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Abstract. Well known classical spinor relativistic-invariant two-dimensional 
field theory models, including the Gross-Neveu, Vaks-Larkin-Nambu-Jona- 
Lasinio and some other models, are shown to be integrable by means of the 
inverse scattering problem method. These models are shown to be naturally 
connected with the principal chiral fields on the symplectic, unitary and 
orthogonal Lie groups. The respective technique for construction of the 
soliton-like solutions is developed. 

Introduction 

Classical spinor systems (classical analogs of fermion fields with c-number values) 
have often been considered in the physical literature. First of all, there are the 
models of Nambu and Jona-Lasinio [1] and Vaks and Larkin [2] : 

C~q~ ~ = i/2~f ~ ~*~co ~ 
t~ 

C¢~f = i/2(f ~ q ) * ~  (1) 

and the Gross-Neveu model [3] : 

~n~0 ~ = - i~f ~ (~*PcJ + ~o*t~p ~) 
t, (2) 

~ = - i~o ~ 2 (~o*~e + q~e~,e), 

where r/= t + x, ~ = t -  x. 
Models (1), (2) are relativistically invariant and represent systems of N massless 

Dirac equations in a two-dimensional space-time with nonlinear (cubic) terms. 
Mode l s  (1), (2) correspond to the actions 

S:*dtdx[~(icp*~,cf+i~p*~C~tf)-½ ~ q~*%f 21, (3) 

S= j" dtdx[~ (irP*~O"cP~ + iv°*~Ce~P~)- ½ (~  (~P*~cf +*f  ~°*~))2] ~ , ~ (4) 
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Such models arise in solid state physics as a result of the Hartree-Fock 
approximation to real fermion systems. They may acquire a direct quantum- 
mechanical sense as well (if the index c~ is isotopic). 

Neveu and Papanicolaou [4] have conjectured that models (1), (2) can be 
integrated by the inverse scattering method. They [4] have succeeded in proving 
this hypothesis for N =  1, 2; when N > 2  they have found that the systems (1), (2) 
have infinite series of conservation laws. 

In the present paper systems (1), (2) are shown to be integrable for any N. These 
systems are closely connected to integrabte systems previously considered 
principal chiral fields on Lie groups, they are in a sense the simplest versions of the 
latter. Model (1) is connected with a chiral field on the unitary group SU(N), and 
model (2) with a chiral field on the real symplectic group Sp(2N, IR). We consider 
also a new classical spinor model with the Lagrangian: 

_ ½ y~ (~o,~oe_ q~,e~/)(w,=~e_ ~,ew~)]" (5) 
~,fl J 

This model is connected with chiral field on the orthogonal group O(N) .  The 
method developed here makes it possible to find explicit soliton solutions of the 
classical spinor systems under investigation. 

1. Some Information from the Inverse Scattering Method 

1. The integrable systems under investigation are the compatibility conditions for 
the system of two linear equations [5]: 

% =  V~P. (1.1) 

Here r t = t + x ,  ~ = t - x  are light cone variables, and U, V are rational functions of 
the parameter 2: 

U = U 0 +  ~ Un 
n=l 2--an 

v=v0+ ~ Vn (1.2) 
n = l  2 + a , '  

where a n are arbitrary complex constants, here a n + % 4=0; U, V, 7' are complex 
N x N matrices. The system (t.1) should be compatible for any 2. 

The compatibility conditions have the form: 

Uo~- Vo¢+ [Uo Vo] =0  (1.3) 

U.~ + [ Un, ~n'l = O, 

V< + [Vn, 7'.] = 0 ,  (1.4) 

~n=Vo+ ~ v~ 
. ,  = 1 a. + a m 

g Um %=Uo- Z • (t.5) 
m = l  an+am 
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2. Consider the change of variables 

X--gg* (1.6) 

in the problem (1.1) where g(~,//, 2) is some nondegenerate matrix function. With 
such a substitution, Eqs. (1.1) are transformed to the form: 

a~X= UX 
Gx= Px, (1.7) 

where 

[d = g~g- 1 + g Ug - 1 
(1.8) 

f /=gng- 1 + g V g -  1. 

If g is independent of 2, then [~ and V arc rational functions with poles at the 
same points as U and V Therefore, the compatibility conditions of the problem 
(1.7) have ~the ~f°rm of(1.3)-(1.5) where instead of U 0, V o, U,, V, the transformed 
matrices Uo, V o and U,, l~; appear: 

U o = g U o g - l  +g~g -1,  [Y,=gU,g -~, (1.9) 

Vo=gVog-l  +gug -1 , [/,=gV, g - ' .  (1.10) 

Transformations of the form (1.6) have been introduced in [5, 6] and are called 
gauge transformations. 

Different choices of the matrix g correspond to different gauges. For instance, 
the gauge for which Uo=fZo=0 (the matrix g=go is determined from the 
equations go¢ + Uogo = O, go~ + Vogo = 0 up to multiplication by a constant matrix) 
is called canonical ; the gauge in which one of the residue matrices, for instance VK, 
is of Jordan canonical form, is called a pole gauge (g = gK is determined as a matrix 
reducing V K to Jordan form) [5]. 

Equations (1.3), (1.4) in different gauges have at first sight different forms; 
however, it is clear that their solutions are connected, and it is sufficient to study 
them in a single gauge. 

3. It follows from (1.4) that the invariants of the matrices are independent of t/. 
Thus 

0 - 1  g . = ~ o . g . ( o ~ . .  (1.11) 

Similarly: 

V,, = ~,l;~°(~)V2 ' . (1.12) 

In other words the invariants of the residue matrices are first integrals of the 
system (1.3), (1.4) which actually falls into a set of systems differing in the 
predetermination of the values of the invariants. Systems with different sets of 
invariants may result in solutions which differ qualitatively (see [5, 7]), and, 
therefore, each of these systems should be studied separately. 

It should be noted that the gauge transformations do not affect the values of 
the invariants U n and V,. 

4. To construct exact solutions of system (1.3), (1.4) by the inverse scattering 
method it is required that at least one particular solution of this system be known. 
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It would be natural to start from a solution which is homogeneous in space-time, 
""from the classical vacuum", on which background the dynamics would develop. 

A set of matrices I7o°(1/), U°(0, V,°(t/), g ° ( 0  satisfying the following system of 
algebraic equations will be called a vacuum solution: 

[ u  ° , v ° ] = o ,  o o [U,,~b;] = 0 ,  [V°, T°]  = 0 ,  (1.13) 

L K U o 
~n 

~°=Vo° + V° T ° : U ° -  E a , + a  m, ,~=1 a,+am' m=l (1.14) 

when the gauge of problem (1.13), (1.14) coincides with that of system (1.3), (t.4), 
this set of matrices will be called a first order vacuum solution of system (1.3), (1.4). 
When the gauges are different then, after the corresponding gauge transformation 
reducing problem (1.13), (1.14) to the same gauge as (1.3), (1.4), we get a set of 
matrices ~o(~, ~/), ~,o(~, t/), ~ o U,(~, t/), ~o(~, ~/) which is the solution of system (1.3), 
(1.4), which we call a second order vacuum solution of system (1.3), (1.4). 

Almost all the systems considered earlier have been considered on the first 
order vacuum background. An example of studying a problem on the second 
order vacuum background solution can be found in the paper of Shabat and one 
of the authors [8]. Below we show that for the Gross-Neveu model only the 
second order vacuum leads to a nontrivial dynamics. 

In this paper we shall mainly deal with systems given in the canonical gauge U 0 
= V o =0.  To diminish the number of indices we restrict ourselves to the problem 
with one pole 1 a I = t. In this case the system (1.3), (1.4) takes the form 

O,U 1 = 1/2[V 1U1], (1.15) 

aCV, = 1/211/1U~]. (1.16) 

The compatibility conditions of(l ,  13), (1.14) for the first order vacuum solution 
have the form 

[ U°(#), V°(r/)] = 0, (1.17) 

where the matrices U°(~), V°(t/) satisfy system (1.15), (1.16). For  the second order 
vacuum the compatibility conditions are as follows: 

[G°(O, Y0°(O] = 0 ,  (1.18) 

[ G°(O, V°(,O + V°(O] = 0,  

V o . U o 1 U o [ ,(t/), o({) -~  1({)]=0. (1.19) 

In order to obtain the second order vacuum solution of (i. 15), (1.16) one should 
perform a gauge transformation [Eqs. (1.18), (1.19) must be transformed to the 
canonical gauge]. It follows from the foregoing that it is necessary to find the 
matrix g°(#,~1) satisfying the consistent system of equations 

a~g ° + U°g ° = 0 ,  g.gO + VOgO = 0 (1.20) 

1 It goes without saying that this restriction is not essential and that all results can be easily 
generalized to the K-pole problem 
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and then using it to perform the gauge transformation of (1.8): 

~O _ O T t O _ O -  1 U a = y  w19 
~o = gOVlOgO_ 1 (1.21t 

(leading to U°=[ / °=0) .  The matrices ~0(~,t/) and V°(~,q) satisfy system (1.151, 
(1.16). They are called the second order vacuum solution. 

It should be noted that the vacuum solution matrices each depend only on a 
single variable, in particular, they may be constant, and the vacuum solution of 
system (1.15), (1.16) of the second order (1.21) must necessarily depend on both 
coordinates. 

5. Let us consider Eqs. (1.1), where U, Vare the vacuum solutions { U°(~), V°(t/), 
U°(~), V°(t/)} of Eqs. (1.13), (1.14). The matrix T °, which solves 

8~T ° = U°(~, 2) T O , (1.22) 

8~T ° = V°(t/, 2) T ° (1.23) 

can be sought in the form of a product of functions 

T°(i, t/, Z) = T°(i, 2) T°(t/, Z), (1.24) 

where T°(i, 2) commutes with T°(q, Z). 
If the matrices Uo °, V~o, U °, ~,~, are constant (the most interesting case), then 

Eqs. (1.22) and (1.23) can be easily solved. Below we assume the functions T1 ° 2 t o  

be known. 
It should be noted that the function T o provides complete information about 

the vacuum. 
The matrix X is : X = T T °-  1. It apparently satisfies the equations 

8~X= U X -  X U ° 
(1.25) 

8~X = V X -  X V  ° . 

Let us denote g=XIx=~. Then 2~o0 in (1.25) we get 

Uo=g¢g-l  +gUOg-1,  Vo=g,g- l  +gVOg 1. (1.26) 

Assuming 2 ~ a ,  in (1.25) we yield 

_ 0 - 1  ( 1 . 2 7 )  U . - X . U . X , ,  , X.=Xl~=a~, 

a,X =~b.X - X . ~  ° . (1.28) 

Analogously Z - + -  a~ leads to 

8¢)(. = ~ ' . -  2 .  T ° , (1.29) 

K=2.v°221, K=xl~_o,. (1.30) 

Below we shall construct a number of explicit expressions for X and thus find 
exact solutions of Eqs. (1.3), (1.4), and (1.27)-(1.301. 

6. Equations (1.3), (1.4) contain only linear operations and commutators. We 
may assume therefore that the matrices U and V belong to a Lie algebra g. It is 
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clear that any subatgebra g'C g is an invariant of system (1.3), (1.4). In other words, 
if the initial conditions are given in some subalgebra, then in the process of 
evolution the fields stay in the same subalgebra. 

The problem of restricting to invariant manifolds in integrable systems is called 
the problem of reduction. In this sense the restriction of system (1.31, (1.4) to the 
subalgebra is reduction. 

Below we shall assume all poles to be real. The algebra g is g=sl(N,(12), and 
from (1.1) it follows that ~(~,t/,2) belongs to the group SL(N, I12) of most 
importance for us is the reduction to: 

i) g'--SU(N) - the algebra of anti-hermitian matrices, 
ii) ~ '=  Sp(2N, IR) - the algebra of the real symplectic group, 

iii) g '=  SO(N) - the algebra of anti-symmetric matrices. 
In the first case of real 2 the function ~(~, r/, ,1,) can be chosen to belong to U(N), 

in the second case to Sp(2N, IR), and in the third case to O(N). 
We shall mainly consider the simplest case of a single-pole problem in the 

canonical gauge : 

~ =  ~--~/i ~ '  (1.31) 

~.~= T~ ~' (1.321 
From (1.31), (t.32) it follows that the matrix g--~(~,t/,2)lx= o satisfies the 
equations 

g~ =~(gcg g, g,g lg¢) 

which are the field equations describing the principal chiral field on the group (for 
instance, on one of the groups enumerated above) [5]. 

It goes without saying that each reduction imposes certain limitations on these 
scattering problems (or the Riemann problems). Reduction on SU(N) has been 
studied in [-5]. Reductions on the real algebras Sp(2N, IR) and SO(N) are studied in 
Sect. 3. A detail analysis of these reductions will be published elsewhere. 

2. Correspondence of the Classical Spinor Systems to the Chiral Field Models 

Chiral fields on Lie groups have been investigated in [5]. They may be regarded as 
representatives of equivalence classes of integrable two-dimensional relativistic- 
invariant systems. A classical spinor system is shown to be connected in a natural 
way with each such system. 

Let us transform Eqs. (1.28), (1.29) to relativistically invariant form. To this 
purpose we determine the function ~0~ and ~#~ as follows 

(p. = X.(~, t/, 2)g°(~, t/) 7J° (t/, an), (2.11 

~. = 2.(4, t/, 2)g°(~, t/) tpo(~, _ a.). (2.2t 

[Here X., ))., g °, ~o z,~ are determined in formulas (1.27), (1.30), (1,20), and (1.24).] 
They evidently satisfy the system 
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which can be rewritten in the form 

K 0 - 1  
v'*V2w" (2.3) V" cP " = " = a. + a" l q°" ' 

(o.,UgPm K o - 1 

V#.= - ~ ~ . ,  (2.4) 
. ,=1 an- l -am 

where V , = ~ , -  V o, V~=O~-  U o, [V,, V~] =0. 
Equations (2.3), (2.4) are of the form of a classical spinor field (qo., ~p. form a 

two-component Dirac spinor) and are obviously relativistic-invariant. 
Equations (2.3), (2.4) possess a variational principle [9]. Let us consider the 

functional 

S = ~ dtld~S p Z (~°2 ~ o -1  o 
n = l  

+ ~ (an+a. , ) -1  o -1  o -1  (PnUn (Pn lp . ,V~l l ) . ,  (2.5) 
n, . ,  

and calculate its variation taking account of the fact that 

The condition 6 S = 0  is 
respect to (on, W.) : 

.,=1 an+a. ,  / .,=~ an+a. ,  (o., 

,. = 1 a .  q- a . ,  " = 1 a n -C am / 

and to the equation (variation in g) 

equivalent to the following equations (variation with 

(2.6) 

(2.7) 

(2.8) 

Equation (2.2) can be solved, using (1.27), in the following way: 

+ 
m=l an+am q~"=(&Q"' (2.9) 

where Q.(~,~) is any matrix commutating with U°(~). In particular, 6 S = 0  is 
satisfied provided Q. = 0. 

It may seem that the functional does not unambiguously determine the 
equation for the matrix (p.. All the ambiguity is, however, connected with 
multiplication of the matrix q~n on the right by an arbitrary matrix commutating 
with U°(~). Indeed, from [Q.(~, t/), U°(~, q)] it follows that it is possible to find a 
matrix R.(~, q) satisfying the equation 

R., = R.Q n (2.10) 
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and commuting with U°(~). It is easy to verify that the transformation ~o,-,(pnR ~ 
does not change the functional S; in this case Eq. (2.9) transforms to (2.3), (2.4). 
This fact shows that any representative of the "flag space" connected with the 
matrix U°(~) can be chosen as ~,, (see [5]). So, without loss of generality, we may 
assume that the functional S unambiguously determines Eqs. (2.3), (2.4). It can 
easily be verified that Eq. (2.8) is their consequence. 

Equations (2.3), (2.4) are gauge-invariant in the sense that they do not impose 
any conditions upon the matrix g. Therefore, the transformations ~o,~h(p,, 
~c,n-~h~v n are admissible, where h is an arbitrary matrix depending on ~ and tl. 
Under such a transformation only the matrix g will be changed. It is possible to get 
the final determination of system (2.3), (2.4) by imposing an additional condition 
specifying unambiguously the matrix g. Undoubtedly, it is the variational principle 
for all such systems. In this sense the matrices q~., ~p, should be regarded as variable 
ones, in which the variational principle is formulated in a most simple manner. 

In view of the recent paper [10] it seems quite probable that the variational 
principle predetermined by the functional (2.5) is not the only variational principle 
determining Eqs. (2.3), (2.4). At any rate, this is the case for the sine-Gordon 
equation. We may show that the functional S calculated for the case when system 
(2.3), (2.4) is equivalent to this equation (see [5]), differs from the natural action 
functional for the sine-Gordon equation. 

3. Construction of Soliton Solutions 

1. The study of analyticity properties of the function X (1.24) for complex values of 
the parameter 2 is very important for constructing exact solutions by the inverse 
method. The solution of system (1.3), (1.4) corresponding to the case when the 
function X is rational we shall call a soliton solution. In [11] it has been shown 
that the calculation of such solutions is a problem in linear algebra and can be 
solved explicitly. In [5, 7] the simplest soliton solutions have been investigated for 
the principal chiral field on SU(N). In the present paper we consider soliton 
solutions for principal chiral fields on the real matrix groups as well. 

The choice of the group [fixed reduction in system (1.3), (1.4)] imposes 
restrictions on the number and position of the poles of the function X. The 
solution of system (1.3), (t.4), for which X has the minimum number of poles, will 
be called a single-soliton solution. In this case one should take into consideration 
that the function X is determined up to multiplication by a constant rational 
matrix function of 2 commuting with U °, V °. 

2. We start with the case of the chiral field on the SU(N) group. From (1.25) it 
follows that U, V belong to the algebra of antihermitian matrices, provided the 
function X obeys the involution 

X(2)Xt(7.)=I (3.1) 

and for real values of the parameter 2 is unitary. Involution (3.1) does not impose 
any restrictions upon the arrangement of poles. Multiplying by some appropriate 
rational function it is possible, as is shown in [5], to transfer all the poles into a 
fixed (upper or lower) half-plane. In this case the single-solution considered in 
[5, 7] corresponds to the function X, having only one pole. However, bearing in 
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mind a further comparison with the real case, we shall assume the poles of X to be 
located at complex-conjugate points. Since the gauge is canonical, it can be 
presented as follows: 

. ~ . [ A .  B , , ~  
X = ] +  ~ [ ~  + 2--~.)" (3.2) 

From (3.1) it follows that 

~ ( ~ : ~  B't' I (3.3) 
X - 1 = 1 +  + )L-2.J" 

F r o m X  1X= X X  - l = I we find 

A.B*. = B,,A.t = 0  

A.cot. + z.B~ = 0 (3.4) 
A,. B m 

A m B,, 
o,°2 + 2 2.-<" 

From (3.3) it follows that the matrices A. and B. are degenerated. 
The system of quadratic relatiorrs (3.4) can be solved as follows. Let us write A. 

and B. in the factorized form 

A.  = x . u t . ,  B.  = Y.Gt.,, (3.5) 

where X.,  Fn are rectangular matrices made up of N lines and K.  columns; Y., G. 
have N lines and S. columns. The matrices F.  and G. are known, andX.  and ~ are 
unknown. From (3.4) it follows that the following condition should be satisfied: 

F*.G.=O (3.6) 

and also the relations 

X.(Ft.cot.) + (z.G.) y t = 0. (3.7) 

Expression (3.7) can be identicaUy rewritten in the form 

z.G. = - X n % ,  co.F. = Y.cd., (3.8) 

where ~, is some K,x S, matrix. Relations (3.8) represent a system of linear 
equations for X,, ¥,: 

X"(F¢mG.) t Ym(G"G") X . %  (3.9) G.+ Z + Z - , 2 . -2 , .  2.--2,. , . + n  m 

~. X"(F~F,.)  Y,.(G~F.) _ Y.o:*. (3,10) 
F . +  " + 2 . - 2 . ,  

3. From formula (1.25) it follows that 

U =  - X ( ~ -  U°)X ' ~ (3.11) 
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We substitute X into (3.11) in the form of (3.2). In order that U be a solution of 
(1.3)-(1.5) it is necessary and sufficient that U should represent a rational function 
with poles at the points a, (1.2). We assume that the points 2, and '~n coincide with 
none of the a n. Therefore, the function U at the points 2,, 2n should be regular, 
though formally it may have at these points poles of up to second order. The 
requirement of the absence of second order poles leads to the equations : 

F~D(2.)G n =0  
G~D(L)F . = 0 ,  (3.12) 

where 

D(2.) = 3~-- U°]x =an 

which due to (3.6) can be solved in the following way 

D(2") Gn = Gnfin (3.13) 
D(,T.) F .  • 

Analogously 

/}(2.) C, = G,f ,  

D(Xn)F n =FnT,,  (3.14) 

where 

= a , -  ; 

ft,, f , ,  7,, 7n are some matrices that, generally speaking, depend on # and t/. 
From the compatibility condition of (3.13), (3.14) we have 

aftn 
a~ 0# 

aYn (3.15) 
+ [yn L] = 0 .  a# 

87n 
Or 

Then 

fin = g,¢g~ 1, 

Yn = h,~h~ 1, 
f~ = g, ,g[  1, (3.16) 
Yn = hn,h~ 1, 

where g, h are any non-degenerate S, x S n and K ,  x K ,  matrices. 
The factorization (3.5) is ambiguous. Indeed, if the transformation 

F,--* F,J*~ , X ~ X . j  n- 1 

is performed with an arbitrary non-degenerate matrix f., then A. is not changed. 
The freedom in the choice of the matrices fn is just connected with some freedom in 
factorization, and an arbitrary choice of these matrices does not change the final 
result. We choose these matrices in the simplest way, requiring that 
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Now the solution of Eqs. (3.13), (3.14) has the form 

G.(~, t/) = 7J°(~, q, 2.)G ° 
V,,(~,r/)= ~°(~,r/ ,-  o (3.17) 2.)F. , 

where F °, G o are constant matrices satisfying the condition (3.6), and ~o(~, t/, 2) is 
one of the solutions of system (1.1) satisfying the condition 

7~°(~, r/, 2) ~0t(~, t/, 2) = I.  

The last condition is necessary for the requirement (3.6) to be satisfied at any 
point of the 2-plane. As a rule, a vacuum "wave function" of the first or of the 
second order is chosen as 7 ~°. 

It is also necessary to require that there be no first order poles in expression 
(3.11). Imposing zero residue at the point 2=) . ,  results in the equation 

A,D(~.)H + ~.O(;..)B~ = & 0V° B,~ (3.18) 

Taking account of (3.5), (3.17) we reduce Eq. (3.18) to the following: 
o 

X.F;D(2. )co*. -  X . c @ .  Y.* = X . F  I OUr'[ G=Y=* . (3.19) 
6;. b.=;.o 

Differentiating relation (3.8) with respect to 

~t t t t t (~ ; . )% + F. c~o. = (c~.) ~ + %c~ Y.* 

and using the equation for F:  

8 F t q - F  trT°l - -o  n - -  n ~  t2=2~ - ' J  

cTot(L ) :  _ Uo(,~,) 

we obtain 

F~(O¢ - U°)co~:  (c~¢c~,,) Y] + c~=0¢ Y] . (3.20) 

Inserting (3.20) into (3.19) we get 

(~g°l  G y t d e f g  r/I Y2 X,,(8¢%) Y.* = X.F~  - - ~ -  = x=_ . _. - - . - .  . 

In a similar way we have 

x,(o,~°)V :X.F~. OV° o,V=°'  x,,~l V .  
62 ~=x= 

One can verify that ~', = a',(~) and 2 2 % =%(q). Consequently, in order to cancel the 
0 first order poles it is necessary and sufficient to put % = SCd~'d~ + S"d~7'c~ and % 

is an arbitrary constant. 
The scheme of calculation of the function X for the soliton solutions can be 

formulated as follows. Each N soliton (i.e., the one corresponding to 2N poles of 
the function X) solution is given by: a set of N rectangular constants N x S, 
matrices G °, a set of N rectangular constants K= x N of the matrices F °, a set of 

o rectangular constants K,  x S, of the matrices %, a set of N complex numbers 2,, 
and the matrices F ° and G o satisfying the condition (3.6). The matrices G,,(~, ~) and 
F=(¢, r/) are calculated by formulas (3.17), and the matrices X,,, Y= are determined 
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from the solution of Eqs. (3.9), (3.10). Then constructing A, and B, (3.5) we find the 
function X (3.2) corresponding to the N soliton solution. 

We consider now the case of a unitary group. In order to turn to the 
orthogonal group it is sufficient to require that the function X should be real at 
real 2. In this case A N =/~,, that is, 

tr G , = F ,  Y , = X , ,  K, ,=S, ,  G = - G  • 

4. In a similar way it is possible to consider any classical real matrix group. 
Such groups are characterized by the invariant form J 

gtr jg  = j  (3.21) 

which can be reduced to any of the two canonical types 
1. } - 1  

. p 0 (3.22) 
1 - 1  

j =  ; J . . . . . . . . . . . . . .  

l 
- 1  t 

q 0 (3.23) 

- 1  '1 
The group preserving the form (3.22) is called the pseudoorthogonal O(p, q), and 
the group preserving (3.23) is called the symplectic group Sp(2N, IR). 

Using the reality of X at real 2, we have 

~ (  "4' A~ ) (3.24) 

X -  i = j X t r j -  2 . (3.25) 
Assuming 

A n =X.F~ (3.26) 

we see that 

F ~ J F . = O .  (3.27) 

Proceeding from the above statements we arrive at the equations for X. : 

X~(&*JP,) - t' 
X,,( F , , J  F ,) = - X , %  . (3.28) JF,+m~" ,~_;~ +~  ,~-,~ 

In the case of the symplectic group cd~=c~, in the case of the pseudoorthogonal 
group cd ~ = - ~. 

5. To determine the dependence of F,  on the coordinates ({, q) calculations 
identical to those in Paragraph 3 of this section should be carried out. As a result, 
we get a generalization of formula (3.16) : 

J P ,  = 7J°(~, t/, 2 , ) i F  ° (3.29) 

(the function 7 ~° satisfies the involution 7J° t~J=Jg ' ° -*) .  The matrix c~, as in 
Paragraph 3, can be easily computed. 
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6. The function X is calculated in the simplest case when there are only two 
poles at the points 2 o and ~o- Such a solution for the case of or thogonal  
(pseudoorthogonal)  and symplectic groups is simple and corresponds to a single- 
soliton solution. 

i) Unitary Group. In the case of a uni tary group there is a solution with only one 
pole [5, 7] : 

20 - ~ o  
X(~,rt ,2)= I -  2_Xo F(F*F)-  I F ~ , (3.30) 

where F(~, t l )=~°(~ , t l ,2o)F °, F ° is an arbi t rary constant  N x K  matrix 
(de t (F°*F°)#0) .  In order  to find X with poles at conjugate points the system of 
matrix Eqs. (3.9), (3.10) should be solved: 

G*G 
G + Y 2 o -  ~o = - X ~  

F*F 
F - X  2o _ 2o = Ycd. 

The answer has the form 

x = EF(2o- ~o)- f2o- ~ol 2 G(G*G)- ~*] 
• [ F * F  + ]2 o -~ .o l2  ~z(G* G) - 1~z'7 - 1 

(3.31) 
Y-- EG(2o-,~o) + 12o- Xol 2 F(F*F)- I  O~ 3 

• [G*G + [20 - ~o12 0 ~ * ( F * F )  - 1 ~x] - 1 .  

The final expression for X in this case has the form 

x(L ~, 2) = I + ~ [F + (2 0 - ~o) G(G*G)-I ~,3 

• [F*F + 12 o -  7@2e(G*G) - 1 ~ ,2-1  F* 

2o - ~o [G + (2 0 - 7~o)F(F*F)- 1 c~] 
2 - A  0 

• [ G t G +  t2 o - 2ol20d(F*F) -~ e ] - ~  G, (3.32) 

where F(~, ~) = ~o(~, ~/, 7~o)F o, G(~, t/) = ~o(~, ~, 20 ) GO ; F o and G o are arbi t rary  
constant  N x K  1 and N x K  2 matrices;  here F°*G°=O and det(G°*G°)4:0, 
det (F°*F °) ~ O. 

ii) In the case of real groups Eq. (3.28) 

2 
JP + ~ FLYP =x~ 

has the solution 

X = (20 - 2o) L f F -  (20 - ~o) CF(F%CF)  ' 1  ~] 

• [ F * J F  + t2 0 - 7~ol 2 (O~*(F~fdq;V)-100tr] - 1 
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Using (3.26), (3.24) we write out the formula for 

& - io  [ J F -  (;~o - i o ) JF (F "¢P) -1 :3  x (~ , . ,~ )=z+  ~ 

• [ F t J F  + 12o - ~ol 2 (od(FtJF)- 1 00t r~ ]  - 1 f-~ 

20 -- 2o [ J F  + (20 - 2o) J r (  Ft  J r ) -  : c~] 
2 - 2  0 

• [ U ~ J  F + 12o - ":ot 2 : t (F ,y~F)-  1 ~] - 1Ft~. (3.33) 

When e=0 ,  formula (3.33) is very much simplified 

2o - 2o 2° - i°  J F ( F t J F ) -  ~ F* - J P ( F t ~ J F ) -  ~ r *~ (3.34) 
X = I +  2_2o 2_2o . 

The matrix F(~, ~ / ) = j - 1  ~po((, q, 2 o ) j F  o, where F ° is the constant N x K matrix, 
and in this case 

F°t~JF ° = 0, det (Ft~CF) 4: O. 

4. The Nambu, Jona-Lasinio, Vaks, Larkin Model 

1. Let us consider a model of fields on the U(N) group. The compatibility problem 
for this model has the form (1.31), (1.32), in this case the matrices U 1 and V 1 are 
antihermitian. Suppose the rank of these matrices is unity, then to within a trivial 
transformation their Jordan form can be given by 

i ) VO = _ U o = i  \ 0 .0 " ( 4 . 1 )  

Let us designate the first column of the matrix q~l (2.1) as ~0~=(@1)c~1, the first 
column of the matrix P1 (2.2) as P~=(P1)~I. It follows from (2.3), (2.4) that they 
satisfy the equations 

3~p ~ 

" (4.2) 
i 

O~tf = ~ p ~ (?*PpP 

coinciding with the equations of model (1). The remaining columns (Pl~k and Pl~k 
(k = 2 . . . .  N) satisfy the system of linear Dirac equations : 

l ¢¢V'. ,//.^ 

i 
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in an external field and impose no restrictions on ~o ~ and tpL Thus, when the 
functions X, IP~ 2 are known and satisfy Eqs. (1.31), (1.32), and (1.22), respectively, 
then it is easy to find the solution of Eqs. (3.2) using formulae (2.1) and (1.2). 

2. In order to find the first order vacuum solution of Eqs. (4.2) one should 
solve the system (1.22), in which g ° / ( 2 - 1 )  and 1/1°/(2+ 1) serve as g ° and V °, 
respectively. The solution has the form of (1.23), where 

7~° = exp t ) ~ ) ,  (4.3) 

o / v ° ~  =expt  ). (4.4) 

The first order vacuum solution of system (4.2) is determined from formulae (2.1), 
(2.2), where X, = 2 n = I, and has the form: 

(~o~) = (exp ( ~ ) ,  0 ..... 0)" (~ )  = (exp (~ ~), 0 . . . .  ,0). (4.5) 

Let us construct a more general solution of Eqs. (4.2) and show that it 
corresponds to the second order vacuum. The solution will be sought for as 
follows : 

~p =B~expl iv  +~-~). 

Insert (4.6) into (4.2) and determine the relation between the constants: 

GA~=B~B~Aa 
(4.7) 

GB~=A~Z A~ Bn. 

In order for the vacuum solution not to increase in amplitude it is necessary to 
assume G and G to be real. Then it follows from (4.7) that the quantity A O = argA~ 
-argB~ is independent of c~. 

Expressing G and G through the sets {B~} and {A~} and inserting them into 
(4.6) we get a solution more general than (4.5). The matrices ~0 and )o have the 
form 

( i i \ 
C7o (v~ - va)rZ) ~ = -- iA~A~ exp (5 ( G -  u¢) + 

\ -  

(4.8) 
i i [/°l~ = iB~B~ exp (-~(G- u~)~ + ~(G--vp)tl ) 

and depend on ~ and ~. The gauge transformation 7J°= 9q ~° with the function 
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transforms system (1.31), (1.32) [with U1°/(2 - 1) and V°/(2 + 1) are taken as U 1 and 
V~], into a system with constant coefficients: 

i o A,A* ^ 
~ o p  = _ 2 u~b~p - i ~ 2 - ~  (b~, (4.9) 

~ o  = i o B ~ B *  
- : + i Z - - '  ° (4.  t o )  

2 ~ 2+1 (b~" 

Let us denote: 

i 
(Uo°) e = _ 

(U°)~: = - i A ~ A ~ ,  

i 
= - -~ v f i ~  

= iB U . 

The matrices constructed in such a way using relations (4.7) are the general 
solution of Eqs. (1.18), (1.19) to within a constant (independent of ~,~/) gauge 
rotation. 

It is obvious that the solution of Eqs. (4.9), (4.10) can be found in a factorized 
form (1.23) : 

~o  = Z ~o(~ ,  2)¢o (t/, ~,) (4.11) 
7 

the matrix functions ~ o ( ~ ,  2) and ¢° (t/, 2) can be chosen unitary (for real 2) and 
commutative. 

The procedure of finding such functions is a standard problem in the theory of 
linear differential equations with constant coefficients. Below we shall assume that 
the explicit form of the functions (4.11) is known. 

3. In the previous section a scheme of constructing the function for a chiral 
field on a unitary group has been described. The explicit form of the functions T ° 
and T~2 makes it possible to construct the function X and to write out the N 
soliton solution (2.1), (2.2) for Eq. (1). Here we present the simplest "single-soliton" 
solution. It should be recalled that it is defined by giving the complex parameter 2 o 
and the projection operator Po, (P~ =Po, P*0 = Po) in an N-dimensional unitary 
space. The projection operator can be easily written in a factorized form: 

P o = X o ( X ~ o ) -  l X¢o , 

where X o is a rectangular matrix with N lines and with K columns, i.e., the matrix 
made up of k-linearly-independent complex vectors. 

Suppose T°(~, t/, 2) is the vacuum wave function (of the first or second order). 
Now we write the projection operator depending on ~ and I/: 

P(~, i?) = X ( X t X ) -  'X*,  

where 

X = T°(~, ~. 2o)X o . 
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N o w  

(P l = \(I+ ~'1"° -- 2° P 
\ 

/ 
(4.12) 

~p~ = ( 1 -  2 ° -  2° P(~,,)) ~°(~, l) 
1 - 2  o 

The first columns of the matrices go a and t&, as has been shown above, satisfy the 
system of Eqs. (1). 

5. The Gross-Neveu Model 

We consider now a model of fields on the real symplectic group Sp(2N, IR). U1, I/1 
are the matrices of the form 

where A, B, C are the real N x N matrices, and B t~ = B, C t~ = C. 
As in the previous case it is required that the rank of the matrices U~ and V 1 

should be unity. This can be achieved by putting U°l = V °, and for these matrices 
A = C = 0 :  

[1 1 
0 

B = . (5.2) 

0 

Consider the matrices gOl,~pa (2.1), (2.2). They can be chosen belonging to the 
symplectic group 

= = - -  J O 'J, ( 5 . 3 )  

I0) where J -- is a 2N x 2N matrix. As in the previous section, we are mainly 

interested in the first column of the matrices t& and q~l, since it is on its elements 
[taking into account (5.3)] that the non-linear Eqs. (2.3), (2.4) arise 

N 

p = l  

N 

0{1/)1=, 1 = ~ @ 1 ~ , ,  fl=~l (q? l /L  */4)1/~ + N, I  - -  q)l/~ + N, *l'Ol e, i ) .  

= 1, 2 . . . .  ,2N, the index should be understood mod2N. 
The fields q~=,, and *Pl=., are a set of 2N real fields. Two sets of N complex 

fields can be introduced 

= 1 • , ~ 1 i . =~(~'~. ,+~vq,+, , , ) ,  (p = - ~ ( q h ~ , , +  q~+,,,,) (5.5) 

It can be verified by direct calculation that they satisfy the equations of the Gross- 
Neveu model (2). 
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The remaining columns satisfy the linear Dirac differential equations and do 
not impose any restrictions on the first column (cf. Paragraph 4). 

2. Since the matrices U~ ° and V ° are nilpotent, the corresponding first order 
vacuum solution has no physical sense. 

As in the previous section the vacuum solution is obtained directly from the 
system of Eqs. (2). It has the form : 

c~__ 1/2 iOe~ r o a - - B - t / Z A  e i°= (5.6) V ; - f l ~  A~e , .~ - . . . .  

where 

N 
o~=-1~o~-~o~2~,~+o °, Oo = 1  2 A~. 

~=1 

A~,fl~ are arbitrary real constants. The matrices [~o and ~-o for such a solution 
have the form 

A I ij = - A iA j ( i d~ j )  I/2 sin 0 i cos Oj 

BlO= - A i A f l f l i f l j )  1/2 sin0i sin0j 

C 1 ~j = AiAj(laifij)  1/2 cos 0 i cos Oj 

A 2fj = - A iA j ( i i f i j ) -  1/2 sin Oj cos 0 i 

B21j = A i A j ( l i i i ) -  1/2 cos 0 i cos Oj 

C a i j :  _ A i A j ( f l i i ) ) -  112 sin 0 i sin Oj. 

The gauge transformation 7 ~° = g~b °, with the symplectic matrix g of the following 
form 

[011 0121,  ( O l t ) i j = ( g 2 2 ) i j = a i j s i n O j  (5.8) 
g =  L~21 ~)=J (012)ij= -(g21)ij = -a i jcos0~ 

transforms the system (1.31), (1.32), in which U 1 and 1/1 are taken as U ° and V~I, 
into the system: 

(3¢4) ° = W ~  ° , (5.9) 

a,l~° = W2~ ° (5.10) 

with constant coefficients 
[ 0 w ] ( ~ ) ~ j = % t ~ a ~ j  

[471 2 = !"~1,2 ; , 2  , ' (w2)ij = - ~roh'i *a~j 

(w 1)ij = - a oili aij - A i A  j ( f l i i  j) 1/2(2 _ 1) 

(Wz)/j = CroftS- l b l j - -  A i A  j( f i i f l j )-  1/2/(). + 1). 

According to their construction the matrices W 1 and W 2 commute at all values of 
the spectral parameter 2, therefore the solution of problem (5.9), (5.10) can be 
represented in the form (1.23), the matrices q5°({,2) and #°(t7,2 ) being symplectic 
and commutative. 
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Below we assume the linear differential equations with constant coefficients 
(5.9), (5.10) to be solved and the functions ~b°(~,2), <b°(t/,2), and, consequently, 
k~°(~, I/, 2) to be known. 

3. The problem of calculating soliton solutions, as is shown in Sect. 3, is 
reduced to the solution of a system of linear algebraic equations. Using the 
function X (3.33) calculated in this Section we can write a soliton solution of the 
Gross-Neveu model: 

W'= ~. X~,~(¢, r/, 1)ge:,(¢, r / ) (~°  (~, 1 ) +  i~° ,+~, , (¢ ,  1)), 
/LI '  

~o" = ~" X,B(¢ , r/, - l .)g~,({, t/)(@2°,+N,,(t/, - 1) - i~2,,, ,(r/, - 1)). 

6. The Spinor Field Connected with the Orthogonal Group 

1. Suppose G is the orthogonal group O(N), and, consequently, U 1 and V 1 are real 
skew-symmetric matrices. Consider now the simplest case of matrices with lowest 
(non-zero) rank. In this case up to trivial transformations U ° and V ° have the form 

[0 0 't 
- U ° = f~ i  ° = . ( 6 . 1 )  

0 . ,  , 0  

The matrices (~91 and *Pl (2.1), (2.2) can be chosen to belong to the orthogonal 
group (qot, ~ = q)~-t, tp~ = ~[-1). The non-linear Eqs. (2.3), (2.4) arises for the first and 
last columns of the matrices q)l, ~,  : 

~r/q:) l~ , --2Z(I~I. ,1491/~ iv--I/)1. N1/)1/~ , q) l /~ 1. 

1 . . . .  ) , 

~ ,  .... = _ 1  X (~ ,o , ,< . ,~-  ~ ,~,~, . , , )~ , . , ,  
# 

0¢~1.,~ = _1 X ( % . , % , ~  - < . ,  ~<. , , )w, . , .  
# 

or passing to complex fields 

i a 1 g. _}_ _a 1 / _ -I- 

we get a system 

iecw == Y.Jffeu, a, ia.~o== EJ)e~o e, 

where 

In accordance with (2.5) the action for this system has the form: 

S= 5 dtdx[Z (iw*'O{P" + ip*'O,q~')-½ Z Jg~Ja2=], 

where J2e is the matrix of "color currents". 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 
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2. Here ,  as well  as in the  u n i t a r y  g roup ,  the  first  o r d e r  so lu t i on  can  be t a k e n  as 
a v a c u u m  so lu t ion .  

I t  has  the  r e p r e s e n t a t i o n  (1.24), whe re  

COS0I, 2 0 " ' sin01, 2- 

0 I 0 
7*~2 = , (6.7) 

- - s in01 ,  z 0 . .  ' . c o s 0 1 , :  

whe re  0 1 -  2 - 1 '  0 2 =  • a re  cons tan t s .  
2 + 1  ' 

The  s e c o n d - o r d e r  v a c u u m  s o l u t i o n  can  be  o b t a i n e d  by  the  m e t h o d  d e s c r i b e d  in 
Sect.  1 a n d  i l l u s t r a t ed  in Sects.  4 a n d  5 on  the e x a m p l e  of  the  m o d e l s  (1) a n d  (2). 

3. T h e  so l i t on  s o l u t i o n  on  the  b a c k g r o u n d  of  the  f i r s t -o rde r  v a c u u m  for  sys t em 
(6.4) can  be  eas i ly  wr i t t en  down ,  us ing  the func t ion  X (3.33) c a l cu l a t ed  in Sect. 3 : 

Ip~= ~ X~(~,  t/, - 1) (~2° (t/, - 1 ) +  i~z° (r/, - 1)) 

e (6.8) 
(p~= ~ X,p({,r/,  t ) ( 7 ' °  .,(~, 1 ) +  i~° .N({ ,  1)). 
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