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A new method for constructing multidimensional nonlinear integrable systems and their 

solutions by means of a nonlocal Riemann problem is presented. This is the natural 

generalization of the method of the local Riemann problem to the case of several 

space variables and includes the well-known Zakharov--Shabat method of dressing by 

Volterra operators. 

INTRODUCTION 

In 1974 one of the authors of the present paper proposed, in collaboration with Shabat 

[i], a scheme for constructing multidimensional nonlinear integrable equations and their ex- 

act solutions, known as the "dressing method." The integrable equations considered in [i] 

represent the compatibility condition of the overdetermined system of equations 

~x4 " L4~11' ~ x~ ' 

and can be written in the form 

L4] - 0 (I. 2) ~x, ~i +[L~' 

Here LI,2 are linear differential operators in a new variable K , generally speaking with 

matrix coefficients. These coefficients, which are the unknown functions for the integrable 

equations, depend on the three independent variables Xi , Km , and X in a rather asym- 

metric manner. 

Let us explain the main result of paper [i] on the simplest example. Consider the inte- 

gral equation 

Kix, z)§ + ~ K(~,~)r(s,z)Is - 0 (i3) 

Here the N xN matrix-valued functions F and K depend also on the variables Xi , 

~ , and it is assumed that F is known, whereas K is unknown. Suppose that ~ satisfies 

the system of equations 

~F _I~F ~r ~x~ ~ -  + .~--s I ~ ,  L-1,~ (i,4) 

where IL are constant commuting matrices: [Ii,I a] -0 

Differentiating Eq. (1.3) we deduce that function K satisfies the system of equations 

~x--~- (I~ + ~ I~, Q ~x,x,,x~)- K (x,x,x,,x4. 
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Representing K in the form 

we verify that ~ satisfies Eq. (I.l) with 

h~=l '  -~--- +[ . I  Q] (I 7) 

Equation (I.2) takes the form 

" ~Q " F ~Q 8Q - , , Q ] ]  0 �9 �9 -LI, ,~T, [ I , , T f  ] I ,  T f ]  + [ [ I , , a ] , [ I  = . (T 8) 

For a suitable reduction, for example, I + - I  ~+--~ ~+-Q, Eq. (I,8) turns into the "N-wave 

system," which is of great interest in applications. To construct effectively a solution of 

Eq. (I.8) one can take, for example, ~I~FK(X)~K(Z) (see [2] and also [3-4]). One may 
K 

naturally say that the operators [~ are obtained by "dressing" the "primer" operators Lo~- 

The next development of the dressing method was paper [5], which deals also with Eqs. 

(I.l), (I.2), but under the assumption that Lh~ are rational functions of a complex parame- 

ter ~ This leads to equations for functions of two independent variables )~4, X~ ; the 

dressing is achieved by solving the Riemann problem on an arbitrary contour r in the complex 

-plane, i.e., by solving on this contour a certain singular integral equation. The connection 

between the two variants of the dressing method [6, 7]* is, at first glance, elementary. Thus, 

suppose that the coefficients of operators [~t~La in (I.l) do not depend on ~ Then, fol- 

lowing the substitution llf'~ e iAx , they become polynomials in ~ In this way system 

(I.i)-(1.7) and Eq. (I.8) take the form 

~ /  =fL'IKX~FIK\ L Q])~I', (I .9) 
~ K  ' 

and, respectively, 

~Q I '~i'~2] ~ +[[ I~,Q] - 0 .  [I~,~-~, ] - [  ~ ,[14,Q]] (~.lO) 

In the terminology of [7], Eq. (I.8) is the "first multidimensional generalization" of Eq. 

(I.i0). 

To obtain solutions which do not depend on X , one must assume that function F depends 

only on the difference X-Z Then Eq. (I.3) becomes a Wiener--Hopf equation and solves, on 

taking the Fourier transform, the Riemann problem; in this case the contour r is the real 

axis. 

It is clear that the method developed in [5] permits the construction of a rather rich 

supply of solutions for Eq. (I.lO), at the expense of the arbitrariness of contour r A 

question arising naturally is how to find analogous solutions for system (I.8). Also, it is 

not clear how to construct the first multidimensional generalization for systems of the type 

considered in [5] when L i and ~ are rational functions rather than polynomials. The aim 

of the present paper is to solve these two problmes. 

*See also V. E. Zakharov's report at the International Congress of Mathematicians, Warsaw 

(1983). 
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The second of the above problems was solved to a certain extent by a direct generaliza- 

tion of the technique proposed in [1] (see also [7]). Actually, instead of Eqs. (I.i) the 

linear system 

NL-~ 0~'~ = b ~  ( I .  i i )  

We do was considered, where NL and LL are linear differential operators in variable .X 

not intend to explain here the full relationship between these results and the results of the 

present paper. Our work is essentially based on the data advanced earlier By one of the auth- 

ors (S. V. Manakov), that in the multidimensional case a nonlocal Riemann problem should be 

used instead of the local problem (see [8]). We translate the scheme of paper [i] into the 

language of the nonlocal Riemann problem and show that by using the nonlocal problem one can 

construct multidimensional integrable equations and their solutions with the same degree of 

effectiveness achieved by means of the local problem in the case of two-dimensional equations 

and their solutions. 

Among the multidimensional integrable systems, one, no less popular than (1.8), is the 

Kadomt s ev--P e tviashvili (KP) equation 

0 OX ~{ - 6 ~g'X- ~X~) -- $=LP- JLl'4V (I. 12) 

(see [i, 9-13]). Paper [13] develops a technique for constructing solutions for this equa- 

tion, which uses instead of the nonlocal Riemann problem the solution of a local D -problem 

of a special form. One can show (although this is not one of our tasks here) that by means 

of a certain limiting process one can derive from the nonlocal Riemann problem a more univer- 

sal (compared to [13]) technique for constructing solutions of multidimensional integrable 

systems based on a nonlocal ~ -problem. The results obtained in this direction will be pub- 

lished separately. 

I. Nonlocal Riemann Problem (discussion of an example). 

Let us represent the functions F and K in (1.3) in the form 

F ' (1.1) ~-~ 
and 

K (x,z)=-a- ~ ~ K(X,X)e ~(x z) ~ (1.2) 
and then introduce the function 

f �9 ! T(,~ ,)~,X,XL)=,F'<X',X)e,~'('k-X)x T (~', Jk) (1.3) 
(in the formulas below we omit to write the dependence of T on the variables K and ~ ). 

Substituting (1.1)-(1.3) in Eq. (I.3), we obtain 

K(A)- I T()~',)~)o[~k +Ji_. ~ I K(~,)T(~',,k) 0~,' ~[,~, (1.4) Z~ ~ " - - ~ * i , ~  " 
- . o o  - o o  

Consider the functions ~,,t(~) , analytic in the upper/lower half plane, defined by the form- 

ulas 

~,,~(x) -i +Lz,L_~ x~K(X') oh,' (i.5) 
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Note that 

K(X) (X) (X) x-o (1.6) 

It is readily verified that Eq. (1.3) is equivalent to the relation 

or, in a convenient symbolic form 

~ = ~ t ~ 4  * T .  (i.8) 

Relation (1.7) (or (1.8)) defines on the real axis a nonlocal Riemann conjugation problem 

through an integral relation between two functions ~,2 (X) which are analytic in the up- 

per/lower half plane and satisfy the additional constraint 

Henceforth we shall assume that this Riemann problem (and all other) is uniquely solvable. In 

particular, this means that a solution of the Riemann problem (1.7)-(1.8) with the asymptotics 

vanishes identically: 

~,,z (~) --0 . (1.9) 

The last assertion will be used in many occasions. We can write the asymptotic expansion 

!~t--I 

f o r  the  s o l u t i o n  o f  R i e m a n n ' s  p rob lem w i t h  t h e  a s y m p t o t i c s  1 f o r  'X---~,~ 

in (1.4) we verify that function T~A',X) Upon substituting (i.i) 

tions 

~V . ~{IKX'T_TIKX ~ 
X~ 

Moreover, the following relation holds: 

Consider the differential operators 

~0~ - (~ 
and note that they commute. 

Applying the operators 

Furthermore, 

~T - t(A'X)~. 
~x 

Now one can rewrite relations (1.12) and (1.13) 

[~o,T]-o [~,T] -0. 

~)0 and ~)~ to relation (1.8) and using (1.15) we get 

for any differential operator M of the form 

M -)'-'. ~iK~) ~ 
K 

(l.i0) 

Here 

(i.ii) 

satisfies the equa- 

(1.12) 

(1.13) 

(1.14) 

symbolically as 

(i.i5) 

(1.16) 

(i. 17) 
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(where K 

Functions 

for ~--~. The operators M form a ring ~. 

tors ~ with the property that 

By assertion (1.9), this implies that 
~ 

M)r =0 , ~ =0 

a multiindex and ~-i~)i<~1)~a) ~ -  ~ " " " " ) one has the formula is 

MX~- MX~§ M~ *T. (i.18) 

M~I, M~z constitute a solution of Riemann's problem with polynomial asymptotics 

Consider in ~ the subset ~ of opera- 

(1.19) 

The latter is clearly true for any operator of the form MI ~ , which proves that ~ is 

a left ideal in the ring ~ . We seek the elements of ~ in the form 

M K - ~K - IK ~o + ~K. (1.20) 

Substituting asymptotics (i.i0) in the expression of ~K~ , and requiring that the latter 

RK =i[IK, ~i] �9 (Z.2l) 

as a single function ~ defined in the entire complex plane. 

MK~( =0, k"i,g . (1.22) 

decay for ~--~ , we get 

It is convenient to view 

Then 

It is readily checked that the operators MK form a basis in the ideal ~ , i.e., that 

the equality M~ =0 implies ~s~%~ i (~=|,~) , where A i are operators. Consider the 

function ~=~e~X(x+IKx~) and note that it obeys the equations 

=o, 

where the operators R are obtained from the operators ~ on replacing the "long derivatives" 

(1.14) by the usual ones: 

' EE ' ~--i " 

In particular, Eq. (1.22) becomes Eq. (I.9). Moreover, 

�9 ~ --t91 �9 (1.23) 

Note that (1.23) is also a straightforward consequence of the definition of function ~ . 

In the foregoing considerations the specific form of the contour ~ (the real axis) 

played no special role, and they remain valid for an arbitrary contour ~ This permits us 

to construct new solutions for Eq. (1.8), unknown until now. Thus, settingTi~'~)=T1(~I)T2(~) 

we get from (1.12) and (1.13) 

, 

T ~  = ~ ,  ( X ) e  - i ( I K x K + x ) x  ( 1 . 2 4 )  

Equation (1.4) further yields 

T. ~ ) T , ( X )  , -t 

r ' ,r r .  (1.25) 

In (1.24) and (1.25) #~ and ~a are arbitrary matrix-valued functions of the variable ~ , 

defined on contour r . Solution (1.25) generalizes the solution of Eq. (I:8) found in [2]. 
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[~,I~] ~- 8~ 
8x, 

by the commutativity of the matrices T~ 

We have implicitly assumed that in the framework of our new scheme Eq. (I.8) is obtained 

as the compatibility condition for system (1.22), or for the equivalent system 

RK~ ~-0~ ~= ~,g 

(which coincides with (I.i)), i.e., as a matter of fact, by means of formula (1.2). Alter- 

natively, Eq. (I.8) can be obtained by isolating in Eq. (1.22) the terms proportional to -~ 

when %--~ 

From (1.10), (1.20), and (1,22) it follows that 

---l~a~-~x + UKQ ; (1.2~) 

[[ ~,14] I,]= [[m,,I,],I4] �9 

Using this identity we can eliminate the term containing ~ and thus obtain Eq. (1.8). 

2. Nonlocal Riemmnn Problem: General Case 

In the previous section we have translated the technique developed in [i] for solving 

Eq. (I.8) in the language of the nonlocal Riemann problem and thus enlarged considerably the 

class of solutions by choosing abritrarily the contour. 

Next we turn to the general method of applying the nonlocal Riemann problem to multidi- 

mensional integrable systems, and among them, as particular cases, the systems described in 

[i], 

Suppose that in the complex ~ plane there is given a contour ~ on which a nonlocal 

Riemann problem (1.8) is defined, i.e., a function ~ is given, analytic in the entire plane, and 

whose boundary values on ~ , Y4 and ~; , satisfy the integral relation 

For the sake of simplicity we shall normalize the Riemann problem by 

as ~ ~ ~. 

Then, on the two distinct sides of the contour one has the representation 

(2.1) 

~--~ for each Z---,- 

where 

[ ~(A5 &A' 

P 

KcA) =-- ~,(b - ; q c A ) l ~ r  

(2.2) 

Function Ir.r is subject to the singular integral equation 

~'~ " (2 3) I A-~t ~o 
P PP 

We shall assume that Eq. (2.3), and with it the normalized Riemann problem (2.1), are unique- 

ly solvable. 

Now consider a collection of commuting rational matrix-valued functions I~(~) 

{K=~...~,) [I t, I~]= 0 

and use them to build the collection of commuting first-order differential operators 
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%] = o . 

Here 

complex, independent variables. 

Suppose that the conjugation function ~C~) 

are the operators of differentiation with respect to ~ , generally speaking 

i.e., the equations 

(2.4) 

satisfies the conditions 

]= o ,  

~q' = I~<A')T - T I~<A). (2.5) 

Then, identity (1.18) holds for any differential operator M of the form (1.17): a polynomial 

in the operators ~ with variable coefficients which do not depend on 

Function M~ is not a solution of Riemann's problem because it is singular at all the 

poles of the functions I~(~) , and also because, generally speaking, it has a polynomial 

behavior for ~--+~ 

Again, we single out in the ring ~ of operators ~ the subset ~ of all operators 

with the property that M~ is singularity-free in the entire complex plane (except for the 

contour ~ ) and, in addition, ~ ~ ~ 0 for ~--~-~ 

From the unique solvability of Riemann's problem it follows that 

M~ ~--- 0, <2.6) 

So that ~ is an ideal in .~ . The ideal ~ consists of all equations M that share the 

solution ~ Note that equation ~ contains the parameter ~ explicitly. Now passing to 

the function ~ by the formula 

we obtain the compatible system of equations 

~ = 0 (2.7) 

for function ~ ; the operators ~ are obtained from ~ through the substitution ~---~ ~K 

and do not contain the parameter 

Reasoning as in Sec. i, we should look for the conditions of compatibility of Eqs. (2.7). 

However, the equations from ~ contain, generally speaking, many arbitrary elements, because 

we are allowed to multiply at left by arbitrary operators of the form ~ Therefore, we 

must construct a basis in the ideal 

We shall examine the simple cases where one succeeds in constructing such a basis. 

i. Suppose that one of the variables X o is distinguished by the condition that 

~o(~)-~- %~ , whereas all other functions ~i(~) are polynomials. Then, a basis in the ideal 

of the form 

some polynomials. For ~,~ , the class of integrable systems is exactly the 

8 (%> O) is provided by the operators of first order in 

; 

the corresponding operators ~ have then the form 

- 

8x~ 

with L~ 
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class described in [I] and given by formula (1.2). 

A member of this class is the KP equation (1.12). To obtain this equation we must take 

~ , = ~  , ~ =  -~# (2~) 

Applying the nonlocal Riemann problem on an arbitrary contour one obtains new classes of ex- 

act solutions of the KP equation. 

2. Suppose that Ioc~) = 6~ as above, but let ~(~) = -~ ~) be arbitrary 

rational functions. ~ and Q~ are polynomials (and Q~ has scalar coefficients). Now, a 

basis in the ideal ~ is given by operators of the form 

M~= NB(~o)~T i -h~(~o) (2.9) 

(we omit the proof of this fact). The corresponding equations for function ~ take the form 

(I.ll). The compatibility conditions that yield the nonlinear equations of interest are writ- 

ten in [7]. 

We remark that the nonlinear equations described at points 1 and 2 arise also on setting 

~ ~ § with ~ an arbitrary nondegenerate constant matrix. 0 , 

In the general case the construction of a basis in the ideal ~ is not a simple task. 

There is however a method for computing directly the nonlinear integrable equations, which 

avoids the calculation of a basis ~ in ~. We have already used this method at the end of 

Sec. i, in the derivation of Eq. (I.8). Let us demonstrate it on a more general example. 

Let ~ and 

We denote 

Function ~ has singularities at ~'= ~ 4 ' / ~  

A-A~ ' 

and seek the operator M in the form 
I 

R e q u i r i n g  t h a t  t h e s e  d i s a p p e a r ,  we g e t  

( 2 . 1 0 )  

B:,.=-(~,,~,, ~--~&'~ 
* A,,-A,,,' ~' ' (2.11) 

By definition, M~ = 0 In particular, this is true for ~= ~ , which leads 

to the nonlinear equation 

~ j ~  A, ~3A~ �9 , �9 ~aA~A~ . -~ ~'~ ~ ~ = 0 .  (2.12) 

Two o t h e r  e q u a t i o n s  r e l a t i n g  ~4, ~ , and ~j a r e  o b t a i n e d  f rom ( 2 . 1 1 )  and ( 2 . 1 2 )  by c i r c u -  

l a r  p e r m u t a t i o n s .  

To t h e  b e s t  o f  o u r  k n o w l e d g e ,  Eq. ( 2 . 1 2 )  a p p e a r s  h e r e  f o r  t h e  f i r s t  t i m e .  Note  t h a t  a l l  

variables ~,~, and ~ appear in this equation in a rather symmetric fashion. 
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The example discussed above suggests the following empirical procedure for constructing 

equations that can be integrated by using a nonlocal Riemann problem. The first step is to 

construct operators from ~ annihilating the function ~ , by confining the investigation 

to polynomials of degrees as low as possible. The coefficients of these operators will be ex- 

pressions in the values of function ~ and of its first derivatives with respect to ~ (coef- 

ficients of the Taylor expansion) at the poles of the functions I~(~) , and also, if neces- 

sary, of the coefficients of the asymptotic expansion of ~ in the neighborhood of ~= ~ 

Next, we must examine all equations ~ =  0 resulting in this way in the neighborhood of 

all singularities, including ~=~ This leads naturally to a closed system of nonlin- 

ear equations for the coefficients of the Taylor expansion of function ~ at the singulari- 

ties of I~(~). For the moment we have no general theorem that would permit us to prove the 

universality of the indicated procedure, but its effectiveness was tested on a series of exam- 

ples, which are too cumbersome to be discussed here. 

3. Connection with the Local Riemann Problem 

Then 

Equation (2.5) admits the particular solution 

= G(AJ &A-A') 
(3.1) 

__-- (3.2) 

In this case Riemann's problem (2.1) becomes radically simpler and reduces to the local 

problem ~CA) = ~4(A) t ~4(A) ~(~) . (3.3) 

The calculation of the ideal ~ also becomes considerably simpler. In fact, among the 

operators M one finds now operators of left-multiplication by an arbitrary rational function 

of J Now one can take operators ~ of the form 

~ + ~I~(~)-~(~)~ ~0 (3.4) 

with ~(~) a rational function with the same singularities as I ~) Formula (3.4) 

is readily recognized as the basic relation of paper [5]. The function elements are expres- 

sible through the values of ~ at the singularities of I~ by means of the well-known "dres- 

sing formulas." Thus, if 

then 
K i K - i  

Being operators of first order, M~ form a basis in the ideal ~ The nonlinear equa- 

tions of interest can be obtained by either commuting pairs of operators ~ or by using the 

procedure described in Sec. 2, i.e., by restricting Eqs. (3.4) to neighborhoods of the poles 

of functions I~(~) In the second approach the resulting equations take the so-called 

"spinor form" (see [14]). It is remarkable that for the nonlinear equations written in this 

form one can formulate a general variational principle (see [15]). This justifies the hope 
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that in the future it will be possible to obtain a variational principle also for systems of 

type (2.12), connected with the nonlocal Riemann problem. 

Commuting pairs of equations of the type (3,4), we obtain nonlinear integrable systems for 

functions which depend on two independent variables. This is in agreement with the fact that 

in the case of the local Riemann problem we give arbitrarily a function ~(~) of one varia- 

ble. By similar considerations, the natural number of independent variables for systems of 

the form (2.12) is three. This agrees with the fact that in the case under consideration one 

is given an arbitrary function of two variables. An attractive possible development is using 

nonlocal Riemann problems for constructing particular solutions of even higher-dimensional 

equations specified by undefined, yet compatible systems of multidimensional conditions. An- 

other possible perspective is using nonlocal Riemann problems to find nontrivial reductions 

in two-dimensional systems. The results of sucha reduction may turn out to be "stationary points" 

of even higher-dimensional integrable systems. 
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