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1. Degenerative dispersion laws 

Let us consider the following problem. Imagine a homogeneous nonlinear medium in which only 
one type of wave with dispersion law co(k) may propagate. Let the nonlinearity of the medium be 
quadratic while the equation 

co(k~ + k~) = co(k0 + co(k2) (1) 

defines a nonzero manifold F whose codimension in kl, k2 space is unity. Equation (1) means that 
dispersion law co(k) allows decay processes. The nonlinearity being weak, waves in such a system 
may be described statistically by introducing the average occupation numbers nk of the state with 
momentum k. The time evolution of nk is governed by the kinetic equation 

a~t ~ = 27r f {[ Vk~,k~128,-~,_k28~-~ _.,~(nk,n,2-- n~n~ I -- n~nk2) 

+ 2[ Vk~tk~128k~-~-k28.k-~-.t2(nk,n,2 + nkn , , -  n~nk:)) dkl dk2, (2) 

where V~,,, 2 is the wave interaction matrix element corresponding to the interaction (1). Equation (2) is 
nontrivial if V~kt~2 is nonzero on the manifold I'. Equation (2) has the obvious motion invariants 

• ffifco, n, dk, P --- f d . ,  (3) 

and P may be identified with energy and momentum of the wave system, respectively. Now let us 
discuss the question, whether (2) may have another independent motion invariant of the form 

ffi f f (k)n~ dk.  (4) I 

By calculating the time derivative M/at, it is easy to prove that it may have one if and only if the 
equality 

f(kl  + k2) ffi y(k,) + Y(k2) (5) 

holds true on the manifold I'. In other words eq. (5) must define the same manifold as (1). 
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Such a situation is certainly an exception. I f  N is the dimension of  the medium, the dimension of  
the manifold F is 2N - 1 ~> N. The analysis of the dimensions lead us to the consequence that in the 
general case the dispersion law ca(k) has to be unambiguously defined by the manifold F to within 
linear function of  k. In case such unambiguity does not take place we shall call the dispersion law 
degenerative. Let  us show that degenerative dispersion laws exist. Consider a two-dimensional 
medium ( N  = 2) and introduce the notation k~ = p, ky = q. Le t  us examine the dispersion law 

ca(p, q) = p3 + 3q 2 
p • (6) 

Equation (I) 

(Pl + P2)3 + 3 (ql + q2) 2 = p~ + 3__qJ + _3 ± 3ql 
P I + P 2  Pl Y2T P2 (7) 

may be satisfied by parametrization 

which directly gives coordinates on the manifold F. Le t  now f ( k )  be  of  the form 

,) 
Using parametrization (8) one obtains 

f(kl)  = "  F(26,) - F(2/22), f(k2) = F(262) - F(2~:3). 

In addition 

(9) 

(lO) 

f(kl + k2) = F(2~I) - F(2~3). (II) 
/ 

Thus eq. (5) is satisfied and dispersion law (6) is degenerative. At the same time any dispersibn law of 
the form (9) is degenerative. (It is worth mentioning that it is easy to obtain (6) from (9) taking 
F(O = ~3/2.) From the above discussion it follows that for each of these dispersion laws eq. (2) has 
not one, but an infinite number of additional motion invariants with f(k) given by (9). The function 
F ( O  is arbitrary. 

S. V. Manakov* informed us recently of  a more general example of  the degenerative dispersion 
law. As before,  N = 2 and the parametrization of  the manifold r is given by  

ql = a ( ~ l ) -  a(~2), q2 = a(~2) - a(~3). (12) 

Le t  us define a dispersion law (o(pl, q0  in parametric form 

ca~i,  ql) ---- b(~l) - b(~2), (13) 

where a(~) and b(O are arbitrary functions of a one variable. To calculate ca(Pt, q0 directly one has to 
obtain pt, q~ from the first pair of eqs. (12) and substitute them into (13). This procedure obviously 
leads us to the degenerative dispersion law for any b(O. If a(O = ~2 we obtain the case mentioned 
above. 

* Private communication. 
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The examples of the degenerative dispersion laws for N > 2 are unknown. It may be supposed that 
formulae (12) and (13) give the most general form of the degenerative dispersion law for N = 2, but no 
proof of this fact is known. 

If the decay processes (1) are impossible in the medium or the major nonlinear terms of the motion 
equations are cubic then the associated kinetic equation describes a four wave interaction, 

to(kl)+to(k2)=w(k3)+to(k4) ,  k l+k2=ka4-k4 .  (14) 

Equations (14) define the 3N - 1-dimensional manifold in 3N-dimensional space. Up to now, there are 
no dispersion laws known, degenerative with respect to the interaction (14). It may be suggested that 
such dispersion laws do not exist in spaces of any dimensions N > 1. Now let us consider the medium 
in which several types of waves with dispersion laws o~(k), i = 1, 2 . . . . .  s may propagate. Then the 
medium must be described by a system of kinetic equations. In the simplest case s --3 and there is 
only one possible interaction process being described by the resonant condition 

tOl(kl 4- k2) ---- to2(kl) 4- to3(k2). (15) 

The associated kinetic equations for occupation numbers n~(k) are given by 

Onlk 
= :.l|lVkkmk2]2(nek,n3k2- nekmnlk -- n3k2nlk)Sk-~l-~28~lk-~l-~2 dkl dk2, Ot 

On2k!Ot ---- f [V~lk212(n2klnlk + n3k2nlk - n2kln3k2)Sk-krk28~-~k:0% dk dk2, (16) 

0n3k2 f 
= ~ |}Vkk,k2[2(n2k,nlk + n3k2nlk -- nz~,n3k2)Sk-krk28~,,k-,,~:0% dk dkt. 

Ot 

In addition to the energy and momentum integrals 

= .ffi ~oj(k)nt(k) dk,  f 3 P = ~'~ knifk) dk (17)  
i=1 

system (16) has another two motion invariants (Manly-Row relationships) 

I1 = f (hi(k) + n2(k))  dk, 12 = f (nl(k) + n3(k)) dk. (18) 

Let system (16) have one more motion invariant 

I= f ~ f~(k)n~(k)dk. (19) 

Then it is not difficult to prove that the equality 

fl(kl + ke) = f2(k0 + h(k2) 

holds true on the manifold F. So the manifold F given by (15) does not define dispersion laws ~0~(k) 
unambiguously. In this case the set of the dispersion laws ~o~(k) may be called degenerative with 
respect to the interaction process (15). The example of the degenerative set of dispersion laws in 
two-dimensional space may easily be constructed. Namely let us take co~(p, q), i = 1,2,3 in the 
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following parametric form: 

q = / ( ~ 1 )  - -  h(~:3) ,  q = f(sel) - g ( ~ 2 ) ,  q = g(~2) - h ( ~ 3 ) ,  ( 2 0 )  

00! = a(~1) -- c(~3), 002 = a(~l) - b(~2), 003 = b(~2) - c(~3). 

Here /, g, h, a, b, c are arbitrary functions of a one variable. It is obvious that o~(p, q) form a 
degenerative set of the dispersion laws. In particular these functions may be linear. Then the 
dispersion laws become linear functions of ~i. It is easy to prove that they do not coincide pairwise. 
And conversely, any three different linear dispersion laws form a degenerative set. 

Whether each given set of dispersion laws is degenerative or not may be easily tested. Let us state 
without detailed calculations the following result: the dispersion laws 

co(p, q) = p3 3q2, (21) 
P 

00(p, q)  --__. p 2  q 2  (22) 

are nondegenerative with respect to the four wave interaction (14). 
Now let us have a look at the following situation. Suppose there is a nondegenerative dispersion 

law but we know a priori that the kinetic equation has an additional motion invariant. In this case the 
wave interaction matrix element must be rather special. Indeed, the manifolds defined by eqs. (1) and 
(5) do not coincide but may have a lower dimension manifold F' as an intersection. In this case matrix 
element Vtkl~2 obviously equals to zero everywhere except on the manifold F ' - a n d  therefore is a 
Dirac &function of this manifold. In particular, if it has no singularities of the 8-function type, then 
the existence of the additional motion invariant means that the wave interaction matrix element is 
zero on the whole manifold F. Other three wave interaction processes and interactions with a greater 
number of waves may be treated in a similar way. 

2. Motion lnvarlants for integrable equations 

At present, the extensive class of nonlinear wave systems having additional motion invariants is 
known. First of all, this class contains equations solvable using the inverse scattering transform (i.s.t.) 
method. Among them, the equations allowing Lax's representation of the type [1] 

I_~-Ay +[L,A]=O (23) 

have been subjected to the most detailed investigations. Here L and A are differential in x operators. 
Variables x and y are treated as spatial variables and therefore equations of the type (23) are 
two-dimensional. At present there are four equations of the type (23), which proved to be applicable in 
physics and have been investigated to a greater or lesser extent. They are 

ut +14 (u,~ + 6uux - 3 f uy, dx') = O, (24) 

x 

,, ( ._ + 6 . x  + 3 f . , ,  o, (25) 
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Ult = iU2U3, U2f Jr- 102VU2 = IUlU3, U3t q- D3VU3 = IUlU2, (26) 

2i0f - 0xx + 0yy = (9/2)010[ 2+ ~bx0, ~ + ~byy = -(kb[2)~. (27) 

Equations (24), (25) represent two versions of the Kadomtzev-Petviashvil i  equations [2-6]. The 
difference in the sign of the last term leads to the essential difference in the solution behaviors. Let  us 
call eqs. (24) and (25) KP-1 and KP-2,  respectively. The set of eqs. (26) [8] is known as "2-d Three 
Wave Interaction" (TWI), while the set of eqs. (27) [10] is known as Davey-Stewartson equations 
(DS). The equation KP-2  has been investigated in more detail than others but the theory of equations 
of the type (23) is not so clear as that of the Korteveg de Vries's equation and those similar to it. At 
present, even the Hamiltonian properties are not proved for the equations of the type (23) in the 
general case. Nevertheless, it is not difficult to see that the simplest equations (24)-(27) have the 
Hamiltonian properties that will be demonstrated below. 

In the present paper we pay attention to the fact that the equations (24)-(27) have sets of the motion 
invariants. We calculate them using the representation (23). Motion invariants are found to be 
nonlocal in x, but, when u is independent of y, they appear to be the usual local integrals for the 
one-dimensional equations. Then we go into the question as to which possibilities described in section 
1 are realized for each of the systems (24)-(27). 

2.1. Equation K P - I  

Let us consider at first the equation KP-1.  Operators L and A have the following form [1]: 

02 
L = ~ + u, (28) 

0 3  , 3[ 0 + O_u)+w ' 
A = O~x -~ ~, ku Ox Ox Wx = 4~iuy. (29) 

Let  us obtain the motion invariants. For this purpose in the linear problem, 

iOoy + LOo = O, Oo = ~, eiay (30) 

consider the eigenfunction 

@0 = e x p { - k x -  ik2y + f x(x',y,t,k)dx'} (31) 

substituting (31) into (30) we find 

X~ + X 2 + i f Xy dx'  = 2k X. (32) 

Using (23) we can show that 

~I(k)=d f f dxdyx(x,y,t,k)=O (33) 

regarded as a function of k. Since I(k)--,O as k- ,oo we can expand I (k)  as k--,oo in powers of 1/k: 

I(k) = ~']~ In f f  (2k)" I. = dx dYX., x(k ) = ~, ~(" (34) (2k)'" 
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XI=U. 
The first three motion invariants are: 

I,=fudx, 12 = S (u~< t- i f uy dx') dx, 
~oa  

xx  I 

- oo  

Later we shall require quadratic (in u and its derivatives) part of I,. With this purpose in view let us 
point out that in case u-*0 at Ixl, [yl-->o0 the term with ~fxn does not contribute to In and hence In is 
quadratic in X and therefore only the part of X linear in u will be sufficient. From (35) Xk+l = bTfku and 

I,÷l= f f ~ (Mk-'u)(M'-~-'u)dx dy. (36) 

Let us now describe canonical variables in KP-1. It is not difficult to prove that KP-1 may be 
presented in the form 

o 81, I,= f f x, d~ dy, (37) Ut = OX ¢$U ' 

where X5 can be obtained from the complete recurrent relation (35). Now we shall perform the Fourier 
transformation and go to the variables ak, denoting 

, f ak = uk _--~, u = (Uk e i~' + ~ e - i~)  dp dq. (38) 
v p  

-® 0 

In terms of ak equation KP-1 has the Hamiltonian form 

.81-1 
dk = I 8ak 

with Hamiltonian 

/ "  f • H = ¢oka~a~ d k  + ( V ~ z a k a ~ , a ~  ~ + c.c.)Sk-~r~, dk dkl dk2, 

n3  + 3--.~ oJk - - r  P , [see (6)1 

I, p ~ 0  
O(p)= O, p<O 

c .c .  means complex conjugated. 

(39) 

(40) 

(41) 
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The motion invariants may be also rewritten in canonical variables. In particular, I5 becomes (19). 
The quadratic part I ° of the In in terms of canonical variables is given by 

io=  f f [( p ,_(_p q n-2 +p/  +-~) ]]ak]2dpdq. (42) 

The kinetic equation corresponding to KP-1 may be found by the standard method [7] and 
coincides with formula (2). In this procedure akak,~ nk6k-k'. The dispersion law of the equation KP-1 
coincides with (6) and is degenerative. Hence the kinetic equation (2) has an infinite set of motion 
invariants of the form (5), where the function f is given by (9). These invariants might be calculated a 
priori by an averaging procedure applied to the motion invariants I, of the equation KP-1. The kinetic 
equation holds in the limit ak ~ 0; therefore we need only the quadratic in ak part of the integrals I~ 
given by the formula (42). With this procedure ]ak] 2 must be replaced by nk. Formula (42) gives 
invariants of the form (5), (9), with F(~) = ~'. 

2.2. Equation KP-2 

Now let us look at equation KP-2. The dispersion law of KP-2 coincides with (21) and is 
nondecaying. The corresponding kinetic equation has the form 

On~ 
= f [Tkkl~k3l~(nklnk2nk3 + nkn~nk3- nknk~nk3- nkn~lnk2) at 

× ~k+krk,-k36~k+~kl-%-% dkl dk2 dk3, (43) 

where Tk~k~3k~ is unambiguously defined on the resonant surface (14). 
As was pointed out in section 1 the dispersion law (21) is nondegenerative with respect to the four 

wave interaction. The interaction matrix element has the form: 

Tklk2k9~4 = -- 2 '-I "Vk3+k4"k3k4 Vk'+k2"kjk2 
L O ) k l + k  2 - -  tOk I - -  (.Ok 2 

+ Vk,k~k,-~,Vk,k~.k,-k~ + Vk,k,ok~-k, Vk~,,k~-~, 
OJk4_k2 "Jr- O)k2 ~ ¢0k4 O)k3_kl + tOkl ~ (,Ok3 

"~ Vk~k3"k~'-k3 Vk4k|'k4-kl "~ Vklk4'kl-k4 Vk3k2"k3-k2 ] (44) 
¢Oka-kl "@ OJkl ~ ¢Ok4 (.Ok3-k2 d- 0362 -- 03k3 1 " 

As before from the existence of Lax's representation it follows that the kinetic equation (43) has the 
infinite set of motion invariants of the form (4), where 

f(p,q)=i[(i~qp +p)'-(-i~p +p) '] .  (45) 

Matrix element (44) does not have a singularity of the 8-function type and therefore it turns into zero 
on the resonant surface F. The very extensive calculations are needed to see this fact directly. We 
checked it in the limit case p3~ q2/p and on some sub-manifold of the whole resonant manifold F. 

2.3. 2-d Three wave interaction 

Equations (26) describe the interaction of three wave packets ul(r, t), u2(r, t), u3(r, t), r = (x, y) in 
the frame of reference moving along with wave packet u3. This system of equations allows the Lax's 
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representation (23) [8] with operators L and A being 

0 L = i C ~ - ~ + [ C , Q ] ,  A = i B O  +[B,Q],  
Ox (o 

C = diag(ab a2, a3), B -- diag(0, b, 0), Q = - q l  

\ - q 3  

( al - a2)l/2( a2 - a3) '/2 ( a2 - a3) 1/2 
qn = b(al - a3) Ul, q2 = b(al - a3) 1/2 u2, 

( 4 6 )  

ql 0 q3) 0 q2 , (47) 

--q2 

( a ,  - a2)  ~" 
q3 = b(al - d3) 1/2 U3. (48) 

The motion invariants for  this system may be obtained in a general way [9], proceeding f rom the linear 
problem for  the operator  L. The motion invariants appear as coefficients in the expansion of  the 
integral of  the scattering phase of  the eigenfunction in powers of l/A, where A is a spectral parameter.  
These motion invariants are: 

~ 2 I } " ' = - 1  f f dx dy k=, ~ (a,--ak)Q, kA~', j =  1, 2, 3, (49) 

~2 = [(al - a2)(a2 - a3)]/[b2(a, - a3)]. 

A~ ') are given by recurrent  relations 

0A~.~) 
(ai - ai)A!~ +j) = iaj + iaiai ~ + Ox aj ~ (ai - ak)Q~h~,~ ) k#j 

-® (50) 
with A~: ) = - aiQi j. 

The canonical variables of the system (5) are the Fourier transforms u~k of the amplitudes uj, 
j = l, 2, 3. In terms of these the Hamiltonian has the following form: 

f* H = . tojkU, k~j, dk + (U~kU2k, U3,2 "~- C.C.)Sk-kl-k2 dk dkl dk2 

tOIk= 0, (-O2k = --(rE, k) ,  ¢03k = --(V3, k). (51) 

The appropriate kinetic equation coincides with (16) provided that Vkk~k2 = 1. Now we need the 
quadratic part of the motion invariants. Since the I~ n) given by (49) are bilinear in Q and A, we need 
only the part of A linear in Q. As a result we find, 

.2i~.+,) = f / ~ (,aj)nO,,(°lOy + a, olox)nOi, 
• ( a  i _ a ~ ) n _  ! dx dy, ( 5 2 )  

where elements of matrix Q are given by (47), (48). Performing the Fourier  t ransformation f rom u i to 
u~k, j = 1, 2, 3 we have 

fr /q+a, , ,v  :q+,,,pv l [~ al--'a-~ ) n2, + ~ al----~-~3 ) n,kJ a7 dp dq, 

,=,r +''= fffCq+"'p)" (q + "'p)" . , , ]  . ,  dp dq, (53) t ,, a:- a----'-~/ n3, - x a~ - a------~/ 

_ , 2 I [ n + l )  = f f [(q+a~)nL\ al - a31 nlk "~- (q+a2p)nn3k]a'~-- dp dq. 
\02-a31 
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The frequency resonance condition is 

ql + alp1 = q2+ a3P2 (54) 
al - a2 a2 - a3 

Formula (54) is the particular case of the formula (20) with linear dispersion laws. Now one can easily 
prove that the kinetic equation (16) leaves I~ "), j = 1, 2, 3 constant. Indeed, expressions for d[I~")]ldt 

contain integration with respect to dk dk~ dk2 and therefore k may be replaced by k~ in terms with n2k 
and by k2 in terms with n3~. That leads to dl~")/dt = 0. It is important, that this fact does not depend 
upon the structure of the kernel of the kinetic equation IVkk~k212, but only on its symmetry properties 
and on the special form of the dispersion law. 

2.4. D a v a y - S t e w a n s o n  equat ions  

DS equations [10] describe the two-dimensional waves on the surface of a finite depth liquid. They 
may be transformed into the following form: 

aq, a2¢, + a2q~ + a2u . a2u 
i at-~-.z ~ O u = 0 , - ~ x  z. (55) 

In cone variables (0210x 2 -  021ay2-->202/axOy) system (55) allows the Lax's representation (23) [10] 
with operators L and A given by 

0 0 02 . /,~ 02 L=i(~ _Ol)~x+(_ ~ :), A=~-'~x +[,d/ ~), ,~-'~y ~=(a-~+iO~) u. (56) 

The motion invariants of this system may be found in analogy with subsection 2.4. 
They are given by complex expressions 

= f OA (') dx  dy, (57) i(,) 

where A ¢") may be obtained from the recurrent relations (we assume ~--, 0 at Ir[--" =): 

A ( " + " = ( - i O + ~ ) A ( " ' +  ~ A("') 0A(n0+2 ~-~[OA("0]dx' 
OX y nl+n2=n 

A ¢1) = _~.  (58) 

For the DS equation canonical variables are Fourier-transforms 0k of the field ~. It is not difficult to 
rewrite the motion invariants in terms of canonical variables. For example 1 (1) = f Ok0k dk, 1 (2) = 
f (p + iq)O~Ok dk. The Hamiltonian is Re 1 (3>. 

/ f * *  4 Re I (3, = ( p 2  _ q2)l//k~,f k dk  + ('p' - p3)2 - (q '  - q3)2 qOhqO~2~ksqO~ak,+k2-k3-k, I - I  dki.  
(Pl - P3) 2 + (ql - q3) 2 i~l 

In accordance with relations (58) the quadratic part of the motion invariants is given by 

I(.+,) = f f (p + iq)%~,, dp dq. (59) 

Let us notice that invariants (59) correspond to eqs. (55) in the cone variables but under the inverse 
transformation additional inessential multipliers (1 + i)" appear in (59) only. The DS equation gives 
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rise to the kinetic equation (43) with nk = (Ok~k) and 

1 I(pl - p3) 2 - (ql - q3Y ~ @1 - p j2 _ (ql - qj2] 
Tk,k2k3k4=2 (pl--p3)2 +(q l - -q3)  2 (pl--p4)2 +(ql  ~4)2J" (60) 

Dispersion law for the DS equation coincides with (22) and is nondegenerative if we consider the 
four-wave interaction (see section 1). Since the interaction matrix element has no singularity of 
8-function type it must turn into zero on the resonant surface (14). This fact may be proved directly 
by the following parametrization of the resonant surface (14): 

P I = P + / ( b  P3=P+/(2,  q l = Q + ~ h ,  qa=Q+7?2, 

p2 ---- P - -  K I ,  P4 ---- P - -  / ( 2 ,  q2 = Q - ~m, q4 = Q - ~2 

on condition 

substituting (61) to (60) gives 

Tk,k2k,*4-- ( /( ~ --  /( I - -  ~ +  ~i) = 0. 

(61) 

(62) 

3. Conclusion 

From the results of the present work an important conclusion may be drawn out. Namely one can 
prove the inapplicability of the i.s.t, method to various given nonlinear equations. Really, in all 
versions of the i.s.t, the first consequence of its applicability is the existence of the infinite number of 
motion invariants of the corresponding nonlinear equation. At weak nonlinearity they become 
quadratic invariants. In some cases it may be easily proved that such invariants do not exist. Consider 
for example the nonlinear Schr6dinger equation. 

i0t + A0 + kb[2~ , = 0. (63) 

It is not difficult to prove that its dispersion law tOk = k 2 is nondegenerative with respect to the four 
wave interaction (14) if the dimension of space is greater than unity. On the other hand the interaction 
matrix element equals to unity identically and is not zero on the resonant surface. Hence eq. (63) does 
not have any additional motion invariant quadratic at small amplitudes and in this case i.s.t, is 
inapplicable. (This must not be understood in the meaning that eq. (63) should not have an additional 
motion invariant at all. Generally speaking it may have motion invariants behaving at ~--, 0 as ~b 4 and 
not being quadratic. For example one-dimensional equations of the gas dynamics have motion 
invariants of this type. The investigation of such motion invariants is one of the important problems of 
the theory of integrable systems.) 

The similar analysis has to be carried out for each nonlinear system of equations provocative in 
the perspective of applicability of the i.s.t. 

The authors hope that such analysis will promote the decrease of the number of attempts (usually 
fruitless) to find L--A pairs for the various systems of equations. 
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