3) Suppose that the group G has a representation $G = \langle a, b, c, d | R_i = e, i = 1-n \rangle$ with a finite set of defining relations. We call the quantity $\Sigma \partial(R_i)$ the length of the corresponding representation. Among all such representations, we choose one with minimal length. The representation of H (as a subgroup), constructed using the minimal representation of G, has lesser length than the original representation of G. Therefore, the factor-representation of G, obtained from the representation of H by applying the homomorphism described in 1), has lesser length than the original minimal representation of G. This contradiction shows that the group G cannot be defined by a finite set of defining relations. The theorem is proved.

Despite the fact that the group G was defined as a group of transformations on a space with a measure, it may be defined in purely algebraic terms. In particular, there exists a simple algorithm, allowing us to answer the following question for any word W in the generators of the group G: does W represent the unit element of G, or not? We also note that G is finitely approximable and has exponential growth. We give another example. Let ξ be the transformation of the square $[0, 1] \times [0, 1]$, consisting of the cyclic permutation of its quadrants, and let the transformation η be described as in Fig. 2 (S denotes the cyclic permutation of the quadrants of the square over which it is written). Then $\xi^4 = \eta^4 = e$ and the group generated by the transformations ξ and η is an infinite periodic group.

The author is deeply grateful to A. M. Stepin, with whose close collaboration these examples were created. I am also indebted to S. I. Adyan, A. A. Kirillov, and A. Yu. Ol'shanskii for their useful discussions.

LITERATURE CITED

- 1. Mathematical Encyclopaedia [in Russian], Vol. 1, Sovetskaya Entsiklopediya, Moscow (1977), p. 1152.
- 2. F. Greenleaf, Invariant Means on Topological Groups [Russian translation], Mir, Moscow (1973), p. 136.

VARIATIONAL PRINCIPLE FOR EQUATIONS INTEGRABLE BY THE INVERSE PROBLEM METHOD

We consider (cf. [1]) the system of nonlinear equations representing the conditions for compatibility of two linear differential equations for a square N × N nonsingular matrix function $\Psi(\xi, \eta, \lambda)$

$$\Psi_{\xi} = U(\xi, \eta, \lambda) \Psi, \quad \Psi_{\eta} = V(\xi, \eta, \lambda) \Psi.$$
(1)

Here U and V are rational functions of the parameter λ with distinct simple poles:

$$U = U_0 + \sum_{n=1}^{N_1} \frac{U_n(\xi, \eta)}{\lambda - a_n}, \quad V = V_0 + \sum_{n=1}^{N_2} \frac{V_n(\xi, \eta)}{\lambda - b_n}.$$
 (2)

The compatibility conditions for Eqs. (1) have the form

$$U_{00} - V_{0\xi} = [U_0, V_0], \tag{3}$$

$$U_{n\eta} = \left[U_n, V_0 + \sum_{k=1}^{N_2} \frac{V_k}{a_n - b_k} \right], \qquad V_{n\xi} = \left[V_n, U_0 + \sum_{k=1}^{N_1} \frac{U_k}{b_n - a_k} \right].$$
(4)

It follows from (3) that there exists a nonsingular matrix $g(\xi, \eta)$ such that

$$U_0 = g_{\xi} g^{-1}, \quad V_0 = g_{\eta} g^{-1}. \tag{5}$$

We introduce the notation

$$abla_{\eta} = rac{\partial}{\partial \eta} - V_{0}, \qquad
abla_{\xi} = rac{\partial}{\partial \xi} - U_{0}.$$

L. D. Landau Institute of Theoretical Physics. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 14, No. 1, January-March, 1980. Original article submitted October 3, 1978. We express the matrices U_n , V_n in the form

$$U_n = \varphi_n U_n^{(0)} \varphi_n^{-1}, \quad V_n = \psi_n V_n^{(0)} \psi_n^{-1}, \tag{6}$$

where the $U_n^{(0)}(\xi)$, $V_n^{(0)}(\eta)$ are the normal Jordan forms of U_n , V_n . They are obtained by partial integration of Eqs. (4). Substituting (6) into (3), (4), we find the equations satisfied by the matrices φ_n , ψ_n ,

$$\left(\nabla_{\eta} \varphi_{n} - \sum_{m=1}^{N_{\sharp}} \frac{\psi_{m} V_{m}^{(0)} \psi_{m}^{-1}}{a_{n} - b_{m}} \varphi_{n} \right) U_{n}^{(0)} = U_{n} \left(\nabla_{\eta} \varphi_{n} - \sum_{m=1}^{N_{\sharp}} \frac{\psi_{m} V_{m}^{(0)} \psi_{m}^{-1}}{a_{n} - b_{m}} \varphi_{n} \right),$$

$$\left(\nabla_{\xi} \psi_{n} - \sum_{m=1}^{N_{\sharp}} \frac{\phi_{m} U_{m}^{(0)} \varphi_{m}}{b_{n} - a_{m}} \psi_{n} \right) V_{n}^{(0)} = V_{n} \left(\nabla_{\xi} \psi_{n} - \sum_{m=1}^{N_{\sharp}} \frac{\phi_{m} U_{m}^{(0)} \varphi_{m}^{-1}}{b_{n} - a_{m}} \psi_{n} \right).$$

$$(7)$$

Equations (7) can be rewritten as

$$\nabla_{\eta}\varphi_{n} - \sum_{m=1}^{N_{s}} \frac{\Psi_{m} V_{m}^{(0)} \Psi_{m}^{-1}}{a_{n} - b_{m}} \varphi_{n} = \varphi_{n} A_{n}, \qquad \nabla_{\xi} \psi_{n} - \sum_{m=1}^{N_{1}} \frac{\varphi_{m} U_{m}^{(0)} \varphi_{m}^{-1}}{b_{n} - a_{m}} \psi_{n} = \psi_{n} B_{n}.$$
(8)

Here $A_n(\xi, \eta)$, $B_n(\xi, \eta)$ are arbitrary matrix functions commuting with the matrices $U_n^{(0)}$ and $V_n^{(0)}$, respectively. Their appearance in Eqs. (8) is related to the obvious nonuniqueness in determining the matrices φ_n , ψ_n .

Equations (8) imply the easily verified relation

$$\left[\nabla_{\eta}, \sum_{n=1}^{N_1} U_n\right] = \left[\nabla_{\xi}, \sum_{n=1}^{N_2} V_n\right].$$
(9)

We consider the functional

$$S = \int_{\xi_{s}}^{\xi_{s}} d\xi \int_{\eta_{1}}^{\eta_{s}} d\eta \, \mathrm{Sp} \, \Big[\sum_{n=1}^{N_{1}} \varphi_{n}^{-1} \nabla_{\eta} \varphi_{n} U_{n}^{(0)} - \sum_{n=1}^{N_{s}} \psi_{n}^{-1} \nabla_{\xi} \psi_{n}^{V(0)} - \sum_{n=1}^{N_{1}} \sum_{m=1}^{N_{s}} \frac{\psi_{m} V_{m}^{(0)} \psi_{m}^{-1} \varphi_{n} U_{n}^{(0)} \varphi_{n}^{-1}}{a_{n} - b_{m}} \Big], \tag{10}$$

where ξ_1 , ξ_2 , η_1 , η_2 are chosen arbitrarily, and find conditions such that the variation δS vanishes. It is easy to check that variation with respect to φ_n , ψ_n leads to Eqs. (7), while variation with respect to g leads to Eqs. (9).

Thus, the functional S is an action for Eqs. (7). If S is real, then Eqs. (7) are a Hamiltonian system for which the Hamiltonian and symplectic form are evaluated in the obvious way. In general, the question of whether the Hamiltonian structure constructed is unique remains open.

LITERATURE CITED

1. V. E. Zakharov and A. B. Shabat, Funkts. Anal. Prilozhen., <u>13</u>, No. 3, 13-22 (1979).