjugate functions analytic inside and 
outside a given contour. Our approach ispurely local in the coordinates and enables us to 

*The basic results of the present paper were presented by the authors as two separate re- 
ports at the conference on partial differential equations dedicated to the memory of I. G. 
Petrovskii in January 1976 in Moscow, Moscow State Univ. 

L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR. Trans- 
lated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 13, No. 3, pp. 13-22, July-Sep- 
tember, 1979. Original article submitted June 14, 1978. 
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avoid the requirement of decay of solutions of infinity. 
Among the equations we find there are equations which are of interest from the point 

of view of applications; in particular, there are the equations of "chiral" fields -- free 
fields in two-dimensional space-time with values in an arbitrary Lie group. 

i. Matrix Riemann Problem and the Vesture Method 

We consider the overdetermined system of differential equations 

~z = U~,  ~Ft = VT. ( 1 . 1 )  

Here  U and V a r e  complex  N x N m a t r i c e s  d e p e n d i n g  r a t i o n a l l y  on  the  p a r a m e t e r  ~. The com- 
p a t i b i l i t y  c o n d i t i o n s  f o r  Eqs .  ( 1 . 1 )  have  the  f o r m  

Ut - -  V~ + [U, V] = 0. ( 1 . 2 )  

I f  t h e  number o f  p o l e s  o f  t h e  f u n c t i o n  U c o u n t i n g  m u l t i p l i c i t y  i s  e q u a l  to  N, w h i l e  t h o s e  
o f  t h e  f u n c t i o n  V i s  e q u a l  to Na, t h e n  the  f u n c t i o n s  U and V h a v e  N~ + Na + 2 i n d e p e n d e n t  
m a t r i x  f u n c t i o n a l  p a r a m e t e r s .  T h i s  s y s t e m  o f  e q u a t i o n s  i s  t h e  i n t e g r a b l e  s y s t e m  t h a t  we 
c o n s i d e r .  

For example, if the poles of U and V are simple, 

NI 

, ~ ~ . _ _ a n  , V = V  o - ] -  
k=l  

we have 

Zn (i.3)-(i.5) 

N2 

(1.3) 

uot - -  vo~ + [Uo, vo] = 0, u,~t + [un, R,J = 0, v.~ + [v,~, T,J = 0, ( 1 . 4 )  

N~ N,. 

R n  --  UO + an-~-bm,  Tn  ---- u° -I- bn----a m " ( 1 . 5 )  
~=I k=l 

an = an (x) are given functions of x and b n = bn(t) are given functions of t. 

The indeterminacy of system (1.2) is explained by its "gauge invariance." Let U and 
V be some solutions of this system, and let ~ be the corresponding solution of system (i.i). 
We consider the functions 

t7 : g U g  -a -~- gxg  -1, F ---- g V g  -~ + g t g  -~, ( 1 . 6 )  

where g is any nondegenerate, matrix-valued function of x and t. It is easy to verify that 
~7, F again satisfy Eq. (1.2); the corresponding solution of the system (i.I) is ~----g~. 
The transformation U, F-+ ~7,F we call a gauge transformation. In application to system 
(1.4), (1.5) we have 

ao = g u o g  -1 -[- g~g-1,  vo = grog  -1 + g t g  - i ,  ( 1 . 7 )  

u~ : g u ~ g  -1, vn  = g v n g  -J'. ( 1 . 8 )  

System (1.2) can be completely determined by imposing an additional condition on U and 
V. For example, it is possible to set uo - 0 (up to gauge it may hereby be assumed that 
vo - 0). Solutions of the equations completely defined by some other condition differ from 
this case only by a transformation (1.6) with some matrix g. We shall call all such equa- 
tions gauge equivalent. 

We observe further that Eqs. (1.2) have the natural trivial solution 

U = A (x, M, V = B (t, ~), [A (x, ~), B (t, X)] = 0. ( i . 9 )  

The c o r r e s p o n d i n g  s o l u t i o n  o f  Eqs .  ( l . l )  we d e n o t e  by ~.  

Having one solution of the system (I.i), (1.2), e.g., A, B, ~, we shall now show how 
to construct new solutions of these systems depending on a functional parameter. To this 
end we need some facts from the theory of the matrix Riemann problem. 

Let F be a simple closed contour in the plane of the complex variable %. The Riemann 
problem consists in factoring a function G(1) defined on the contour P in the form of a 
pro duct 

~1 (~)~2 (~) = G (~), (1 . i 0 )  
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where ~I(L) is analytic outside and ~(L) analytic inside the contour F. The problem is 
considered in the algebra of square matrices of finite order N. The factorization is called 
regular if ~I.~(%) and~[1~(%) are continuous in the closure of their domains of analyticity, 
including the point at infinity. The solution of the Riemann problem is constant up to the 
replacement ~1-+ ~ig, ~2-+ g-~2, where g is an arbitrary, constant, nondegenerate matrix. 

Let the contour F and the matrix function Go (%) on it be given. For all x and t we 
define the function G(%, x, t) by 

G (~, x, t) = ~o (~, z ,  t)Go (L)~;: (~, x, t), ( 1 . 1 l )  
where ~o U, V is some solution of system (i. i), (1.2). For simplicity, we henceforth assume 
that P = m, U = A, V = B, although all arguments are also valid in the general case. We 
consider for all x and t the Riemann problem (i.i0) with the function G of (i.ii). It may 
hereby occur that the contour F passes through poles of the functions A and B. At these 
poles we set G : i. This enables us to differentiate the function G with respect to x and 
t. Using (i.i), we find after differentiation that 

~lx~s q- ~:~ = A~:~s -- ~II~A. (1.12) 

We define the matrix-valued function U by the formula 

U = --~71 (~:x -- A ~:) = (~2x q- ~ A ) ~  t. ( 1 . 1 3 )  

It follows from formula (i.13) that U extends from the contour r to the entire complex plan 
and is there a rational function with poles which coincide with the poles of the function 
A. From (1.13) it follows that 

~:x = A ~1 -- ~:U,  ~ = U~2 -- ~ A .  (i .14) 

Similarly, differentiating (i.i0) with respect to t, we define the rational function V, 

v = - ¢ 7  ~ ( ~ t  - B ¢ : )  = (¢~t + ¢~B)¢: : .  ( l . 1 5 )  

The p o l e s  o f  V c o i n c i d e  w i t h  t h e  p o l e s  o f  B. S e t t i n g  ~1 = ~ [ : ,  ~2 = ~2 ~-~, we s e e  t h a t  ~:, ~ 
satisfy Eqs. (i.i). These equations are thus compatible, and the functions U and V satisfy 
the system (1.2). 

We consider a new solution of the Riemann problem (i.I0) ~ = g~, ~: = ~g-:, where g is 
any matrix-valued function of x and t. The functions U and V then undergo a gauge trans- 
formation (1.6). In this connection there is a natural means of determining system (1.7), 
which consists in imposing an additional condition on the Riemann problem which makes it 
unique. For example, it is possible to fix the value of one of the functions ~:, ~ at some 
point % = L'. Thus, in the example considered above of determining system (1.5) by the con- 
dition Uo = Vo = 0 this amounts to setting ~1(oo) = f. (We assume that G(~) = I.) The im- 
posing of an additional condition may be called the normalization of the Riemann problem. 

The procedure presented for constructing solutions of system (1.2) may be called the 
vesture of the "primer" solutions A, B by means of the Riemann problem with contour ~ and 
function Go(%). By representing A and B in terms of expansions in simple fractions of the 
form (1.3), we obtain from (1.12), (1.13) 

Uo go~go t q- goAogo 1, u n = gnAng~ ~, v o = gotg~ t -}- goBog~ ~, v~ = ~ n B n ~  ~. ( 1 . 1 6 )  

Here go = ~(°o), and the matrices gn and gn are the values at the points L = an and ~ =b~, 
respectively, Of functions ~: or ~, depending on whether the corresponding point lies in- 
side or outside the contour. (We recall that if an or bn!ies on the contour, then at this 
point G = I and ~-~=~.) Formulas "(1.16) show that under vesture the invariants of the 
matrices Un, v n are preserved. 

We remark further that the entire procedure presented above carries over trivially to 
the case where one or both of the variables are complex. 

2. Reductions and Involutions. Examples 

In most cases the system of Eq. (1.2) is too general to be useful in application to 
physics. The question therefore arises of the possibility of imposing additional conditions 
compatible with the system (1.2) on U and V. We call such conditions reductions. Reduc- 
tions reduce the number of equations contained in the system (1.2) and simultaneously im- 
pose certain restrictions on the contour r and the function Go(%). 
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We shall consider the reduction question for the example of system (1.5). Suppose 
that all the anp b n are real. It is then possible to require that all the matrices Us, v n 
be anti-Hermitian or belong to some other Lie algebra realized by N x N matrices. A re- 
striction hereby arises on the gauge freedom: the matrix-valued function g must belong to 
the Lie group corresponding to this algebra. 

In order that the anti-Hermitian property be preserved under vesture, it suffices to 
choose the real axis as the contour P and assume that the function G(~) satisfies the in- 
volution 

G+ (~ = G -1 (~); 

of course, the "primer" matrices A and B must also be anti-Hermitian for real i. 
ilar manner it is possible to choose the matrices Un, v n real or antisynnnetric~ 
cases the contour is again the real axis, and for G we have the involutions 

~) -- G(~) ( 2 . 2 )  

and 
~ (x) = ~ - ,  (x). 

(2.1) 

In a sim- 
In these 

(2.3) 

It is also possible to consider a more general situation. 

Equation (1.2) can be considered as an equation on the algebra of rational functions 
of ~ with a fixed distribution of poles and matrix coefficients. The reduction may consist 
in restricting Eq. (1.2) to some subalgebra of this algebra. 

Suppose that on the % plane there exists a fractional linear transformation z(%), such 
that z2(%) = l, and suppose that the composition of this transformation and complex conju- 
gation takes the set of points an, bn into itself. Suppose there is given a rational func- 
tion J(%), not depending on x and t with poles in the set an, bn, which satisfies the in- 
volution 

J+ ~) = J (z (~)). (2.4) 

It is then possible to perform a reduction by imposing on U and V the conditions 

u÷ ~) = _j_1 (~) u(z (~)) J (~), v+ ~) = _:_i(~) v (~(~)) ] (~). (2.5) 

Reductions consisting of the conditions that U and V be real and symmetric also admit simi- 

lar generalizations. 

The examples presented far from exhaust all possible reductions of the system (1.2); 
the enumeration of these reductions is one of the current problems of the theory of inte- 

grable systems. 

We shall consider in more detail reductions in the system (1.4)-(1.5) in the case 
where NI = N2 = i. Suppose first of all that at = b: = 0. In this case [u~, v~] = 0. We 
determine the system by setting u~ = A(x), where A is a diagonal matrix (in the case of 
general position). Then V, = B(t), where B is also a diagonal matrix. The system of equa- 
tions (1.2) now consists of Eq. (1.4) and the additional condition 

[Uo, Bl = [Vo, A]. ( 2 . 6 )  

In  t he  a n t i - H e r m i t i a n  case  where  A and B a r e  pu re  i m a g i n a r y ,  e$ = - - e 0 ,  t he  s y s t e m  ( 1 . 4 ) ,  
( 2 . 6 )  i s  t he  " s y s t e m  o f  n w a v e s , "  known i n  n o n l i n e a r  o p t i c s  ( see  [ 8 ] ) .  

F u r t h e r  r e d u c t i o n  o c c u r s  i f  uo and vo a r e  assumed to be r e a l ,  a n t i s y m m e t r i c  m a t r i c e s .  
The s y s t e m  which h e r e b y  a r i s e s  c o r r e s p o n d s  in  n o n l i n e a r  o p t i c s  to  the  c a s e  o f  " e x a c t  r e s o -  
n a n c e .  

Stronger reductions are possible for special forms of A and B. Suppose A and B are 
such that it is possible to find a matrix C which anticommutes with them, 

A C  -}- CA = O, BC  -k CB = O. (2 .7 )  

The following reduction is then admissible: 

bo, e l = O ,  [Vo, C]=O.  (2 .8)  

The systems obtained here also occur in nonlinear optics. 
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The system (1.4), (2.6) belongs to the class of integrable systems admitting a Lax 
representation and having an '~--A pair" (see, e.g., [8]). A method of solving such systems 
was developed in our previous work [4]. The proposed scheme contains all these systems 
containing differentiation with respect to two variables. They all correspond to the case 
in which the function U has a single simple pole, while the function V has a pole of arbi- 
trary order at the same point. 

The case in which U and. V each have a simple pole but at different points is of excep- 
tional content. We restrict ourselves to the case in which the position of these points 
a,, b, does not depend on x and t. It may be assumed with no loss of generality that ~, = 
I, b, = --i. Under the additional condition Uo = Vo = 0 the system of equations has the 
form 

i 
Ult ~- -~--[Ul, Yl] = O, Ult" = ViX. (2.9) 

The system (2.9) can be rewritten in the form 

+ (-5 =o, 

where g = ~]~=o, and ~ is a solution of system (i.i). In system (2.9) it is natural to carry 
out reduction consisting in fixing the Lie algebra to which ut, vt belong. Here g belongs 
to the corresponding Lie group. Further reductions are also possible which do not reduce 
to those described above. Thus, it is easy to verify that Eq. (2.10) admits the reductions 
g+ = g and ga = I. All the systems which hereby arise represent geometric models of a class- 
ical field theory -- the chiral fields on Lie groups and their homogeneous spaces [9, i0]. 

Suppose now that the system (1.4) is determined such that u, = At. The Riemann prob- 
lem is hereby normalized by the condition 4,(1) = I. It is then possible to set Vo = --*/=" 
v,, and the system acquires the form 

- -  Vlz ~-- I v 1 '  U0  - -  1/2 A] = 0, u0t ~- ~/~ [~, A] = 0. ( 2 . 1 1 )  

Sys tem ( 2 . 1 1 )  c a r r i e s  t h e  somewhat  p r o v i s i o n a l  name o f  a "u ,  v "  s y s t e m ;  i n  t h e  s i m p l e s t  
s p e c i a l  c a s e  i t  r e d u c e s  [10] to  t h e  " s i n e - G o r d o n "  e q u a t i o n .  

3. Soliton Solutions 

The class of solutions described in Sec. 1 can be considerably extended if the matrix- 
valued functions ~i, ~ are permitted to degenerate at a finite number of points of their 
domains of analyticity. We call such points zeros of the functions ~I, ~2- It is obvious 
that at these points det ~i,2 = 0, but we assume that all elements of the matrices 91, ~ do 
not vanish. We shall say that the function 4 has a simple zero at the point % = lo if in 
a neighborhood of this point ~-1 = Co/(~ -- ~o) -~- C1 @ .... det C, = 0. The function 4 in a 
neighborhood ~ 0  is ~ =F0q-(~--~0)/71 ~--.. • Since FoC o = CoF o =0, CoF I -~- CIF o = I, 

Ker Fo = Im Co, KerCo = I m F  o. ( 3 . 1 )  

Suppose we are given the Riemann problem on the contour F, and suppose that the function 4, 
is analytic outside the contour and has N zeros %1, • • -, %~, while the function 4a is analytic 
inside the contour and has N zeros at the points ~i .... , ~N. We prescribe two collections of 
subspaces 

L~ = I m ~ l l ~ = ~ ,  Mn = Ker $~]~=~n" ( 3 . 2 )  

We shall show that prescribing Ln, M~ singles out a unique (up to gauge) solution of the 
Riemann problem. Indeed, let ~i, 72 be another solution. Then the function X, 

X = ~11~i = ~I, (3.3) 

is defined on the entire complex plane and by (3.1) has a removable singularity at the points 
= %n, % = B, • Therefore, ~i differs from ~ by no more than a gauge transformation. 

We shall describe a procedure of reducing the Riemann problem with zeros to a regular 
Riemann problem. Suppose that ~1,~e have zeros at the points %~, ~. We consider the new so- 
lution of the Riemann problem ~2, ~ with the same function G which has zeros at the points 

~1," " " , ~N-I, ~I," • " ' ~N-I, while at these points 

Ker ~ ( ~ . )  = Ker ~p~.(~) =M~.  ( k =  t . . . . .  N - -  1), 
Im~h (~k) = Im ~h ( ~ ) = L ~  ( k =  t . . . . .  N - . t ) ,  
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and we introduce the function X by formula (3.3). 
points k~ ..... %~-~, ~ . . . . .  ~ - ~ ,  and hence 

Similarly, we find that 

As already.noted, X is regular at the 

(3.4) 

X~ 
~-~ = %~+~-~ " (3.5) 

By multiplying (3.4) and (3.5), we see that X has the form 

X =  (1 )m--P~n Pn) Zo, ( 3 . 6 )  
-- Vn 

i i 
where Pn = ~ _~ZOEa=~-~-~-~_k Z~%~ 1 is a projection operator, P~ = Pn. 

The projection operator is completely characterized by giving the two subspaces Ker P 
and Im P° We shall show that these subspaces can easily be found. Since 

we h a v e  " M ~ =  K e r ~ ( 9 ~ ) =  Ker ( t - - P ~ ) ~ p ~ ( ~ ) .  Whence 

Im P~ ---- Ker (t - -  P~) = gp~ (t~) M~. ( 3 . 7 )  

Similarly, 

L ~ =  Im ~1 (~ )  ;((~,~) = I m  ~o~ ()~n) (1 - -  P~) %o, 

~P~ (~n) Ker P,~ = Ln, Ker Pn = ~P-[~ (~r~) Lr~. ( 3 . 8 )  

The formulas (3.7) and (3.8) determine the projection operator in formulas (3.6). The value 
of the matrix Xo is arbitrary and is determined by the normalization of the Riemann problem. 
In the simplest means of normalization ~i (oQ)= ~p= (oo) = [ %0 = I. Repeated application of 

(3.9) 

this procedure leads to the formulas 

'1~2 = Z:  1 ( l  

Here (~i, ~) is a regular solution of the Riemann problem, and the constant, nondegenerate 
matrices %1 .... ,%n are determined by the choice of gauge. 

We shall now apply the Riemann problem with zeros to construct new solutions of the sys- 
tem (1.2) by the method of vesture. For degenerate ~1,~u the functions U, V defined by 
formulas (1.13), (1.15) have, in general, additional poles at the points %~, ~. It must be 
required that the residues at these poles be equal to zero. We define the differential op- 

D~ ~) = Ot - -  B [x=~.. 

erators 

O(~ n) = 0:¢ -- A [z=~, 

D~ '0 = Ot - -  B I~.=~n' 

I t  now f o l l o w s  f rom ( 1 . i 3 ) ,  ( 1 . 1 5 )  t h a t  

c~,D~)F,, = O, c~DI'~)F~ = O, 

Here the c n are the residues of ~p[x, the F n are the values of ~I at the points 
are residues of ~[i and the F n are the values of 42 at the points % = ~n-" 

c~D(2)~ = o, ~ / ~ ) ) ' ~  = o. ( 3 . z o )  

~n, then cn 

It follows from formulas (3.10) and (3.1) that the subspaces M n are invariant under 
the action of the operators /)(x n), /)~70 while the subspaces L n are invariant under the action 

of O($ ), O~ ~). It is clear that the subspaces 

M n (x, t) = o) (x, t, ~t.) M~ ), L= (x, t) ---- ~o (x, t, )~.) L~ °) (3 .11 )  

possess the invariance property if and only if M ~ , L ° ~ c C  N do not depend on (x, t). Thus, 
having A, B, o, L°n, M°n, and the solutions of the regular problem, we can explicitly compute 
all the factors in (3.9). 
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Let G (%) f. In this case the solution of the regular Riemann problem is trivial, and 
the vesture procedure becomes purely algebraic; $i, $~ hereby become rational functions of 
%. The corresponding functions U and V we shall call soliton solutions of the system (1.2). 
Calculation of the soliton solutions plays a fundamental role in applications of integrable 
systems to physical problems. 

As an example we compute the simplest nontrivia± soliton solutions of the "n-wave" sys- 
tem. Suppose that the matrices A and B are constant, diagonal, and purely imaginary, 

A = ~ diag (a 1 . . . . .  a:v), B = / d i a g  (b 1 . . . . .  bN), 

and suppose that the numbers a i are ordered as follows: a I ~ a~ ~... ~ aN. Equation (2.6) 
can be solved in the form U0 = [A, Q], v0 = [B, Q]. The matrix Q is anti-Hermitian and has 
zeros on the diagonal, The equation for Q has the form 

[A, Qt] - [B, Qx] -{- [[A, Q], IS, QII = 0. ( 3 . i 2 )  

The Riemann problem is normalized by the condition ~i,~ (oo) ----I. It is easy to establish di- 
rectly from formula (1.14) that the asymptotic expressions for the functions ~1,a as % + 
have the form 

~i  ~ I - -  (Qlk), ~: .-+ I --}- (QIL). ( 3 . 1 3 )  

We consider the simplest solution of Eq. (3.12) for which the function ~x has a single pole 

X0 -- £0 at the point % = %0 = ~-~ iN, ~x = I q--i--_---_~P. Here P is a projection operator, p2 = p. Sup- 

pose that the range of the projection P is a one-dimensional space. Then 

ninj (3.14) 
Pij ---- N 

i = l  

O b v i o u s l y ,  Q u  = ( ~ o - - ~ o )  Pt l .  S u p p o s e  t h a t  v e s t u r e  i s  p e r f o r m e d  on t h e  b a c k g r o u n d  o f  t h e  
t r i v i a l  s o l u t i o n  U = A, V = B ,  [A, B I = 0 .  We c h o o s e  co----exp (Axq-B t )L .  Then nt (x, t) = ci exp iXo 
(a~x q- b~t), where c i is an arbitrary constant complex vector. Finally, for the matrix Q we 
have 

Qij = ( k o -  ~o) cicj exp i [(ai%o q- alfo)• q- (biX0 q- bj%o) t] 
N (3.15) 
~l I ei 12 exp 2~ (aiz q- ajt) 

i = l  

The solution (3.15) for the case N = 3 was found in [8]. Analysis of its asymptotics 
as t-+ ~-oo shows that it describes a nontrivial interaction- the decay or "gluing to- 
gether" of elementary soliton solutions of various types. 

4. Higher-Dimensional Generalizations 

The means of constructing integrable systems described above admits a natural higher- 
dimensional generalization. Let U and V be square N x N matrices depending on a vector pa- 
rameter r----(x~ . . . . .  x~) of arbitrary dimension, and let DI and D2 be linear differential op- 
erators of first order with constant coefficients, 

r ° r ° D1 = a~ ~ ' i  ' D~ = bi O-~i" 

Suppose that U, V, DI, and D2 (i.e., "ai and b i) depend rationally on the parameter ~, while 
the poles of U and Dx are located at the points el,..., aN, and the poles of V and Da at the 
points b~, • ., bN. We consider the overdetermined system of equations 

D I ~  = bnt r, D2~  = VT,  ( 4 . 2 )  

which generalizes system (i.i) in an obvious manner. 

The compatibility condition for system (4.2) generalizes (1.2) naturally and has the 
form 

D ~ U - - D t V =  [U, V]. (4.3) 

It is easily seen that (4.3), as before, represents a system of NI + N~ + 1 differen- 
tial equations for the coefficients of the functions U and V. It is obvious that the number 
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of independent differentials in DI, D2, cannot exceed NI + N2 + 2. This is the case of 
generalized position. In the case of general position the distribution of the poles loses 
its significance, and, by reducing Eq. (4.2) to a common denominator, it is possible to go 
over from rational functions of X to polynomials. The simplest nontrivial example in gen- 
eral position arises if both polynomials have first order. The system (4.2) then has the 
form 

The compatibility condition, Eq. (4.3), is now 

alus--Osul "4- [ul, usl = 0 ,  02u4--O4u~ ÷ [u~, u4l = 0 ,  
01u4--O4ul--[-O~u3--Osu2+[u 1, u4l--[u2, us]=O. 

As i n  S e c .  1 ,  we may a s s u m e  t h a t  t h e  v e c t o r  r i s  c o m p l e x .  S y s t e m  o f  e q u a t i o n s "  
g e n e r a l  c a s e  h a s  no p h y s i c a l  i n t e r p r e t a t i o n .  H o w e v e r ,  i f  one  o f  t h e  two r e d u c t i o n s  

or 

(4.5) 

(4.5) in the 

(4.6) 

= = U + + 04 =O2, Os --O1, u4 --2, ua = ul (4.7) 

acquires the interpretation of the duality or antiduality equa- is performed, system (4.5) 
tions distinguishing important special solutions of the equations describing the Yang-Mills 
field over four-dimensional Euclidean space (see [ii]) with values in the group SU N. 

Further generalization occurs if ai, bi are assumed to be functions of variables z i. 
The differentials D i here cease to be commutative and become elements of the algebra of k- 
dimensional vector fields. The system (4.3) is now augmented by the equation 

[DI, D~I = 0, ( 4 . 8 )  

(4.9) 

i.e., by the equation 
k k 

b b a . 

Setting 
NI Nz 

g a~n bk = 2 bkn ak = ~--ett ~--Vn ' 

we arrive at a nontrivial system of equations for akn, bkn. It is curious that the systems 
(4.3) and (4.9) are completely independent. System (4.9) can be reduced to any subalgebra 
of the algebra of vector fields, e.g., in the case of even k to the algebra of Hamiltonian 
Poisson brackets. Physical applications of systems of the type (4.9) are so far unknown. 
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CURVATURE OF GROUPS OF DIFFEOMORPHISMS PRESERVING THE MEASURE 

OF THE 2-SPHERE 

A. M. Lukat~skii UDC 519.46 

In this paper, :the curvatures :of the groups S Diff(S 2) (diffeomorphisms of the 2-sphere 
S 2 preserving t~e standard density) equipped with the natural right,invariant Riemannian 
metric (weak metric)are calculated. It was shown by Arnol'd [1, 2] that the geodesics on 
groups of this type express flows of an ideal incompressible fluid, and negativity of the 
sectional curvature along two-dimensional directions is a criterion for exponential Insta- 
bility of flows. Steady flow on a two-dimensional torus having the velocity field sin y 8x 
(i.e., a Passat floW) was, in particular, studied in [2] in detail. In this paper, the fol- 
lowing analog of the Passat flow is studied for Sa: viz., the vector field g = z(--y~x + 
x~y); in many two-dimensional planes cutting the field g, the curvatures turn out to be neg- 
ative. The curvature values obtained are used to estimate the interval of time during which 
long-term dynamic weather forecasting is not possible, and results close to those of [2] are 
obtained. The vector field h =--y~x + x~y (the curl on S 2) is also studied, for which the 
sectional curvatures are nonnegative. The author sincerely thanks V. I. Arnol'd for valu- 
able advice, and also A. L. Onishchik for helpful discussions. 

i. Statemen£ :b]~ the Results 

Let S z be defined in R s by the equation x a + y2 + z a = I. We denote by SV(S a) the Lie 
algebra of the group S Diff(S 2) consisting of vector fields with zero divergence. The right- 
invariant metric on S Diff(S a) is defined at the identity by 

<u, v> =~(u (~), ~,(~))d~(z) (u, v~SV(S~)C). 

It is convenient to rePresent Vector fields on SV(S a) by their flow functions: v ---- T (f~) = 
I (grad/g) (where I is the operator given by clockwise rotation by 90°). 

We choose in the space of flow functions a basis consisting of the spherical functions 
(~, % being the standard spherical coordinates on S =) 

yZm=[(l- -rn)121+iT' / '  i , i _  . dZ+m(sinl0) ( / ~ N ,  m = - - l ,  1). 
L (l + ~)!  " W T - J  2--~-11 [e TM sm ¢p)m d (cos 0 /+ ' '  " " " ' 

We remark that IIT (Y~)[I ~ = -- k~ [] Y~Ir = i (l + ~), from Which an orthonormal basis in SV(S z) is 
formed by the vector fields 4----T(I/~.-~(l q-i)Y~). 

We agree to denote by K(u, v) the curvature taken at the identity element of S Diff(S 2) 
along the two-dimensional plane L{u, v}. 

THEOREM i. The sectional curvatures along two-dimensional planes containing the vec- 
tor field h ---y~x + x~y are given by the formulas 

1) K (h, e~) = 3 m~ 

"Inform~lektro" All-Union Scientific-Research Institute. Translated from Funktsional'- 
nyi Analiz i Ego Prilozheniya, Vol. 13, No. 3, pp. 23-27, July-September, 1979. Original 
article submitted December 20, 1977. 
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