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ABSTRACT. In the space-time with signature (2,2) the self-duality equations in the specific case 

of potentials independent of one of the coordinates are reduced to a relativistic-invariant system 

in the (2-1)-dimensional space-time. A general solution of this system is constructed by means of 

IST. A soliton solution, finite in all directions, is discussed. It is found that there is no classical 

scattering of both solitons and continuous spectrum waves. 

1. As is well-known [1 ] in the space-time with signature (4,0) the Yang-Mills equations can be 

reduced to a self-duality equation 

f t.k = +_ 1 eiklmFlm " (1) 

In [2] it has been shown that IST can be applied to system (1), allowing one to find all its local 

solutions. However, in the elliptic case there are still certain complications associated with extension 

of local solutions to the whole space. Despite significant progress [3], this problem is not so far 

solved. 

For the gauge group SU(N) system (1) is equivalent to an equation for the positive-definite 

matrix X, det X = 1 

( X - 1 X z ) g  + ( X - 1 X y ) y  = 0 (Cqy = b3 -- ib4 ,  bz = bl -- i32). (2) 

This equation car, well be considered in the (2,2) signatured space-time (substitution by -~ iby, 

by ~ / b y ) .  If  X is independent of one of the coordinates, (2) reduced to the system of evolution 

equations in the two-dimensional space 

( X - 1 X t ) t  = ( ~ - l X z ) g  

or, alternatively, to the system: 

A t =By, Bt  =A z - [A, B I 

(A = X-1Xt,  B = X-1Xz).  
(3) 

Namely, the latter system is a subject of our study. 
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The 0(4)  group acts on solutions of  Equation (2). Hence, one can also define Lorentz trans- 

formations on solutions of  (3), although its action is nonlinear and nonlocal. 

2. System (2) is but a compatibility condition of two linear equations for the matrix ff : 

(ha~- - )t-l(Oz +B)  + A ) ~  = 0, (4) 

(at + )ta~- + A ) $  = 0. (5) 

Therefore, one can apply the IST to it. The relevant scattering matrix (for A, B -> 0 at x -+ oo) is 

constructed as follows. Let )t be a complex parameter belonging to the unit circle: X = e -i~°. In 

terms of variables 

= COS ~0X 1 "t" Sill ~9X2,  77 = - - S i n  ~0X 1 + COS t~X 2 . 

Equation (4) takes the form 

a~? = u(~o, ~,  r/)~O = (e  '~° B - A)qJ .  ( 6 )  

Its solution tending to unity in the limit of  7? ~ _0% is a function of ~ when ~7 ~ +oo: 

Here P denotes r/-ordering. S(~, ~) is just a scattering matrix. A mapping A, B ~ S can be called a 

non-abelian Radon transform. Its inversion is a principal task of  IST and will be considered below. 

Here we emphasize that, in terms of S, the Cauchy problem for Equation (3) can be solved 

trivially. Indeed, from (5) it follows that  

S(¢, ~, t) = S(~o, ~ - t, 0). (S) 

3. System (3) possesses a great variety of  soliton solutions having quite unusual properties. These 

solutions can be constructed by the standard method (see, for instance, [2, 5] .) A soliton is 

described by  a single-pole function ~()t): 

~O()t) = 1 +)t0__-XOlR(t, z, z-), R 2 = R .  (9) 
)t - )to 

For such a function to be a solution of (4) and (5) it is necessary and sufficient that  the vector ~oi 

which defines a one-dimensional Hermitian projector R, 

Rik = ~t~Plc(~ 1~o112) -1 (10) 
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satisfy the system of  linear equations 

(az + Xo at)~oi = O, (at + Xff I a~-)¢i = O. 

In other words, ~i must be entire functions of  the complex variable ~, ~oi = ~oi(~), 

}----~k0Z + ~ko1Z- t. 

A solution X of  (3) is given by the expression: 

X = [Xo I-2/N(1 + (IXo 12 -- 1)R). (11) 

Without losing generality, at N = 2 one can put ~01 = 1, ~2 - ~:(~)*- The requirement that X should 

be regular on the whole plane implies that ~o is a rational function: 

(~ - ax ) ,.. (~ - an)  
~° = c (~ b l ) . . . ( ~ _ b m  ) 

(12) 

The parameters c, al ... an, b l  ... bm  are arbitrary and correspond to certain intrinsic degrees of  

freedom. The complex parameter Xo determines the soliton velocity 

2[Xol 
1 + IXo 12 

whereas - a r g  Xo is an angle between v and xl-axis. 

The solution (10)- (12)  describes the two-dimensional soliton (currents A and B vanish at 

x ~ ~). It is easy to produce other interesting solutions - one-dimensional solitons or 'walls'. To 

do so, it is sufficient to choose ~ as 

q0 = C e a~ (13) 

where again c and a are arbitrary complex parameters. 

N-solitons can also be constructed by a standard procedure. They are described by q;(X) of  the 

form ~ = II~i(X), where ¢i are functions like (9). We do not quote here an explicit formula for X. 

Note that in this model, two-dimensional solitons do not interact - none of  their characteris t ics  

changes after scattering. The relevant solutions for one-dimensional solitons (13) describe a 

crossing of  moving walls and give us a realization of  a classical limit of  solutions of  Zamol0dchikov's 

equations [6]. An analysis of  such solutions is definitely of  great interest and will be presented 

elsewhere. 

. 

confine ourselves to a solitordess sector. 

Introduce the Green function for the operator XO~- - X -13z (IXL~ 1): 

(xa~ X-'az)G(z, z-)=a(xl)~(x~). 

* However, now ~o = so=/~o 1 may have poles. 

In this section we discuss inversion of  the transformation (7). For the sake of  simpficity we 
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It is clear that G = 1/4rr(Xz + X-1/~-) -a (an extra factor of  I in this formula is due to our 

convention z = (Xl + ix:)~2). Now consider solutions of  Equation (4), given by the integral 

equation 

- -  1 p - - i  

1 /" (X B - A ) ( z , z )  ' dz' 
~(z, g ) =  1 + ~ J X ( - ~ - _ ~ j + ~ 2 5 ~ g - ~ z , )  ~(z ,  g ')  d2-'. (14) 

If, in a certain convenient sense, the currents A and B are small, then at [X I<  1 the solution of 

(14) defmes a function ¢1 (X) analytical inside the unit circle, whereas at I Xl > 1 Equation (14) 

defines a function ¢2 (3,) analytical outside of  the unit circle and tending to unity at the infinity: 

~2 (oo) = 1. (15) 

Now take the values of ¢~ and ¢2 on the unit circle I Xl = 1. Consider the asymptotics at 

r~ ~_+oo. Put X = (1 +e) e -i~, I m e  ; 0, lel ~ 1 and note that Xz + X-I~ - = t + ier/. Then Equation 

(14) takes the form 

1 f(e i~ B - A)( t ' ,  71') 
¢( t ,  r/, ~0) = 1 + 4rr ] ( t _  t ) - - 7 7  ~~te(~_~7) ¢(t ' ,  ~?', ~o) dr' dT?'. (16) 

Let e > 0 (in this case we are dealing with ¢2) and for the sake of  simplicity, let the currents be 

on a compact support. Then at sufficiently large ~7, the quantity 6 = e(r7 - r/') within the integration 

region is positive, so in this way we obtain 

+ X  [(e'* e - ,7') 
¢~+)(~'~°)=i 4 r r ]  ( t - t ' ) + i 6  ¢2( t" r /"~°)d~ 'dr / ' "  (17) 

Here ~+) stands for the asymptotics of  ~2(~, ~7, ~0) at ~7 ~ ~o. Representation (1.7) for ff~+) implies 

that it can be analytically continued from the real axis onto the upper half-plane of  the complex 

t-plane. 
One may similarly prove that an asymptotics of ¢ :  at ~ -+ _oo (¢~-) is analytical in the lower 

half of  the t-plane, and ¢ t  - )  and ¢~+) are analytical in the upper and lower half-planes, respectively. 

These analytical properties of asymptotics of  ¢t+)(~, ~) and ¢2( t ,  ~0) allow us to find them, 

one S@, t) (7) is known. Indeed, from the definition of S one has 

S = ¢ i+) ( t ,  qo)(l~l-)(~ , ~o)) - 1  , 

S = i]./l-)(~, qc ) ( ¢ l - ) ( t ,  ~ ) ) - 1 ,  
(18) 

i.e., S can be represented as a product of two functions one of which is analytical at Im t > 0 and 

the other is analytical at Im t < 0. 

Hence, (18) is nothing else but a usual Riemann conjugation problem. Since det ¢t-+,)2 = 1, this 

is a non-degenerate problem and can be solved for at least S - 1 sufficiently small. The normalization 
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condition ff~)2 (~, 99) = 1 separates the solutions we are interested in. 

The next step in the solution of the inverse problem is the following. Using the asymptotics 

~i- and ~ -  we construct the expression 

(~t--)(~, 99))--1 ~:~--)(~, 99 ) = n(,~, 99). (19) 

As is clear from (4), the ratio ~11(~,/7, 99)~2(~, ~, 99) does not depend on 77. Thus, for any xl ,  x2 

and k belonging to the unit circle I X l = 1 we have 

~,7 ~ (x ~, x~, x ) %  (x~, x2, ~) = R(/~(x, 99), 99). (20) 

Recall that ~k 1 (X) and ~2 (X) are analytical inside and outside of the unit circle. Therefore, (20) is 

again the Riemann problem subject to normalization ~2 (co) = 1 (see Equation (15)). Its solution 

enables us to construct solutions of (4) for any Xl, x2 and, thus, find the currents A and B. 

Therefore, an inversion of transform (7) consists of a successive solution of the Riemann 

problems (18) and (20). 

To conclude this section we comment on reductions which guarantee hermiticity and uni- 

modularity of matrices X which generate, according to (3), currents A and B. First, unimodularity 

of X implies that A and B are traceless, which implies, in its turn, a unimodularity of the S matrix 

(7) 

det S(99, ~) = 1. 

Secondly, it can be easily proven that hermiticity of X implies that a certain involution is defined 

on solutions of (4). Namely, if ~(X) is a solution of (4), then also X -1 ~+-1 (l/X) is a solution of 

(4). Taking X(~o) = 1, we find, first, that 

(so that the R-matrix is positively defined: R = ~b~Xff2). 

Secondly, the above-mentioned involution when applied to the solution defining the S-matrix, 

can yield 

s -~ (~ ,  v) = s+(g,  99) 

i.e., S-matrices, corresponding to Hermitian X, are unitary. Besides, (21) implies that asymptotics 

of two solutions ~ and ~2 are related as 

t~t-+)(~, 99) = (1]/,~±)(,~, 99))--1 +. 

(The coroUary is that instead of two Riemann problems (18), it is sufficient to solve one of them.) 

Finally, recalling the normalization of if2, we obtain from (21) an expression for X in terms of 

the solution of the problem (20): 
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X = @11 (o)  • 

5. In this section we describe large-time asymptotical behaviour of  our solutions. In the soliton- 

less sector X has a purely linear asymptotics at t --> +o~: X = 1 + ~, [I ~fl ~'~ 1 where ~ satisfies the 

wave equation. In the cylindrical coordinates at t ~ -+ oo one has a -+ = It L-1/2 f+-(r - It I, ~0) and our 

task is to fred a relationship between f+  and f - ,  i.e., a classical scattering matrix. 

The characteristic scales of  the basis of  solutions is of  the same order of  magnitude as the basis 

for the initial condition. The t ~ oo situation is shown in Figure 1. 

j 

Fig. 1. 

The fields do not vanish only inside the shaded circle of  the radius t; inside the circle .the field 

amplitude ~ t -  1/2 (the same is true for the currents A and B). Therefore, it is clear that all 

contributions to S come only along the lines ~ = const which are ' tangent'  to the circle. This takes 

place only in the region I and II. The relevant combination (6) of  currents in the region I is 

- i t  -1/2 Of+/Or whereas in the region II the leading terms in the expansion of  U cancel each other 

(this region is 'transparent' and produces no 'shadow' IS(t, ¢)1 - 1). For this reason at t ~ oo 

formula (7) takes the form 

S(~o,~ t) = P e x p  - i  f + ( ~ - t + ~ - , ~ 0 )  d~ 

(This is an adequate illustration to the simple dependence of  S on t, given above in Equation (6).) 

At t --> _oo a similar calculation gives 

/! / 

A comparison of  the above formulas shows that 
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f+ (~) = f -  (v + ~). 

This implies an absence of any classical scattering in the considered model (both occupation num- 

bers and phases of waves at t ~ _~o and t -+ ~o coincide). The same holds for the scattering of 

continuous spectrum waves on solitons. 

6. Finally, a few concluding remarks should be made. If X is a positive-definite 2 x 2 matrix, 

then Equation (3) possesses a local real Lagrangian [4] with the positively defined corresponding 

Hamiltonian. We did not use the Hamiltonian approach, since the relevant action is not Lorentz 

invafiant. For this reason we can ascribe neither mass nor angular momentum to soliton solutions 

found here. However, one has to bear in mind that completely integrable systems allow a variety 

of Hamiltonian formulations. Hopefully, for our system (3) among these formulations exists, as 

yet unknown, one which is relativisticaUy invariant. 

Finally note that for the matrices X depending only on t and Lz [ = r, Equation (3) coincides 

with an equation for the principal chiral field on the plane 

( X _ l X t ) t  ( x _ l x r ) r  + 1 = -- X-1Xr" 
r 

That enables one to produce solutions of the Cauchy problem for cylinder-symmetric chiral fields, 
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