3) Suppose that the group G has a representation $G=\left\langle a, b, c, d \mid R_{i}=e, i=1-n\right\rangle$ with a finite set of defining relations. We call the quantity $\Sigma \partial\left(R_{i}\right)$ the length of the corresponding representation. Among all such representations, we choose one with minimal length. The representation of H (as a subgroup), constructed using the minimal representation of G, has lesser length than the original representation of G. Therefore, the factor-representation of G, obtained from the representation of H by applying the homomorphism described in 1), has lesser length than the original minimal representation of G. This contradiction shows that the group G cannot be defined by a finite set of defining relations. The theorem is proved.

Despite the fact that the group G was defined as a group of transformations on a space with a measure, it may be defined in purely algebraic terms. In particular, there exists a simple algorithm, allowing us to answer the following question for any word W in the generators of the group G : does W represent the unit element of G, or not? We also note that G is finitely approximable and has exponential growth. We give another example. Let ξ be the transformation of the square $[0,1] \times[0,1]$, consisting of the cyclic permutation of its quadrants, and let the transformation η be described as in Fig. 2 (S denotes the cyclic permutation of the quadrants of the square over which it is written). Then $\xi^{4}=\eta^{4}=e$ and the group generated by the transformations ξ and η is an infinite periodic group.

The author is deeply grateful to A. M. Stepin, with whose close collaboration these examples were created. I am also indebted to S. I. Adyan, A. A. Kirillov, and A. Yu. Ol'shanskii for their useful discussions.

LITERATURE CITED

1. Mathematical Encyclopaedia [in Russian], Vol. 1, Sovetskaya Entsiklopediya, Moscow (1977), p. 1152.
2. F. Greenleaf, Invariant Means on Topological Groups [Russian translation], Mir, Moscow (1973), p. 136.

VARIATIONAL PRINCIPLE FOR EQUATIONS INTEGRABLE

BY THE INVERSE PROBLEM METHOD
V. E. Zakharov and A. V. Mikhailov

UDC 517.43

We consider (cf. [1]) the system of nonlinear equations representing the conditions for compatibility of two linear differential equations for a square $\mathrm{N} \times \mathrm{N}$ nonsingular matrix function $\Psi(\xi, \eta, \lambda)$

$$
\begin{equation*}
\Psi_{\xi}=U(\xi, \eta, \lambda) \Psi, \quad \Psi_{\eta}=V(\xi, \eta, \lambda) \Psi \tag{1}
\end{equation*}
$$

Here U and V are rational functions of the parameter λ with distinct simple poles:

$$
\begin{equation*}
U=U_{0}+\sum_{n=1}^{N_{1}} \frac{U_{n}(\xi, \eta)}{\lambda-a_{n}}, \quad V=V_{0}+\sum_{n=1}^{N_{2}} \frac{V_{n}(\xi, \eta)}{\lambda-b_{n}} . \tag{2}
\end{equation*}
$$

The compatibility conditions for Eqs. (1) have the form

$$
\begin{gather*}
U_{0 \eta}-V_{0 \xi}=\left[U_{0}, V_{0}\right], \tag{3}\\
U_{n \eta}=\left[U_{n}, V_{0}+\sum_{k=1}^{N_{2}} \frac{V_{k}}{a_{n}-b_{k}}\right], \quad V_{n \mathrm{~s}}=\left[V_{n}, U_{0}+\sum_{k=1}^{N_{1}} \frac{U_{k}}{b_{n}-a_{k}}\right] . \tag{4}
\end{gather*}
$$

It follows from (3) that there exists a nonsingular matrix $g(\xi, \eta)$ such that

$$
\begin{equation*}
U_{0}=g \xi g^{-1}, \quad V_{0}=g_{\eta} g^{-1} . \tag{5}
\end{equation*}
$$

We introduce the notation

$$
\nabla_{\eta}=\frac{\partial}{\partial \eta}-V_{0}, \quad \nabla_{\xi}=\frac{\partial}{\partial \xi}-U_{0} .
$$

L. D. Landau Institute of Theoretical Physics. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 14, No. 1, January-March, 1980. Original article submitted October 3, 1978.

We express the matrices U_{n}, V_{n} in the form

$$
\begin{equation*}
U_{n}=\varphi_{n} V_{n}^{(0)} \varphi_{n}^{-1}, \quad V_{n}=\psi_{n} V_{n}^{(0)} \psi_{n}^{-1}, \tag{6}
\end{equation*}
$$

where the $U_{n}^{(0)}(\xi), V_{n}^{(0)}(\eta)$ are the normal Jordan forms of U_{n}, V_{n}. They are obtained by partial integration of Eqs. (4). Substituting (6) into (3), (4), we find the equations satisfied by the matrices $\varphi_{\mathrm{n}}, \psi_{\mathrm{n}}$,

$$
\begin{gather*}
\left(\nabla_{\eta} \varphi_{n}-\sum_{m=1}^{N_{2}} \frac{\psi_{m} V_{m}^{(0)} \psi_{m}^{-1}}{a_{n}-b_{m}} \varphi_{n}\right) U_{n}^{(0)}=U_{n}\left(\nabla_{\eta} \varphi_{n}-\sum_{m=1}^{N_{\ddagger}} \frac{\psi_{m} V_{m}^{(0)} \psi_{m}^{-1}}{a_{n}-b_{m}} \varphi_{n}\right), \tag{7}\\
\left(\nabla_{\xi} \psi_{n}-\sum_{m=1}^{N_{1}} \frac{\varphi_{m} U_{m}^{(0)} \varphi_{m}}{b_{n}-a_{m}} \psi_{n}\right) V_{n}^{(0)}=v_{n}\left(\nabla_{\xi} \psi_{n}-\sum_{m=1}^{N_{1}} \frac{\varphi_{m} U_{m}^{(0)} \varphi_{m}^{-1}}{b_{n}-a_{m}} \psi_{n}\right) .
\end{gather*}
$$

Equations (7) can be rewritten as

$$
\begin{equation*}
\nabla_{\eta} \varphi_{n}-\sum_{m=1}^{N_{1}} \frac{\psi_{m} V_{m}^{(0)} \psi_{m}^{-1}}{a_{n}-b_{m}} \varphi_{n}=\varphi_{n} 4_{n}, \quad \nabla_{\xi} \psi_{n}-\sum_{m=1}^{N_{n}} \frac{\varphi_{m} U_{m}^{(0)} \varphi_{m}^{-1}}{b_{n}-a_{m}} \psi_{n}=\psi_{n} B_{n} \tag{8}
\end{equation*}
$$

Here $A_{n}(\xi, \eta), B_{n}(\xi, \eta)$ are arbitrary matrix functions commuting with the matrices $U_{n}^{(0)}$ and $V_{n}^{(0)}$, respectively. Their appearance in Eqs. (8) is related to the obvious nonuniqueness in determining the matrices $\varphi_{\mathrm{n}}, \psi_{\mathrm{n}}$.

Equations (8) imply the easily verified relation

$$
\begin{equation*}
\left[\nabla_{n}, \sum_{n=1}^{N_{1}} U_{n}\right]=\left[\nabla_{5}, \sum_{n=1}^{N_{n}} V_{n}\right] \tag{9}
\end{equation*}
$$

We consider the functional

$$
\begin{equation*}
S=\int_{\xi=1}^{E} d \zeta \int_{\eta_{1}}^{\eta_{2}} d \eta S p\left[\sum_{n=1}^{N_{1}} \varphi_{n}^{-1} \nabla_{\eta} \varphi_{n} U_{n}^{(0)}-\sum_{n=1}^{N_{1}} \psi_{n}^{-1} \nabla_{\xi} \psi_{n}{ }_{n}^{(1)}-\sum_{n=1}^{N_{1}} \sum_{m=1}^{N_{2}} \frac{\psi_{m_{m}} V_{m}^{(0)} \psi_{m}^{-1} \varphi_{n} U_{n}^{(0)} \varphi_{n}^{-1}}{a_{n}-b_{m}}\right] \tag{10}
\end{equation*}
$$

where $\xi_{1}, \xi_{2}, \eta_{1}, \eta_{2}$ are chosen arbitrarily, and find conditions such that the variation δS vanishes. It is easy to check that variation with respect to $\varphi_{\mathrm{n}}, \psi_{\mathrm{n}}$ leads to Eqs. (7), while variation with respect to g leads to Eqs. (9).

Thus, the functional S is an action for Eqs. (7). If S is real, then Eqs. (7) are a Hamiltonian system for which the Hamiltonian and symplectic form are evaluated in the obvious way. In general, the question of whether the Hamiltonian structure constructed is unique remains open.

LITERATURE CITED

1. V. E. Zakharov and A. B. Shabat, Funkts. Anal. Prilozhen., 13, No. 3, 13-22 (1979).
