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Abstract. The general structure and properties of recursion operators for 
Hamiltonian systems with a finite number and with a continuum of degrees of 
freedom are considered. Weak and strong recursion operators are introduced. 
The conditions which determine weak and strong recursion operators are 
found. 

In the theory of nonlinear waves a method for the calculation of the 
recursion operator, which is based on the use of expansion into a power series 
over the fields and the momentum representation, is proposed. Within the 
framework of this method a recursion operator is easily calculated via the 
Hamiltonian of a given equation. It is shown that only the one-dimensional 
nonlinear evolution equations can possess a regular recursion operator. In 
particular, the Kadomtsev-Petviashvili equation has no regular recursion 
operator. 

I. Introduction 

The inverse scattering transform method gives a possibility of investigating in 
detail a wide class of both the ordinary and partial differential equations (see e.g. 
[1-3]). The equations, integrable by the inverse scattering transform method, 
possess a number of remarkable properties: solitons, infinite sets of conservation 
laws, infinite symmetry groups, complete integrability, etc. In turns out also that 
the equations, to which the inverse scattering transform method is applicable, have 
the pronounced recursion structure. The so-called recursion operator plays a 
central role in the formulation of these recursion properties. The role of the 
recursion operator is two-fold. Firstly, it allows one to write out the families of 
equations integrable by a given spectral problem in a compact form. For example, 
the family of equations connected with the famous Korteweg-de Vries (KdV) 
equation can be represented as follows: 

c~u(x, t) 
- -  Q-T- + ~/~u = O, (1.1) 
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where 0 -  ~x-' n = 0, 1,2, ..., and the recursion operator L is 

L = 02 + 2u + 20- lu0. (1.2) 

The KdV equation corresponds to n = 1. The recursion operator (1.2) for the KdV 
family of equations was first introduced by Lenart (see [4]). 

It follows from (1.1) that the recursion operator allows us to obtain the whole 
family, starting from one equation (e.g. with n = 0). Recursion operators with such 
a property exist for the other families of equations too: see [5] and subsequent 
papers on this subject. 

The second important role of recursion operators is associated with the 
Hamiltonian treatment ofintegrable equations. The Hamiltonian structure of Eqs. 
(1.1) and of the other equations, integrable by the inverse scattering transform 
method has been investigated, starting from [6, 7] in a variety of papers (see 
[1-3]). It was demonstrated in [8, 9] that the integrable equations have a very 
special structure from the point view of Hamiltonian formalism, namely the whole 
infinite sets of Hamiltonian structures correspond to these equations. For 
example, each of Eqs. (1.1) is a Hamiltonian one with respect to the infinite family 
of Poisson brackets of the form 

+OOdx 6F ~Ij6H [f  , II},= S~ 6u(x) 6u n=0,  _+1, +2, ..., (1.3) 

where the operator L is given by (1.2). In a similar manner, recursion operators 
determine the families of Hamiltonian structures for the other integrable 
equations. 

So, a recursion operator is the generating operator for the family of equations 
connected with a given equation and simultaneously the generating operator for 
the family of Hamiltonian structures. Combination of these two properties in the 
same operator indicates the importance of recursion operators in the theory of 
integrable equations. 

An important step in the formulation of the theory of the recursion operator 
was paper [10]. In this paper it was demonstrated how to calculate the recursion 
operator for the equations integrable by the second-order matrix spectral 
problem. The Hamiltonian structure of these equations has been considered in 
paper [11] in which the remarkable properties of the recursion operator were 
employed to a considerable extent. The method of calculation of recursion 
operators, based on the use of the spectral problem, has been further developed in 
[12-16]. By this method the recursion operator has been calculated for a wide class 
of spectral problems [12-23] (see also the paper [24, 25]). 

The other methods which do not use the spectral problems were suggested in 
[26-29]. In papers [26] the recursion operator appears in the Hamiltonian 
systems which possess the Hamiltonian pairs of operators. In papers [27-29] some 
analogs of the recursion operator (hereditary, strong symmetry operators) were 
considered. By virtue of some postulates, these operators satisfy certain equations. 
Some solutions of these equations and thereby some examples of the recursion 
operators have been found. The geometrical structures, connected with the 
integrable equations and recursion operators, and their properties have been 
discussed in [30]. 
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In the present paper we consider the different aspects of the theory of recursion 
operators for Hamiltonian equations. Firstly, we introduce the notions of weak 
and strong recursion operators. A recursion operator in a "weak" sense (briefly, a 
weak recursion operator) is the operator which allows us to construct recursively 
the infinite family of Hamiltonian equations, starting from a given Hamiltonian 
equation. There exist two types of weak recursion operators. A recursion operator 
of the first type (H-weak recursion operator) is the operator which converts the 
gradients of functionals into gradients. A recursion operator of the second type 
(f2-weak recursion operator) is the operator which transforms symplectic forms 
into symplectic forms. We find the sufficient conditions which determine the weak 
recursion operator (for both types). 

A recursion operator in a strong sense is the operator which transforms both 
gradients into gradients and symplectic forms into symplectic forms. The strong 
recursion operator generates simultaneously the infinite family of equations, 
starting from a given equation, and the infinite family of Hamiltonian structures 
for each equation from this family. The sufficient conditions for the operator L to 
be a strong recursion operator are given. The so-called Nijenhuis equation for L 
plays an important role in the theory of weak and strong recursion operators. The 
Hamiltonian systems both with a finite number and with a continuum of degrees of 
freedom are considered. The operator (1.2) is an example of the strong recursion 
operator. 

In our paper a method is also proposed for the calculation of recursion 
operators in the theory of nonlinear waves in space of arbitrary dimension. This 
method is based on the subsequent use of the expansion of all quantities into a 
power series over the fields and of the momentum representation instead of a 
coordinate one. As a result, the equations in variational derivatives, which 
determine the recursion operator, convert into the system of algebraic functional 
equations for the coefficients of the expansions of the recursion operator and 
Hamiltonian. Some equations from this system offer the possibility of calculating 
the recursion operator via the Hamiltonian of a nonlinear equation. 

In the paper we show that any Hamittonian system of nonlinear waves 
possesses a formal recursion operator. In the general case, such a recursion 
operator is the singular operator. In the one-dimensional space there exist 
Hamiltonian systems which possess the regular recursion operator, i.e. the 
operator which generates the family of regular Hamiltonians. For some nonlinear 
equations the recursion operator can be a finite-order polynomial on the fields. 
The Hamiltonian of such an equation should satisfy a certain system of equations. 
In particular, it is shown that the only one-dimensional equation with three-linear 
Hamiltonian, which possesses a recursion operator, linear on field, is the KdV 
equation. 

It is shown that the nonlinear evolution equations in two- and higher 
dimensional spaces have no regular recursion operators. In particular, the 
Kadomtsev-Petviashvili equation has no regular recursion operator. Thus, the 
regular recursion operator is a purely one-dimensional phenomenon. 

All these properties of recursion operators are closely connected with the 
formal canonical equivalence of nonlinear equations with the Hamiltonians, 
which are the "entire" functionals on fields, to linear equations. Performing the 
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inverse canonical transformation from the linear equation to the initial nonlinear 
equation, we simultaneously obtain the Hamiltonian of the equation and the 
expression for the recursion operator. The regularity problem of the recursion 
operator is associated now with the regularity problem of the linearizing canonical 
transformation. 

The paper is written with the use of elementary methods only. The presented 
results can be, however, formulated in the invariant form as welt. 

The paper is organized as follows. The notions of H-weak and Q-weak 
recursion operators are introduced in the second section. In the third section the 
sufficient conditions for the operator L~ to be a H-weak recursion operator are 
found. In Sect. 4 the necessary and sufficient conditions for that the operator Le be 
a f2-weak recursion operator are formulated. The strong recursion operator and 
the conditions which determine this operator are considered in Sect. 5. Recursion 
operators in the theory of nonlinear waves (i.e. for systems with a continuum 
number of degrees of freedom) and the conditions which define these operators are 
discussed in Sect. 6. Section 7 is devoted to the use of the expansion into a power 
series over the fields and of the momentum representation for the calculation of 
recursion operators. The problem of existence of regular recursion operators in 
one- and multi-dimensional spaces is discussed in Sect. 8. 

II. Weak Recursion Operators 

In this and next sections we will consider Hamiltonian systems for finite degrees of 
freedom. We would like to recall that a system of differential equations, which are 
defined on the 2N-dimensional phase space, is called the Hamiltonian system if it 
may be represented in certain local coordinates as follows: (see e.g. [31]) 

£22 = v H ,  (2.1) 

where x = ( x  1, ...,x2N), V= c~!1, ..., c~x~2~v , 2 =- -~ ,  H is a function and f2 is a 

nondegenerate skewsymmetric (f2~k = -  f2k~ ) matrix which obeys the closeness 
condition 

~x~ ~- + ~ 0x ~ = 0. (2.2) 

By virtue of the nondegenerateness of £2, Eq. (2.1) can be also represented as 

2 = f2-1VH = {x, H}, (2.3) 

where {, } denotes a Poisson bracket 

OF 1 ik ~H (2.4) {F, H} = ) 

Here and below the summation is performed over repeated indices. It is well 
known also that locally by appropriate change of coordinates one can convert the 

form f2 into the canonical one f2(0)= ( O  1 10), where I is an identical N x N 
matrix (Darboux theorem). 
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So let us have a certain Eq. (2.1) with concrete Hamiltonian H and symplectic 
form O. What  is the way in which one can recurrently multiply this equation 
without leaving the class of Hamiltonian equations? It is easy to see that one can 
do this in two ways. The first way is to multiply the right-hand side of (2.1), i.e. the 
gradient VH. The second way is to multiply the left-hand side, i.e. the symplectic 
form f2. 

Definition. We will refer to the operator L H as the H-weak recursion operator if any 
of its power converts the gradient of H (for H :# const) into the gradients:/sn VH 
= VH,, n = 1,2, 3 . . . . .  The operator Ln is referred to as the O-weak recursion 
operator if any of its power converts some symplectic form O into the symplectic 
forms: 

/5j2 = O,, n=1 ,2 ,3  . . . . .  

Making use of the weak recursion operators, one can construct the following 
infinite families of equations, starting from Eq. (2.1): 

Oic = VH,, =/SH VII ,  n = O, 1,2, ..., (2.5) 

and 
/5nO2 = O,2 = VH,  n=0 ,  1,2 . . . . .  (2.6) 

Equations (2.5) are Hamiltonian ones with respect to the same symplectic form 
O and different Hamiltonian Hn. Equations (2.6) are Hamiltonian ones with 
respect to the same Hamiltonian H and different symplectic forms O,. It is clear 
that any entire function of the recursion operator is the recursion operator of the 
same type, too. 

Combining these two ways, one can obtain the most general family of the 
equations 

4o(L~)02 = OSc = Vt t  f = f (LH) VH,  (2.7) 

which are associated with Eq. (2.1). Here q)(Ln) and f ( L i t  ) are arbitrary entire 
functions. For de tLa+0 ,  Eqs. (2.7) can be also represented in the form 

2 = f2~o 1VH¢ = O -  1 (p - 1 (Le) f (LH) VH.  (2.8) 

HI. H-Weak Recursion Operator 

Here we find the conditions which determine weak recursion operators. Firstly, we 
consider the H-weak recursion operator. Let us note, first of all, that in order that 
the operator L H transform a given gradient into gradients (/5HVH= VII,) it is 
necessary and sufficient that it satisfy the equation 

, k OH ~//"k3H\ (?((EH)J~kxk).  (3.1) 

The necessity of condition (3.1) is obvious: it is the equality of cross derivatives 

/5 k QH ~H, Sufficiency follows from the welt known which follows from ( H)i ~X k = O--X T-  
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Oa i Oa k 
statement that for any simply connected manifold the equation Ox k Ox ~ = 0  

gO (see e.g. [31]). implies a i = ~x ~ 

Proposition 3.1. The operator L H is a H-weak recursion operator if it satisfies the 
system of equations 

OI~t.ln OH 02H ~Hk OH 02H 
Ox k Ox" t- f "  = "Hn oxkoxm OX n OX" E"nk }x"Ox" O, (3.2) 

( -0~m 0/1"nk) " ' /2 0£~/k 0Lmm (3.3) 

Proof Condition (3.2) means L n V H =  VH~. Let us prove that by virtue of(3.2) and 
(3.3) we also have L 2 f H  = VH2. Let us multiply Eq. (3.2) by/2m and sum over n. 
We obtain 

OLm//n OH n OZH 
~2Hi ~xk ~xm ~- I~Hi~Hn OX'x~xm 

c~E~k 0H 02H (3.4) 
=/2o~ Ox" Ox m + 12~g~k OX,,Ox,n . 

OH 
Then multiplying (3.3) by ~x ~ and summing over m, we find 

c~/2 m ,~ OH , 0 ~ k  OH 
~x ~ E " , ~ X ~ + E m  ~-~ ~x m 

O/2nk ~ OH ~ 0/2~ OH (3.5) 
- Ox i U.~xm +lZ~k ~-~ Ox"" 

Further let us sum Eq. (3.5) with Eq. (3.4) and substract Eq. (3.4) with the 
substituion i~-+k from the derived equation. As a result, we have 

O/2m 0H 0Lm~/, OH /~ ~ 02H 
0x k L% 0-U + e,,, ~ 0x ~ + .~r~,. 0x-~-Uxm 

O/2nk OH , OLd, OH +EHkE, t32H (3.6) 
= Ox ~ E"~, ~ +I2~, ~x ~ Ox" Oxgx" '  

i.e. 

0 / 2 , , O H \  0 / 2 , ,0H'~ 

From (3.7) it follows that 

OH OH2 
(L~)Taxm- a x "  

i.e./~s 17H = VH2, where H 2 is a certain function. 

(3.7) 
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< OH 
Further let us show that I~nVH = VH3 too. Multiplying (3.3) by EH~Txe and 

summing over m, we obtain 

OEHi m e OH 8EUk ~ OH 

O~k t OH 3L'~ni t OH + ~.~-~Xy~.=~ - ~ . ~ . = ~ x  ~ =o. (3.8) 

Then we multiply equation (3.6) (with the substitution i-~o) by /3  m and sum 
over 0. Summing the obtained equation with equation (3.8) and using (3.2), we find 

OEm 2 t OH 12 OEn~n I~ OH (L 2 ~m ~Et'm OH 
Ox k ( L . ) . ~  + .~ ~ -  .=~x ~ +,  .,~ ? ~  ox ~ 

+(L3H),~ O2H OEHk 2 ~OH , aL3, t OH 
Ox~Ox. ox ~ ( ~ . ) o ~ - E . ~ . = ~  

2 m0E-,n OH /2 n 02H 
- (z:.)~ ~ .  ~ x  ~ - ( . ) ~ 7 ~ x .  = ° '  

i.e. 

8 / L a  ~ , O H \  0 / 3 , O H \  
ff~xk ~( H)i ff~x') = O-~(En)k  ff~x~) " (3.9) 

Thus L 3 V H  = VH3, where H a is a certain function. 
In a similar manner, one can prove by induction that the equality (3.1) is valid 

for n = 4, 5, 6,. . .  too, i.e. IgnVH = VII,, n = l, 2, 3, 4 . . . . .  The proposition is proved. 
We emphasize the important role of the quadratic equation (3.3). This equation 

together with the condition LHVH= VH1 is equivalent to the equalities EnVH 
= VH, for any n = 1, 2, 3 . . . . .  Note, however, that Eq. (3.3) does not follow from any 
finite subsystem of equations E H VH = VH, (n = 1 .. . .  , M). 

Let us now discuss some properties of Eqs. (2.5). In the general case the flows 
which are generated by Hamiltonians H n do not commute with the initial flow (2.1) 
since (Ho = H) 

{H,,Ho} = ~ ( ~ 2 - 1 ) i k  O~--~ ° 

OH E 'nO 1 ik O H  
- Ox,, ( H), ( - ) S ~  + O" (3.10) 

Let the operator LH satisfy the additional constraint (LHO)T = --LHf2, where 
A r denotes a transposed matrix A. Using this constraint, we have 

OH ,~ (~-~- *)ik OH OH 1 mi , k OH 
~ (~.), Ox ~ - bx-~ ( ~ -  ) (~ . )~ Ox ~ 

_ 0H (~)~ (~_ ly= 0H 
Ox ~ c~x" ' 
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OH r~ Q i i k  ~ H i.e. ~ (/~u)i ( - ) ~ = 0. Therefore {H,, Ho} = 0, n = l, 2, 3, . . . .  Analogously, 

one can show that {H,,H,~}=0 (n, m = 0 , 1 , 2  . . . .  ), i.e. in the case (L~Q)~k= 
-(Lu~)k~ all the flows from the family (2.5) commute to each other. 

Thus, in the case (LuQ)r = - L ~  the family of Hamiltonians/4,, is the infinite 
family of the integrals of motion for any equation of the form (2.5). Each integral of 
motion H,  is connected with the one-parameter symmetry group of Eq. (2.5) and, 
in particular, of the initial equation (2. I). In the infinitesimal form these symmetry 
transformations are (x' = x + 9x) 

(~,x=e~Q-~VHn=e,Q-~ISuVH, n=0 ,  1,2, 3 . . . . .  (3.11) 

where e, is the transformation parameter. If (LnQ)r= --Lnf2, Eqs. (2.5) and the 
symmetry transformations (3.11) can be also represented in the form 
2=(Lrn)"Q-~VH, and g~,x=e,(Lrn)"f2-~H, n=0 ,  t, 2, 3, . . . .  

IV. £2-Weak Reeursion Operator 

According to the definition, the operator L9 is a Q-weak recursion operator if 

0(L",~Q)~ i O(/~Q)k~ ~(/~,~c~)jk 
Ox k ÷ (.)x j -~ (~xi = 0, (4.1) 

and 
(E~Q)r = - / 5 ~ 2 ,  (4.2) 

for all n = 0, 1,2, . . . .  
One can show by straightforward calculations that if Eqs. (4.1) and (4.2) are 

satisfied for n = 0, 1, 2 then they hold for n = 3, too. As a result, they are satisfied for 
any n. So we have 

Proposition 4.1. I f  together with the Jorm Q the forms L~Q and L2~2 are closed and 
skewsymmetric, then the operator L~ is a Q-weak recursion operator. 

Note that all the conditions (4.2) are satisfied if Q r =  _ O and (LaQ) r -  - -L~O.  
If additionally det L~ + 0, then the closeness and skewsymmetry of the forms 9, 

LoQ, L~g2 lead also to the closeness and skewsymmetry of the forms L~nQ, 
n = 1, 2, 3, .... Indeed, choosing the form 92 = L~Q as an initial one and using the 
closeness and skewsymmetry of the forms L~1~2, and L-~2Q2, one can prove that 
the form L~3~2 = L~lt2 is closed and skewsymmetric too. Further one can easily 
show that all the forms E~"92 = L2-~Q(n = 3, 4, . . . )  are closed ans skewsymmetric. 

In the case detL9 + 0 the closeness and skewsymmetry of one of the following 
two sets of the forms: L~Q,  ~, La~2 or L~2gL Lal~2, Q are the sufficient conditions 
in order that the operator L9 be a Q-weak recursion operator too. 

In Proposition 4.1 and subsequent results, one can start from any given 
symplectic form ~2. To simplify the calculations it is convenient, however, to choose 

the local coordinates in such a way that f2 = g2~o)= (_01 ~). This does not reduce 

the generality of the results obtained since Eqs. (4.1) and (4.2) are of invariant 
character. 
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In the case f~= ( ? 1  

and 

0) '  Eqs. (4.1) (4.2) n=0 ,  1,2 are and for 

0/2~i 8~2at 8E~m ga.t = 0 
8x e 0 , , ,  + ~ x  ~ 0,~ + 8x-- ~ 

8(L2)'~ ~,,,,, + c~(L2)~" 0 ' 8(L2)~ 0 = 0 
c~x ~ ~ ,~ ~- & i  ,~ , 

491 

(4.3) 

(4.4) 

rai 8x-~ ax" kQV J at-- m~XX.-=0. (4.9) 

We note now that by virtue of  (4.5) Eq. (4.3) is equivalent to 

~#%i o , ~/2at 0 . -  8/2ae Y2.m --,m ± OX" "'"' OX i = 0. (4.10) 

If one multiplies (4.10) by (Y2-1),,k and sums over m, one obtains 

a /2a~ 
__ ~X m O#n( O -  1)ink. (4 .11)  

Substitution of (4.11) into (4.9), eventually, gives 

I~, O a k  

- ak ~TX. = 0 .  (4. t2)  

Hence 

 °k/G = (4.5) 

Multiplying (4.3) by L%k, summing over m, and taking into account (4.5), one 
obtains 

0x e .~e,o-,~k t Lbk ~ O,,~ = -- E~k ~ ,~i. (4.6) 

Using (4.6), it is easy to see that Eq. (4.4) is equivalent to the following one: 

QL%k OE"ai Q ,, ~E"ae 
Eai ~ U  ~2,,e + E.o.e ~x"- ,,k + Eak ~ O,,~ = 0. (4.7) 

Let us transform the second and third terms in (4.7), using the equality (4.5) and 
Q,,(O-a),e= 6g. As a result, we have 

& ,  I (4.8) 
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So the equation, which contains only the recursion operator L~, follows from 
Eqs. (4.3)-(4.5). 

Proposition 4.2. I f  operator L n satisfies the system of equations 

~x k Ox¢ ] nm- ~+ 0x" -- Enk-b~- -"0 '  (4.13) 

~x ~ + ~x k + ~x i = 0 ,  (4.14) 

(Ln~2)kt = -- (Lna)t  k , (4.t5) 

then it is a Q-weak recursion operator. 

Proof. Let ~2= ~o). The conditions (4.13)-(4.15) are equivalent to the conditions 
(4.3)-(4.6). Indeed, from (4.12) and (4.11), one gets (4.9). Multiplying (4.9) by ~2m~, we 
obtain (4.8). Equation (4.7) follows from (4.8) and is equivalent to (4.4) due to (4.6). 
The conditions (4.13)-(4.15) are, therefore, equivalent to the conditions of 
Proposition 4.1. 

Let us consider the conditions (4.13) and (4.14) in more detail for the case det Ln 
+ 0. At first sight, these conditions are not necessary. Indeed, if one takes instead of 
Q, L j2 ,  L2(2, the other sets of three closed forms: LgZ(2, L~1~2, (2 or L~I (2, (2, LaY2 , 
then instead of (4.t3) and (4.14) we will have the analogous conditions with the 
substituion L~ ~ L-~ t. 

However, it is worth noting the following. Firstly, multiplying Eq. (4.13) for L~ ~ 
by/~n~/~ofl2~t, summing over i, k, E, and taking into account (4.13), one gets Eq. 
(4.13) for L~. So Eq. (4.13) for L~ 1 is equivalent to the same equation for Ln. In 
other words, if L~ is the solution of (4.13), then L~ ~ is the solution, too. 

Secondly, the conditions of closeness and skewsymmetry of the form L7~(2 
together with Eq. (4.13) are equivalent to the conditions of closeness and 
skewsymmetry of the form L~Y2. Indeed, putting (2= £2m) , multiplying (4.14) for 
L)t~2 by I2aSmI}a~, summing over i, k, ~ and using (4.15), we obtain Eq. (4.7). 
Equation (4.9) follows from (4.7). Using (4.12) one gets (4.11). This equation is 
equivalent to (4.10) and, hence, to Eq. (4.3). 

Thus, at detLe4=0 the conditions (4.13)-(4.15) for L~ ~ are equivalent to the 
conditions (4.13)-(4.15) for La. 

So in the case detLe4=0 we have 

Theorem 4.1. The conditions (4.13)-(4.15) are necessary and sufficient conditions in 
order that the operator Ln be a £2-weak recursion operator. 

The invariant form of Eq. (3.9) (or (4.13)) is the following: 

[ LT ~, gTtl] -- LT[ Lr ~, rl] - LT[ ~, LTtl] + LT2[ ~, t/] = 0, (4.16) 

where L r is the transposed matrix L, ~ and r/are arbitrary vector fields, and [~, tl] 
/ 

denotes the standard commutator  of vector fields (see e.g. [31]): [~, t/] i = ~ ( ~  qk 
x 

~ ) .  Following paper [26], where Eq. (4.16)was considered for the first time, 
OX'" / 
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we will refer to Eq. (4.16) as the Nijenhuis equation. Note that for the f2-weak 
recursion operator one has L~= O-1Lnf2 due to (4.2). 

An equation of the form (4.16) has been also considered in [27-30]. 

V. Strong Reeursion Operator 

Let us consider now the situation when the operator L is a recursion one both in / /  
and O senses. 

Definition. Operator L is the strong recursion operator if any of its power 
transforms the gradient into the gradients (I2VH = VHn) and the symplectic form 
into the symplectic forms (/~(2 = O~). 

Possessing simultaneously the properties of both weak recursion operators, 
the strong recursion operator generates both the infinite family of Hamiltonians 
Hn and the infinite family of symplectic forms (2n =/20.  Equations (2.5), (2.6) or 
(2.8) which are generated by a strong recursion operator have all the previous 
properties and some new ones. 

Let we have an equation 2 = ~2- ~ VH from the family of Eqs. (2.8), and let 
de tL+ 0. By virtue of the properties of the strong recursion operator, we have 

2 = f2-1 VH = (120)-  ~ E VH = f22 ~ V H , ,  (5.1) 

where n is any integer and f2, are the closed symplectic forms. 
So any equation generated by the strong recursion operator is a Hamiltonian 

one with respect to the infinite set of Hamiltonian structures (pairs f2n, H,). 
We denote the Poisson brackets which corresponds to the form On as 

OF f2 ~ ix OH {, }. : {F, H}. = ~ ( ~- ) ~Zxk. Let us calculate {H.~, H.~}.~. Taking into account 

that (L~2)r = -L(2 ,  we have 

{Hn~,Hnz}n3=( E )i ~xm( f2- ) ( - )tOxk 

Then 

OH 1 mi nj+n2 n3 k OH ) (z: - )i?- Z .  

OH (~j 1),hi 12 k OH 3H "I~ ra ~ 1 ik OH 
OX m ( )i ~ Z  - OX m ( )i ( - ) ~ 

OH 0 ~ ki E m OH 
- ( &, . .  

OH £2-1 mi /2k0H Therefore, ~xH( ) ( )i~xxk =0, and, as a consequence, {Hnl, H,2}n3=0 for 

any nl, n2, n3. 
Thus, all Hamiltonians H,, which are generated by the strong recursion 

operator are in involution with respect to any Poisson bracket {, }m generated by 
this operator. 
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It is clear also that if the initial equation (2.1) admits the strong recursion 
operator L, then any equation of the form (2.8) possesses the same strong recursion 
operator. 

So the Hamiltonian equations, which admit a strong recursion operator, have 
a very special structure. Firstly, they possess the infinite set of the integrals of 
motion in involution and they are Hamiltonian ones with respect to the infinite 
family of Hamiltonian structures. Secondly, the infinite families of equations are 
associated with such equations: any equation of these families has the same 
properties as the initial one. 

In other words, the strong recursion operator generates the infinite family of 
Hamiltonian structures (O,,, Hm; n, m=0, +1, +2, . . . )  from the initial 
Hamiltonian system. Each of these Hamiltonian structures determines the 
dynamical system (flow). The Hamiltonian structures (f2,, H~,) with the same value 
of n -  m correspond to the same dynamical system. The family of Hamiltonians Hm 
forms the infinite set of common integrals of motion which are in involution with 
respect to any symplectic structure £2,. 

The examples of strong recursion operators are well known. In the case of a 
continual number of the degrees of freedom they are, for example, the operator 
(1.2) and Eqs. (1.1), and the recursion operators which were calculated in [10-22]. 
Some properties of the equations which admit the strong recursion operator have 
been discussed as well. 

The operator/~ = O- tLO is closely connected with the recursion operator L. 
The operator L transforms vector fields into vector fields: L"O ~ VH = O-~  VIIi. 
Equations (2.5)-(2.6) can be also represented in the form 2 = L " O - ~ V H .  Both 
operators L and L naturally appear in the approach which is based on the spectral 
problems (see e.g. [20, 21]). 

Let us consider now the conditions which define a strong recursion operator. 
These conditions are obviously the join of the conditions which determine the H- 
and O-weak recursion operators. Propositions (3.2) and (4.2) give rise to 

Theorem 5.1. I f  operator L satisfies the system o f  equations 

8 lZ k 
ax k + z:, = o ,  (5.2) 

OE i c~H 32H ~E k OH QZH 
~?x k Ox" + I2~ Oxk~?x" C~X i C~X" ISk c~x~C~X . =0 ,  (5.3) 

OXt, + OX k ~ C3Xi =0 ,  (5.4) 

(Lf2)k t = -- (L(2)¢ k , (5.5) 

then it is the strong recursion operator for  the Hamiltonian system 0 2  = VH. 
In the case detL ~= 0, the conditions (5.2), (5.4) and (5.5) are also necessary ones. 

So the H-weak recursion operator becomes the strong recursion operator if it 
also transforms the symplectic form f2 into a symplectic form. The Q-weak 
recursion operator becomes a strong one if it additionally converts the gradient 
V Z  into the gradient ( L V H =  VHO. 



Theory of Recursion Operator 495 

We see that in the description of both the weak and strong recursion operators 
the quadratic equation (5.2) plays an important role. This equation is a very special 
one. It is a system of 2N2(2N-1)  equations for (2N) 2 quantities /~. 
(i, k = 1 . . . . .  2N). Nevertheless, this highly overdetermined (for N > 1) system has a 
large class of solutions. As we have seen, if L is a solution of (5.2), then L- 1 is a 
solution too. It is not difficult also to show, that together with L the quantity 1 - 2L 
is also the solution for any number 2. Hence, (1 - 2L) - 1 = 1 + 2L + 22L 2 + . . .  is the 
solution of (5.2) too. The simplest solution of Eq. (5.2) is/~ = c~c~i(xi), where ~i(xl) 
are abitrary functions. By virtue of the invariance of Eq. (5.2) under the general 
coordinate transformations x ~  x~'= f~(x), Eq. (5.2) has also the solutions of the 

2~ O fk(x) OX t 
form/}i = Z ~t(xf) where fk(x) and ~e(x e) are arbitrary functions. 

I=1 (~X t ~ f i ( x ) '  
In the conclusion of this section we compare the results of the present paper 

with those of papers [26-28]. The key notion in papers [26] was the notion of a 
Hamiltonian pair, i.e. two Hamiltonian operators such that any linear 
superposition of them is a Hamiltoniarl operator too. In this approach the 
recursion operator appears as the "ratio" of two Hamiltonian operators from the 
Hamiltonian pair. 

In our approach we deal with the recursion operator from the very beginning. 
If a system admits the O-weak recursion operator Ln, then all the form 
l~eO(n = 0, 1, 2 . . . .  ) are closed. The form LeO + 2L~f2 + 22L~Q +... 
= ( 1 - 2 L e ) -  1Ln£L where 2 is any number, is closed too. Therefore the operator 
((1-2Le)-1Le~2) 1 =(L~fi)  -1 -2£2  -1 is a Hamiltonian one for any 2, i.e. the 
operators (LEO)-~ and O- ~ form the Hamiltonian pair. 

Proposition 5.1 (Gelfand and Dorphman). In order that the Hamiltonian operators 
O-~ and (Lf2) 1 form the Hamihonian pair it is necessary and sufficient that the 
forms f2, L£2, L20 be the closed ones. 

Sufficiency immediately follows from Proposition (4.1). Let us prove the 
necessity. The Jacobi identity for the Hamiltonian operator O-  ~ + 2(LO) - ~ leads 
to the closeness of the forms £2, LO, and also to the equation 

(0 ~)~'~ a((LO)ax,.- ~)jk + (Q ~)k,~ ?((LO)ox m- 1)ij Av (~.~ 1)jm a((L~~)aX m- 1)ki -~ O, (5.6) 

where we choose f2 = f2,o)= ( ?  1 ~). Multiplying (5.6) by (Lf2)~(Lf2),~(Lf2),k, 

and summing over i, j, k, we obtain (4.7). By virtue of (4.3), the equality (4.7) is 
equivalent to (4.9), i.e. to the closeness condition for the form L2f2. The left-hand 
side of (5.6) is nothing but the Schouten bracket (see e.g. [26]) for the operators 
f2 1 and (Lf2) t. So the equality to zero of the Schouten bracket If2- ~, (Lf2)- ~] is 
equivalent to the closeness of the forms LO and L2f2. 

If the operator L is a f2-weak recursion operator, then any two operators 
(/2ff2) -1 and (E'~f2) -~ form the Hamiltonian pair. Indeed, by virtue of the 
closeness of the form 

/~l~e~ ._~/~L2nl - "  J/2~ _}_ 22L3n* -- 2n2Q + . . . .  (1 -- 2/2 * -- ha) -- ~/5~f2, 
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the operator 

((1 - M2* -"=)- 3/2*0) 1 = ( / 2 * 0 ) -  3 __ ~ ( ~ 2 ~ ' ~ ) - -  1 

is a Hamiltonian one for any 2 and n3, n2. 
Taking into account all these results, it is not difficult to see that from the point 

of view of the construction of Hamiltonian systems Theorem 5.I and Theorem 3.4 
from [26] are essentially equivalent. 

The recursion operator which is considered in [26] (regular operator), is the 
a-weak recursion operator in our terminology. 

The fact that the operator fa/~fa-3, w h e r e / ~ f ~ - 3 V H = ~ - I V H 3 ,  transforms 
gradients into gradients, i.e. it is the H-weak recursion operator, and also the fact 
that the eigenfunctions of this operator are gradients of its eigenvalues have been 
noted in [30]. 

VI. Reeursion Operators in the Theory of Nonlinear Waves 

Generalization of the results of the previous sections to the theory of nonlinear 
waves, i.e. to the case of a continual number of the degrees of freedom, is obvious 
enough. We have the system ofn fields u3(x, t) . . . .  , u~(x, t) in d-dimensional space (x 
- (x3, ..., xa)). Let us recall (see e.g. [32, 33]) that the system of n equations is a 
Hamiltonian one if it can be represented in the form 

[. dx%~(x, x3 &fix' ,  t) aH Ot - au'(x,O' (c~=l,...,n), (6.1) 

6 
where the Hamiltonian H is a certain functional on u 1 . . . . .  u", buu denotes a 

variational derivative and ~2~0(x, x') is a kernel of the nondegenerate linear 
operator (which depends, in general, on ul , . . . ,  u"), which satisfies the closeness 

~O~(x, x') ~f2~(x", x) 60p~(x', x") = 0 (6.2) 
&~(x") + au~(x') + 6u~(x) 

and skewsymmetry conditions 

O,e(x, x )  = - O~(x', x). (6.3) 

Similar to the case of a finite number of degrees of freedom, we define the weak 
and strong recursion operators: 

6H 3H.  (6.4) 
dx'(e,,)~ (x, ~9 a u ~ 3  - au~(x) ' 

5 dx (Ya),  (x, x )Oay(x ,  x ) = O,,~,,(x, x ' ) .  (6.5) 

The propositions and theorems of the previous sections hold for nonlinear 
waves, too. The only modification is concerned with the form of the corresponding 
equations. In particular, the analogs of Eqs. (5.2}-(5.5) are 
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+12tx2'gEn(x"x")"'  " gu'(2) / 2 a ( x " 2 ) 6 ~ 7 ) " ) }  = 0 '  ~ .6)  

.~faE~(x, 2) ~SH 62H 

6u~(x')6u~( 2) 

•Ep(x', 2) ~SH a , ~ 62H ) 
- &i~(x) 6ue(~) /3p(x, x) 6u~(x~Q(2)~__ _ = 0, (6.7) 

F)(LO)~(x, x3 (~(LO)~(x", x) 6(LO)nr(x', x") = 0 (6.8) 
~u~(x,,) + ~u~(x3 Jr (Su~(x) , 

(L~2)p~(x', x) = - (LO)~(x,  x3 ,  (6.9) 
d e f  ff ? n ff where (Lf2)~p(x, x') = ~ dx 12~(x, x )O~(x , x'). 

Theorem 6.1. I f  operator L satisfies Eqs. (6.6), (6.7), then it is a H-weak recursion 
operator. I f  operator L satisfies Eq. (6.6), (6.8), (6.9), it is a O-weak recursion 
operator. In the case when operator L satisfies the whole system of Eqs. (6.6)-(6.9), it 
is the strong recursion operator. 

The strong recursion operator L generates, starting from (6.1), the infinite 
family of nonlinear evolution equations 

au"(x, t) aH (6.10) 
at - ~ dx'(O- lq)(L))~P(x, x') 6uP(x, ' t) '  

where ¢p(L) is any entire (meromorphic for det L 4: 0) scalar function. Each of Eqs. 
(6.10) possesses the infinite set of the integrals of motion H, and is a Hamiltonian 
one with respect to the infinite family of Poisson brackets of the form 

d "  6F _ (~H 
{ F , H } y = ~ d x  x ~ ( 0  l f (L))~(x ,x ' )  gu~x,) ,  (6.11) 

where f ( L )  is an arbitrary entire (meromorphic for detL4: 0) function. 
Taking into account our further constructions, we rewirte the formulae given 

here in the momentum representation. Performing the Fourier transform 
d 

u~(x, t) = (2rc) 2 ~ dp@(t) exp(ipx), 
! --d z " . ! O~a(x, x ) = (2re) ~ dpdp O~p,vv, exp(tpx + tp x') , 

(6.12) 
I~(x, x') = (2r 0 -d ~ dpdffL~.vp, exp(ipx + ip'x') , 

d e f  

@ ~ @1 . . . . .  Pd) ,  p X  -~" p l X  1 "@"" "3i- pdXd) ,  

we get the closeness condition 

~O¢a,vq ~f2~ kv 60pr, qk 
I- ~ ( q  + ~L~, = 0 ,  (6.13) 

and the skewsymmetry condition 

O~a,pq = - O 8~,qv. (6.14) 
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Equations (6.6)~{6.9) in the momentum representation are of the form 

c$/5, - 
+ \a,J_, : o ,  

V. E. Zakharov and B. G. Konopelchenko 

(6.15) 

dk {6E~, p~ 6H 62H 

61XB,qk ~$H e 62H_ ~} 
(6.t6) 

6~L k + ~Safi_q + 6a~p = 0 ,  (6.17) 

(LQ)e~ ,q~ = - (Ll2)=e,,q, (6.18) 

where (L~-2)~e,v~ = 5 dkI2~,pkY2~p,-kq. 
In what follows we will consider nonlinear systems which are described by one 

real field. In this case a local and u-independent symplectic form is of the form 

gT(o)p q = fvg(p + q) , (6.19) 

where fp is an antisymmetric function ( f _ p = - f p )  and ~$(p) is a Dirac-delta 
function. For  the one-dimensional space (d = 1) without loss of generality one can 
choose i 

~o)pq = - L ~$(p + q). (6.20) 
p 

VII. Expansion over Nonlinearity and Reeursion Operator 

The problem of calculation of the recursion operator, i.e. the problem of solution of 
Eqs. (6.6)-(6.9) or (6.15)-(6.19) in f~nctional derivatives, is difficult enough even in 
the simplest case of one field. One can simplify this problem if one restricts oneself 
to a certain special class of dynamical systems (~2, H) and solutions. 

For  this purpose we consider the translation-invariant systems which have a 
smooth behaviour at ~p~0 ,  i.e. smoothly reduce to the linear system in this limit. 
So we assume that the Hamiltonian and the symplectic form of the translation- 
invariant system (6.1) are of the form 

H :  £ .[ dql . . .dq, f (q I + . . .  +q,)V(,)ql...qj.q,...a~q,, 
n = 2  

f2p~ = ~ .[ dql...dq,,c3(p + q -  ql - . . .  - q,)~(,opq(q,...q.)~q~'"~q~ , 
n=O 

where 
variables and ~-'~(n)pq(ql...qn) a r e  functions which are symmetric on the variables 
q 1 . . . . .  q,. For  simplicity, we consider the case of one real field and successively use 
the momentum representation. 

(7.t) 

(7.2) 

V~,)q~...q, are some functions which are completely symmetric on their 
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We wilt search for the recursion operator Lpq in the form of an "entire" function 
on ~p too: 

L,q= ~ ~ dql...dqng(n)pq(q~...q,da, ql. . .zzq,,  (7.3) 
n = 0  

where L(,)pq(q,...q,) are functions which are completely symmetric over the variables 
q~ .. . . .  G- The translation invariance gives a certain restriction on the form of the 
f u n c t i o n s  ff~(n)pq(ql...qn)" Namely, taking into account that {/~, z~q} = ig:l~q, where Pis a 
total momentum, we have 

L(,)pq(q~...q,) = 6(p + q -  ql - - " "  -- qn)g(n)pq(ql...q~) , (7,4) 

where L(n)pq(q~...q,) a r e  some functions. 
Further, let us consider the case of a constant symplectic form g2pq and choose it 

as (6.19). 
Let us substitute the expressions (7.1), (7.3), (7.4), and (6.i9) into Eqs. (6.15)- 

(6.18). The left-hand side of these equations should be equal to zero in any order on 
~p. Therefore, Eqs. (6.15).(6.18) are equivalent to the following functional 
equations for L(n)pq(qt...qn) and g(n)ql...qn: 

6 ( p + q + k - k ~ - . . . - k , )  Sym ~ { n - m + l )  
(kl ..... k,3 m=O 

L(m)P,e~= ke-p(k~...k~)L(n-m+ 1)qkQ~=lk,-p,k ........ k.) 

+ (n-- m + 1)L(~) ~ k~-k, k(k~.,.k,~L( . . . .  + ~)p, k- ~ kX--q.k ......... k°? 

-- (p*--~q)} = 0  (n=O, 1,2, ...), (7.5) 

6 ( p + q - - q l - - . . . - - q ,  ) Sym ~ {(m+ l ) ( n - m +  l) 
(k 1 . . . . .  kn) r n = O  

" k Vn ""k k L(m+l)p, "~k.,+~(-q,G . . . . . .  ) ( - r e + l ) - -  Z . * ~ ,  . +  . . . . . .  k.)  
l = 1  ¢ ~ t  

+ (n - -m+2)  ( n - - m +  I)L(~)p, -v+ 2 k,(k ...... k,3 IG-m+2)-q, -p+ ~ k,,k ........ k, 
g=1 

- (u-*q)} = 0  (n=O, 1, 2, ...), (7.6) 

6(p+ q + k--  kz - - . . .  - k , )  { ~ L  (,)pq(-k,k~ ..... k,) + fpL(,~kp~-o,k ...... k,~ 

+ fkL(,)qk(-p,k~ ..... k,)K = 0 (n = 1, 2, 3,. . ,) ,  (7.7) 

b ( p + q - k  1 -  ...--k,)(fqL(,)pq(kl...k,)+fpL(,)qp(k~.,,k,))=O (n=0,  1,2, ...), (7.8) 

where Sym denotes the complete symmetrization over the variables kl, .,., k,. 
(k I . . . . .  kn )  

The system of algebraic functional equations (7.5)-(7.8) is the complete system 
of equations tbr the calculations of all functions L(,)pq(ql...q,) , which determine the 
recursion operator L. 



500 V.E. Zakharov and B. G. Konopelchenko 

Here  we present the simplest examples of equat ions (7.5), (7.6). Equat ions  (7.5) 
with n = 0 and n = 1 are of  the form 

(L(o)p+q,-p-q-L(o)q,-q)L(1)p,-p-q(-q)-(g(o)p+q, p q- g(o)p, p)L(1)q,-p-q(-p)=O, 
(7.9) 

2(L(o)v, - p-- L(o)- k, k ) L ( 2 ) , / ,  k ( -  p, p + g + k) - -  2(L(o~q, - q - L ( o ) -  k, k)L(2)p, k~- o , ;  + q + k) 

+ L(1)p,q+k(p+q+k)L(1)q,k(q+k)-[- L(1)p+q,k(p+q+k)L(1)p, -p q(-q) 

- -  Lo)q ,p+k(p+q+k)L(1 )p ,k (v+k) - -  Lo)p+~,k ( t ,+q+k)Lt l )q ,  _ p q(_vt=-0. (7.10) 

Equa t ion  (7.6) for n = 0 gives 

L(o)p ' _pV(2 )_p ,p -  L(o  ~ _ v ,v  V(2)v, _ p = O . 

Since V(2)_p,v=V~2)p _ p, then L ( o ) p , _ v = p ( p ) ,  where ~o(p) is an arbi t rary  even 
function on p ( ,co( -p)=  q~(p)). 

Further ,  Eq. (7.6) for n = 1 is 

L(t);, -q-p(--p)V(2)-q p,q+v + 3cp(P)V(a)-~, - p , ; + o  

-t- L(1)v,,I( p +q)g(2 ) -q,q - -  (p~--~q) = 0,  (7.11) 

and for n = 2 it is of  the form 

3L(1)v,-p-q(-q)V(a)-q v , k , v+q+k  + 1 2 c p ( p ) V ( 4 ) - q , - p , k , p + q  k 

-t- 2g(:z)p, -p-q+l~(-q,k) g(2)-q- p+l~,q+ p-l~'k- 2L(2)p, -k(-,t,p+q-lo g(2) k,l¢ 

+ 3L(1)p,-v+k(k)V(3)--q,-p+k,p+q-k + 3L(1)v,q k ( p + q - k ) g ( 3 ) - q , q - k , k  

+ 2L~2)p, qtk, p + q - kt V(2)- o, q -- (P++q) = 0.  (7.12) 

Equat ions  (7.6) allow us to calculate all g(1), Lt2), ..., for given V(2), V~3), . . . .  Let  
us start  with Eq. (7.11). Taking  into account  the closeness and skewsymmetry  
condit ions (7.7) and (7.8), it is not  difficult to show that  the relat ion (7.11) is 
equivalent  to the following ~o(p)- q)(q) 

L ( 1 ) p q ( p + q ) = 3 f ~ ( c o ( p q _ q ) _ c o ( p ) _ c o ( q ) )  V~3)_v, _q,p+q, (7.t3) 

where co(p)~fv(2); ' _ J f p .  The function co(p) determines the dispersion law for the 
c3z~p 

corresponding equat ion,  i.e. --~- = c o ( p ) e p  + . . . .  

Analogously,  using (7.13), we have from (7.12) 

~o(p)- ~p(q) 
L(2)pq(k, p + q - k) = 6 f q ( co (p  + q _ k )  + co(k)  - co(p)  - co(q))  V(,,)_ p, q, p + q_ k 

9 1 

- 2 f~(co(p + q -  k) + co (k ) -  co (p ) -  co(q)) 

( (P(P) - -  (p(q)  
" \ f p + q ( c o ( p + q ) _ c o ( p ) _ c o ( q ) )  V(3)-P,-q,p+qV(3)-q-p,k,p+q~k 

L -  p(co(k) - co(p) - co(k - p)) 
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(cP(q)--q~(q--k))V~3)-q,q-k, kV~3)-v,-q+k,p+q-k + 
fk - p(co(k) -- co(q) -- co(k -- q)) 

(cp(p) -- q~(q -- k))V~3)_ p, _q+k,p+q_kV(3)_q,q_k,k 
fq- k(CO(P + q -- k) -- co(p) -- co(q -- k)) 

(q)(q)--cP(P--k)) V(3)-a,- p+k,p+q-kV(3)- p,p-k,k~ 
(7.14) 

In a similar manner one can derive, from (7.6), the formulae which express L~3 ) 
via V(3), V(4), V(5), the function L(4), via V(3), V(4), V(5), V(6 ) and so on. 

Thus, for a given Hamiltonian, i.e. for given functions V(2 ), I/i3), ..., and a certain 
fixed even function cp(p), we easily calculate all functions L(1)pq(p+q) , L(2)pq(.. .)  . . . . .  

which determine the operator Lvq. In order that this operator Lpq be the recursion 
operator it should satisfy equations (7.5), (7.7) and (7.8). The fulfillment of (7.8) is 
obvious. By simple but  tedious calculations, one can show that the expressions for 
L(1)pq( p + q) and L~2)pqC..), given by the formulae (7.13), (7.14), indeed satisfy Eqs. (7.9), 
(7.10) and the closeness conditions (7.7) for n = 1,2. 

Thus the formulae of the type (7.13), (7.14) allow one to calculate the recursion 
operator Lpq for given V~z), V~3 ) . . . . .  Emphasize that all functions V~2), Vc3 ) . . . .  (i.e. 
the Hamiltonian of the equation) are arbitrary ones. So, any dynamical system 
(6.1) with any Hamiltonian of the form (7.1) possesses, at least, the formal strong 
recursion operator Lpq. 

The existence of a formal strong recursion operator for any Hamiltonian 
system of the form (6.1), (7.1) becomes obvious if one takes into account the 
following three circumstances. The first one is: any system of equations (7.5)-(7.8) 
is invariant under the general transformations of"coordinates" ~pand, therefore, 
the existence of the recursion operator for this system is independent of the choice 
of variables z~p. Secondly, any nonlinear system with a Hamiltonian of the form 
(7.1) can be linearized by a suitable canonical transformation [32, 33]. The third 

. 0z~ 
point is: any hnear equation ~ t  p = co(p)~p with an odd function co(p) possesses the 

recursion operator of the form Lpq = cp(p)6(p + q), where ~p(p) is an arbitrary even 
function. 

Indeed, we have the dynamical system with Hamiltonian (7.1). Let us linearize 
this system (i.e. reduce the Hamiltonian H to the form H =  ~dpldpzt(pl  
-}-p2)V((2)plp2~pl~p2) by the canonical transformation a,v~dp: 

a,p=dp+ ~ ~ dp2...dpnO(p-pa--...--p,~)R(n)p(v2...p,)~m...~p . (7.15) 
n=2 

Using the condition of the canonical character of the transformation (7.15), i.e. 

{~p, z~,}~= S dk fk 6~-k -- L ~5(p+q)={a'p'~q}'~' (7.16) 

we, in particular, have [32] 
3 

R(2)p+q(Pq)= 2fp+q(co(p+q)--co(p)--co(q)) V(a)P'q'-P-q" (7.17) 
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Odp 
The linear equation - ~ - = c o ( p ) @  which appears after this canonical 

transformation, possesses the recursion operator /2~ ~ = q~(p)fi(p + q), where q)(p) 
is an arbitrary even function. Let us now perform the inverse canonical 
transformation dp ~z% into the initial nonlinear system. The recursion operator is 
transformed under this transformation as follows: 

/j~qe~)--+Lpq= ~ dk f l k2  S - p, k~ ~li?;a~)ffk.,,q 

= ~dkS p,k~O(k)gk,q, (7.18) 

where Sp qa~=f 6dq ffpq = &~q In particular, formula (7.18) gives ' &%' 6dp 

Lmpq(p+q) = - 2(p(q) - q)(P))R(2)q(-p,p +q) • (7.19) 

Substitution of (7.17) into (7.19) gives exactly the expression (7.13). In a similar 
manner one can obtain the expression for L(2)pq(t,,p+a_k) of the form (7.14) and 
analogous formulae for L(3), L(4), .... So, formulae (7.18) yields the strong recursion 
operator for an arbitrary initial nonlinear system with Hamiltonian (7.1). 

VIII. Regular Recursion Operator 

In the previous section it has been shown that any Hamiltonian equation possesses 
the formal strong recursion operator. However, in the general case such a 
recursion operator is a singular one due to the denominators of the forms 

coo + q) -- coO) -- co(q), co(p + q -- k) + co(k) - coO) - co(q), 

etc., in the expressions of the type (7.13) and (7.14). Similar denominators are 
contained in the expressions for higher symplectic forms and Hamiltonians which 
are generated by the recursion operator. For example, for the symplectic form £21p q 
= (L~2(o))pq = Lpqf_q, we have 

3~o(q)- q~(p) 
QI(1)Pq(P +q) = c o O + q ) - c o O ) - c o ( q )  V(3)-P'-q'P+q ' 

(8.1) 
6(p(q) ,- p(p) 

Ol(2)pq(k'P+q- k)= co(p+q--k)+co(k)- -co(I ) ) - -co(q)  V(4)-P'-q'k'P+q-k+ . . . .  

Using formulae (7.13) and (7.14), one can easily obtain the relations between 
the coefficient functions ~3), ~,), and V(8, V(4 ) of the pair of Hamiltonians related 
by the recursion operator L ( L V H  = VH).  Equalizing the right-hand side of the 
equalities (7.13) and (7.14), taken correspondingly for V(3), V(4) and V(3), V(4 ) and, 
taking into account an obvious equality o5(/))= ~0(p)co(p), we obtain 

~ (p(p + q)co(p + q) -- (p(p)co(p) -- q)(q)co(q) 
I ~ 3 ) - " - q ' P + q  = co(p+q) - -co(p ) - -co (q )  V(3)-P"-q'P+q' 

( 8 . 2 )  

~ 4 ~ -  ~, - ~ ,  k, ~ + ~ -  k = ~o(p + q - -  k ) c o ( p  + q - -  k )  + q , ( k ) co (k )  - ~o(p)co(p)  - ~o(q)co(q) 

co(p  + q - k )  + co(k)  - c o O )  - -  co(q)  
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• V ( 4 ) - P " - q ' k ' p + q - k J  4fp+q(co(p+q)- -co(p)- -co(q) )  

( qff q + p)co(q + p) -- q)(q + p - -  k)co(q + p -  k) - q~(k)co(k) 

_ ~o(p + q -  k)co(p q 2 q -  k) + q)(k)co(k) - ~o(p)co~) - o(q)co(q)'~ 

co(p + q -- k) + c o ( k ) -  co(p) - co(q) ,1 

 o(p ) - e ( p  - k ) 

3 (P(I))-(P(q) 

• 4 A  p(co(k)-co(p)-co(k-p))  

f ~ (p  + q -  k )co(p + q -  k ) - (p( q)co( q) - (p(p - k )co~ - k) 
\ co(p + q - k) - co(q) - c o ( p -  k) 

q~(p + q - k )co(p + q - k) + qff k )co( k ) - (.p(p)co(p ) - q)( q)co( q)'~ 
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q ) ( q ) - q g ( q - k )  

3 (p(p) - p (q)  
" V(3)-p,p-k, kV(3)-q , -p+k,p+q-k+ 4 f k _ q ( c o ( k ) - c o ( q ) - c o ( k - q ) )  

( q)(p + q - k )co(p + q - k) - q)(p )co( q) - ~o( q - k )co( q - k) 

• \ - ~ - ~  q -- k) - co(p) -- co(q - k) 

q~(p + q - -  k )co(p + q -  k) + qo( k )co( k ) - q~(p )co~ ) - q~( q)co( q)'~ 

¢o(p + q -- k) + co(k) - co(p) - co(q) J 
~o(p) -- qg(q -- k) 

3 q)(p)-q~(q)  
"V(3)-q,q-~,kV(3) p,-q+k,p+q-k 4 fq k ( c o ( p + q _ k ) _ c o ( p ) _ c o ( q _ k )  ) 

[ qg( k )co( k ) - qo( q)co( q) - qo( k - q)co( k - q) 
• \. 

q)(p + q -- k)co(p + q - k) + ~o(k)co(k) - ~o(p)co(p) - (o(q)co(q)'~ 

co(p + q - k) + co(k) - co(p) - co(q) 

q)( q) - q)(p - k ) 

3  o(q) 
• V(3 ) -p , -q+k , ,+ q -kV(3 ) -q ,q  k,k+ 4 f p _ k ( c o ( p + q _ k ) _ c o ( q ) _ c o ( p _ k ) )  

( ~o( k )co( k ) -  ~o(p )co(p ) - ~9( k -  p )co( k -  p) 
@ 

\ c o ( k ) - c o ( p ) - c o ( k - p )  

(p(p + q - k)co(p + q -  k)  + qo(k)co(k) - qo(p)co(p) - qo(q)co(q)~ 

co(p + q - -  k) + co(k) - co(p) - co(q) 

(8.3) 

Recall that all functionals H~ (IgVH = VH~) are the integrals of motion for the 
initial Hamiltonian system (7.1). However, the presence of singularities (see e.g. 
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formulae of the type (8.2), (8.3)) in the coefficient functions ]/((3), V(4), -,- of the higher 
integrals of motion H1, H2, ... makes all these integrals poorly defined in the 
general case. In order that all these H,  be well defined funetionals on ~p it is 
necessary that the multiple of the form 

q)(p + q)co(p + q) -- q)(p )co(p ) -- (p ( q)co( q) 
co(/) + q) -- co(p) -- co(q) ' (8.4a) 

q~(p + q - -  k )(,o(p + q - k) + p (  k )co( k ) - q~(p )co(,p ) - (p( q)co( q) 
(8.4b) 

co(p + q - k) + co(k) - co(p) - co(q) 

would not contain the nonintegrable singularities. 
We will refer to the recursion operator, which generates the family of well 

defined Hamiltonians H,  from the well defined initial Hamiltonian H, as the 
nonsingular recursion operator. It is clear that the demand of nonsingularity of the 
recursion operator leads to certain restrictions on the form of the functions co(p), 
V~3), V~4 ) . . . .  and allows only some subclass of equations from all equations of the 
form (7.1). 

The stronger restriction on the Hamiltonian (i.e. on the functions V~2 ), V~3 ), 
V~4), ...) appears if one demands that all functions ~3), ~4), ~51 .. . .  , would not have 
singularities at all. We will refer to the recursion operator which produces such a 
family of Hamiltonians as a regular recursion operator. 

As we shall see, the properties of recursion operators crucially depends on the 
dimensionality d of the space. Let us consider subsequently the cases d = 1, d = 2, 
d > 3 .  

In the one-dimensional space the multiple (8.4) is the simplest one. For d = 1 we 
¢o 

have co(p)= Z ~nP 2" +1 and (p(p)= .~. fl,,p2,,. It is not difficult to show that for 
n = l  n = 0  

any co(p) and q0(p) the expressions (8.4) are polynomials on p, q and p, q, k. For 
example, for co=p3, (p =pZ one has 

q)(p + q)co(p + q) -- q)(p )co(p ) - ~p ( q)co( q) 

co(p + q) - co(p) - co(q) 

5pq(p + q) (pZ + pq + q 2) 5 2 2 
= = - j (p  + P q + q  ) 3pq(p + q) 

(p(p + q -- k )co(p + q - k) + (p( k )co( k ) - (p(p )co(p ) - (p( q)co( q) 
(8.5) 

c9(p + q -- k)  + co(k) - o~(p) - co(q) 

5(p + q) (q - k) (p - k) (p2 + q2 _]_ k2 _ pk  + pq - qk)  

3(p + q) ( q -  k) ( p -  k) 

5 2 2 = ~ ( p  + q  + k Z - p k + p q - q k ) .  

Thus for any c0(p) and ~o(p) the f u n c t i o n  V((3)-p,-q,p+q has no singularities. 
The expressions in the round brackets in (8.4) have no singularities, too. Let us 

choose f p = c o n s t p  - z r  1(7>0 ). It is not difficult to see that by virtue of the 
multiplers in front of the round brackets in (8.4) the expression for 
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V(4)-p,-q,k,p+q-k has poles at p + q = 0 ,  p - - q = O ,  p = 0  and q=0.  However, it is 
easy to check that the residues of V(4)_ p, -q,k,p+q-k in these poles are equal to zero 
independently of the form of V(3 ) . . . .  

So the functions I:((3), V(4) have no singularities for any o)(p) and q~(p). One can, 
however, show that the function V~5 ) has no such property. Analogously 1:((6), 
V(7) . . . .  have singularities for general V~3 ), V(4), . . . .  Therequirement for the absence 
of singularities in the expressions for all the functions V(5), V(6), ..., leads to a certain 
system of equations for V(3), V~4), V(s), ... • If these equations are satisfied, then the 
considered system possesses the regular recursion operator. By virtue of the 
cumbersome form of these equations, we omit them here. 

In the general case all the functions L(1), L(2), L(3) . . . .  , which determine the 
recursion operator, are not equal to zero, i.e. the recursion operator is the entire 
functional on z~. However, it may occur that this infinite series is interrupted on 
some (N th) term. We will refer to such a recursion operator as the N-linear 
recursion operator. It is clear that the requirement of the N-linearity of the 
recursion operator, i.e. the requirement L(N ~ ~)= L(~+ 2)= . . -=  0 leads to strong 
restrictions on the form of the functions 1:((2), V(3), V(4), . . . .  For example, in order 
that the recursion operator L be linear on z~ (i.e. L(2 ) = L(3 ) . . . . .  0) it is necessary 
that the right-hand side of (7.14) should be equal to zero, i.e. 

4 (~o(p ) -  ~ o ( q ) ) ~ _ p  _ ~,~,, +q 

cp(p)-- q~(q) 
-- fp+q(co(p+q)--og(p)--co(q)) V~3) p,-o,p+qV~3)-q .p,k,p+q-k 

+ fp -  k \co(k) - co(p) - co(k-- p) 

7 (q) - -  ~(p--  k) .~ 
+ c o ( p + q - k ) - c o ( q ) - c o ( p - k ) ]  V~a)-P'P-k'kV(a)-q'-p+k,p+o-k 

1 ( q~(q)-- q~(q-- k) 
L - , \co(k)---g-(q) q) 

cp(p) - q)(q - k) '~ 
+ c o ( p + q - k ) - c o ( p ) - c o ( q - k ) )  V(3)-q'q-k'kg{3)-P'-q+k'p+q-k~-O" (8.6) 

In addition to (8.6), the conditions on V(2 ), V(3 ), V(4) . . . .  , which mean that L(3 ) 
= L(4) . . . . .  0 should satisfied. 

In the case when Hamiltonian H is cubic on a, i.e. when V(4) = Vt5 ) . . . . .  0, the 
whole system of equations is reduced to the only equation (8.6) with V(4 ) = 0. Let us 

i 
consider this equation in the simplest cas fq = - p, ~0(p) = a + tip2, co(p) = constp3. 

After the trivial transformations Eq. (8.6) reduces to the following: 

(q - p ) V ~ 3 ) - ~ , -  q, p+~V~3~- ~ -  p,k.p . ~  -- k 

+(k--q)V~3)-p,p-k,kV~3)-q, -p+k,p+q-k 
+(p--k)V~3~-q,q-k, kV~3~-p,-q+k,p+~_k=O. (8,7) 
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It is not difficult to verify that Eq. (8.7) has the only solution V(3 ) = const within 
the class of polynomials V(3 ) .... i.e. within the class of local Hamiltonians H. 
Indeed, putting p = k = 0  in (8.7), one gets q(g(3)o,_q,q--V((3)o,o,o)[/i3).~q,o,q.=O. 
Therefore V(3)o, - q,q = V(3)o, o, o = const. 

Thus, among the nonlinear equations with three linear local Hamiltonians and 

co(p) -~ p3, only the equation with V(3 ) = ~ = const, i.e. the KdV equation, possesses 

the linear recursion operator. It is of the form 

Lp~ = (c~ + flp2)b(p + q) + 7 ~-~- q 6 ,  +q, (8.8) 
P 

where e, fl, ? are arbitrary constants. For c~ = 0,/J = - 1 and ? = - 2, the operator 
(8.8) is the recursion operator (1.2) in the momentum representation. 

Another example is the bitinear recursion operator which corresponds to the 

i 3 7 equation with co(p)= - p , V(4)= g =const,  and V(5)= V(6 ) . . . . .  0. In this case, 

L(o)p q = (c( + fip2)c~(p + q) , 

( p - -  q)q 
L(2)pq(k, p +q - k) = 7 p k - -  k(p  + q - k) ' (8.9) 

i.e. L(1 ) = L(3 ) = L(4 ) . . . . .  0, 

+oo q 
Lp~ = (ct + flp2)t~(p + q) + ? _~ dk  P _--~ ~k~p  + q_ k, 

where e, fl, ? are arbitrary constants. For ~ = 0, fl = - 1, 7 = - 1, the operator (8.9) is 
the recursion operator for the modified KdV equation (see [t  1]) in momentum 
representation. Note that the operators (8.8) and (8.9) in coordinate representation 
have been calculated by another technique in [2.8]. 

Thus, in the one-dimensional space there exist Hamiltonian equations which 
possess the regular recursion operator. For a certain subclass of these equations 
the recursion operator is the polynomial of the finite order on the field 6. 

The situation changes dramatically when we transit to the two-dimensional 
space. It is connected with the circumstance that the expressions of the form (8.4) 
have no singularities except for certain special functions co(p) and q,(p). Let us first 
consider the expression (8.4a). For  the absence of singularities in such expressions 
it is necessary that the numerator be equal to zero on the same manifold F 1' 2 as the 
denominator. This means that the dispersion law co(p) should be a degenerative 
one with respect to the decay process 1 - ,2  + 3 (for the degenerative dispersion laws 
see [34, 35]), and the dispersion law ~0(p)co(p) should belong to the class of 
degenerative dispersion laws associated with co(p). The second condition can be 

easily fulfilled if for the degenerative dispersion law co(p) one chooses (0(p) - oS(p) co(p)' 
where eS(p) is any dispersion law associated with given dispersion law og(p). A wide 
class of degenerative dispersion laws has been described in [34, 35]. 

In the description of the dispersion taws the dimension of the manifold F " "  
which is defined by the equations p l + . . . + p , = p , + l + . . . + p , + m ,  co(p1) 
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-~-... Jc(,O(pn)=O(t)n+l)-]-..,"['O(pn+m) plays an important  role. If d imF 1'2 and 
dimF 2, 2 are less than a maximal one (i.e. d imF 1' 2 < 2d - 1, dimF 2' a < 3d - 1), then 
the expressions (co(p + q )_  co(p)_ co(q))- 1 and (coCO + q -  k) + co(k)-  co(p) 
_co(q))-1 may have integrable singularities. For  such co(p) (with d imF n'm 
< max dim F"m) the nonsingular recursion operator may exist. 

If d imF n' m is a maximal one, then the corresponding nonlinear equation does 
not possess the nonsingular recursion operator. Indeed in this case, by virtue of the 
theorem proved in [35], the expressions of the form (8.4b) have nonintegrable 
singularities. The multiplers of the form 

~(p) - ~ ( p -  k) 
(0(p) -- qffq) (fk-p(co(k)-- co(P)-- co(k--p)))-' 

in front of the round brackets in (8.4) have the nonintegrable singularities too. 
Moreover, the nonintegrabte singularity is contained in the symplectic form 
f21p~(p+q) (see Formula  8.1), 

Thus, the nonlinear equations in two-dimensional space, which describe the 
nontrivial scattering of n waves into m waves (n # m) with max d imF n' m, does not 
possess the nonsingular recursion operator. In particular, the well-known 
Kadomtsev-Petviashvili  equation [1] for which d imF 1' 2 = 3 and Vo) = const has 
no nonsingular recursion operator. 

An analogous situation takes place for three and higher-dimensional spaces 
(d>=3). Since for d > 3  there exist no degenerative dispersion laws with 
m a x d i m F  "'m [35], the nonlinear equations with max d imF ~'m do not possess 
nonsingular recursion operators. Only the equations with dim F ~' m < max dim 1 ..... 
may have the nonsingular recursion operator. 

So we see that the regular recursion operator is a pure one-dimensional 
phenomenon. The proposed method of expansion over the fields (i.e, the 
perturbation theory method) seems to be adequate for an analysis of the problem 
of existence or nonexistence of the nonsingular recursion operator  in the 
multidimensional spaces. All the results of Sects. 7 and 8 can be generalized to the 
case of the systems of equations (6.1). 
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