
in pr inciple  be obse rved  f rom the ex t e r io r  f r a m e  of r e f e r ence .  

Equation (26) within the body has the solution 

~t ~ 3 m  R 
P=r  + 2-~-," R 2R0 ' 

this being fitted to the ex t e r i o r  solution (47) at the boundary.  

We have cons idered  a model for  which the p r e s s u r e  is ze ro ,  and even in this case  we have no 
ca tas t rophic  s t rong c o m p r e s s i o n  of the m a t t e r .  In rea l  objects ,  the p r o c e s s  of gravi ta t ional  contract ion 
will be even weake r .  Since, as was shown above,  the growth in the density of the col lapsing body in the 
comoving f r a m e  is halted, the re la t iv i s t i c  theory  of gravi ta t ion  contains a new phenomenon - gravi ta t ional  
r e s t r a in t .  It  is by v i r tue  of this phenomenon, with allowance for  the mechan i sm of format ion  of neutron 
s t a r s ,  that it is in pr inciple  imposs ib le  for  objects  with density g r e a t e r  than 10 ~6 g / c m  3 to be fo rmed .  If 
objects  with g r e a t e r  dens i ty  exis t  at all, they can only have a p r imord ia l  or igin .  Thus,  in pr inciple ,  a 
s ingular i ty  does not a r i s e  during gravi ta t ional  contract ion in the re la t iv i s t ic  theory of gravi ta t ion.  

We a re  very  grateful  to S. S. Gershte in ,  V. A. Sadovnichii, and A. N. Tavkhel idze for  valuable 
d i scuss ions .  
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M A X W E L L - B L O C H  E Q U A T I O N  A N D  T H E  I N V E R S E  

S C A T T E R I N G  M E T H O D  

I . R .  G a b i t o v ,  V . E .  Z a k h a r o v ,  
and A . V .  M i k h a i l o v  

The inve r se  sca t te r ing  method is used to cons t ruc t  genera l  solutions of the M a x w e l l -  
Bloch sys t em,  these solutions being de te rmined  by specif icat ion of the polar iza t ion  
as t -* -oo.  The solutions a re  c lass i f ied .  An approx imate  solution is obtained for  
the mixed boundary-va lue  p rob lem for  the Maxwel l -Bloch  s y s t e m  descr ib ing the 
phenomenon of supe r f luo rescence  (generation of a pulse f rom initial f luctuations of 
the polar iza t ion  in a m i r r o r l e s s  l a se r ) .  

I n t r o d u c t i o n  

Among the numerous  nonl inear  equations of mathemat ica l  physics  now known to which the inverse  
sca t t e r ing  method can be applied, an impor tan t  pa r t  is played by the s y s t e m  of Maxwel l -Bloch  (MB) equations.  
We shall  wr i te  this s y s t e m  in the fo rm 

+0 (Ilt 
Ot i~x - 

0__pp +2iLp=NeT, (I. 2) 
Ot 
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ON i 
- - - ( ~ * p + ~ p * ) .  ft. 3) 

0t 2 

Here ,  [~=~(t,x) is a complex  function of the coordinate  x and the t ime  t, and p = p( t ,  x, 4) and N = 
N(t,  x, k) a r e  complex  and rea l  functions of x, t, and the additional p a r a m e t e r  4. The b racke t s  ( ) denote 
averag ing  o v e r  k with given weight function g (4 )  > 0, 

g(~)a~--l, <o>= ~g(x)o(t,x,~)a~. (L4) 
- - r  - - ~  

Equations (i. 1)-(i.  3) a r i s e  in many p rob l ems  of phys ics .  The mos t  impor tan t  is the applicat ion of 
this s y s t e m  to the p rob lem of the propagat ion  of an e lec t romagne t ic  wave in a medium with d is t r ibuted two-  
level  a toms ,  in pa r t i cu l a r ,  to the p rob lem of se l f - induced t r anspa rency ,  and also to l a s e r  type p r o b l e m s  - 
of quantum ampl i f i e r s  and supe r f l uo re seence .  In all  these  ca se s ,  ~ ( t ,  x) is the complex envelope of an 
e l ec t romagne t i c  wave of fixed polar iza t ion,  and N and p a r e  e lements  of the density ma t r i x  of the a tomic 
subsys t em,  

p* - N  " 

The p a r a m e t e r  4 is the deviation of the t rans i t ion  f requency of the a tom f r o m  its mean value,  and the 
function g desc r ibes  the shaped of the spec t r a l  l ine.  Equations ft. 2)-f t .  3) can be wri t ten in the ma t r ix  fo rm 

-~^=~[- I~+H,  ~], (!. 6) 

i: [0 0 ]  ! 
O J" ft. 7) 

The MB s y s t e m  ft. 1)-ft .  3) became  well  known a f t e r  the pape r s  of Lamb [1,2]. In the following y e a r s ,  the M]3 
equations were  the subject  of a ce r t a in  num be r  of s tudies ,  among which we should mention [3] of Ablowits,  
Kaup, and Newell .  In this paper ,  in pa r t i cu l a r ,  it was es tab l i shed  that the inve r se  sca t t e r ing  method can be 
applied to the MB equations;  in fact ,  the MB equations a r e  one of the f i r s t  examples  of the success fu l  use  
of the method; the solutions of Eqs.  (I. 1)-ft. 3) descr ib ing  the physica l  phenomenon of se l f - induced t r a n s -  
pa rency  have a lso  been fa i r ly  fully studied.  In [3], as  in the ma jo r i ty  of o ther  s tudies ,  a ve ry  p a r t i c u l a r  
c l a s s  of solutions of  the MB s y s t e m  was cons idered;  for  it o -~ 0 as t ~ - ~ .  These  solut ions a r e  
sufficient  to desc r ibe  the propagat ion  of an e l ec t romagne t i c  wave in a s table  absorbing  medium (the case  of 
se l f - induced t r anspa rency) ,  but, in genera l ,  a r e  not suff icient  for  descr ib ing  waves  in an unstable medium,  
which is c h a r a c t e r i s t i c  of l a s e r  p r o b l e m s .  This  is explained by the fact  that until recent ly  the inverse  
sca t t e r ing  method has not been applied s y s t e m a t i c a l l y  to l a s e r  p rob l ems  (an exception is [4], in which the 
asympto t ic  behav ior  of pulse propagat ion  in a tong quantum ampl i f i e r  in the absence  of f luctuations of the 
polar iza t ion  is cons idered) .  The foundation of the sy s t ema t i c  appl icat ion of the inve r se  sca t t e r ing  method to 
l a s e r  p rob l ems  was laid in [5], which introduced the concepts  of "spontaneous"  and "causa l"  solutions of 
the s y s t e m  (I. 1)-(I.  3). In the p r e s e n t  paper ,  we p r e s e n t  genera l  solutions of the MB sys t em,  these being 
de te rmined  in p a r t i c u l a r  by the speci f ica t ion of p (t, x, 4) as t -~ -~o, and we c lass i fy  these  solut ions .  
Our solutions desc r ibe  in pr inc ip le  the impor tan t  phenomenon of supe r f luo rescence  - the genera t ion  in a 
m i r r o r l e s s  l a s e r  of a pulse f r o m  initial f luctuations of the polar iza t ion;  however ,  the solution of this 
p rob l em leads to a mixed boundary-va lue  p r o b l e m  for  the s y s t e m  (I. 1)-(I.  3). As a rule ,  mixed p rob l ems  
a re  not amenable  to solution by the inve r se  sca t t e r ing  method.  We have succeeded,  apparent ly  for  the f i r s t  
t ime,  in obtaining an effect ive approx imate  solution of the mixed p r o b l e m  descr ib ing  supe r f luo rescence  for  
l a s e r s  of not too g rea t  a length.  We note that for  such l a s e r s  in the case  of an infinitely nar row line an 
approx imate  solution to the supe r f luo re scence  p rob lem can be obtained in an e l emen ta ry  manner ;  fu r ther ,  
the cons t ruc t ion  developed in the p resen t  p a p e r  makes  it poss ib le  to just ify m o r e  r igorous ly  the method 
proposed in [6, 7]. We note also that the development  of the technique of the inve r se  sca t t e r ing  method for  
the s y s t e m  (I. 1)-(I.  3) includes not only the solution of the mixed p rob lem but a lso  has  a number  of f ea tu res  
that a r e  nonstandard f rom the point of view of the i nve r se  sca t t e r ing  method and a r e  of independent in t e res t .  

1 .  G e n e r a l  S t r u c t u r e  o f  t h e  S o l u t i o n  

We cons ide r  the following ove rde t e rmined  s y s t e m  of l i nea r  equations for  the ma t r ix  function 
�9 (t, x, X): 
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a T  =~(-IZ+H) ~, 
0t 

ax _~ ~l--~, 

(1. i)  

(1.2) 

and requ i re  Eqs.  (1.1) and (1.2) to have a common fundamental  solution. Equations (1.1) and (1.2) can be 
wri t ten  in the fo rm 

a T  OW 
- - = U W  , = VVi r, (1.3) 

~t Ox 
where 

_~ ~1-~. 

The conditions of compat ibi l i ty  of the s y s t e m  (1.3) have the fo rm 

aU 0V 
Eg_EF+[u, v]=0. (1.5) 

By di rec t  calculat ion we ver i fy  

PROPOSITION 1. Equation (1.5) with U and V specif ied by (1.4) is equivalent to the s y s t e m  of 
Maxwel l -Bloch  equations ft. 1)- (I. 3). 

Proposi t ion  1 ensu re s  that the inve r se  sca t t e r ing  method can be applied to the s y s t e m  (I. 1)- ft. 3). 
In the usual fo rm of the method [8], it is a s sumed  that U and V a re  rat ional  functions of the spec t r a l  

p a r a m e t e r  k. In our  case ,  a ra t ional  dependence holds only if g(~.)= L g ~ 6 ( ; . - ~ ) ,  i . e . ,  the line shape 

cons is t s  of a d i sc re te  set  of infinitely nar row l ines .  However ,  following [3], it is expedient to cons ide r  the 
genera l  case  of a continuous function g ( k ) ,  when the function V has a cut along the rea l  X axis .  

We cons ider  Eq. (1.1) in the c lass  of coeff icients  $ ( t ,  x) that dec r ea se  rapidly with r e spec t  to t 
and sa t i s fy  the condition 

I~( t , x )  Id t<~ (1.6) 

(physically, this co r r e sponds  to cons ider ing  pulse p r o c e s s e s ) .  We pose for  (1.1) the sca t t e r ing  p rob lem,  
introducing se ts  of Jos t  functions - solutions X + of Eq. (1.1) that a re  de te rmined  by the asymptot ic  behaviors  

~ (~exp( - i I~ t ) ,  t -~•  (1.7) 

and de te rmine  the sca t t e r ing  ma t r ix  S in accordance  with 

)C=X+S, S=S(x ,  ~). (1.8) 

As is well known (see [10]), the S ma t r ix  has the fo rm 

where  la[~+[bl2=l. The function a(x, ~) is analytic in the upper  hal f -p lane  Im X > 0 and, the condition (1.6) 
being sa t is f ied ,  has there  a finite number  J of z e ro s  kj, these  being eigenvalues of the spec t ra l  p rob lem 
(1.1). The cor responding  eigenfunctions can be de te rmined  by the asymptot ic  behaviors  

i~F~-* exp (ik~t) 
and then 

L~,, ... (c, exp(-~,O 
0 / ,  t - ~ - - ~ .  

The function c(x, ~)=b*(x,  Z)/a(x, ~) and the se t  of constants  ~ ,  c~ fo rm the T'scattering data"  for  the 
J 

spec t ra l  p rob l em (1.1). If the function ~( t ,  x), sa t i s f i es  the eonditmn 
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!g( t ,  x)[<~z exp (2~t) (1.1 o) 

as  t -> -~o, and 3/ > max Im Xj, then the ma t r ix  S can be analyt ical ly  continued into the s t r ip  Im k < y 
of the upper  ha l f -p lane .  In this case ,  cj=b*[~=~. We denote M~=(c/a)' ~=,~ and cons t ruc t  the function 

F(t,x)~= exp(--ikjt)q: c(x,7.)exp(--gt)d7.. 

If the condition (1.10) is sa t i s f ied ,  
can be r ewr i t t en  in the fo rm 

the function c(x, k) is meromorphie in the strip 

(zo~I) 

7 > [ m X >  0, and (1 . t l )  

~ + i ' r  

e(t, x) = ~ j" c(x, ~,) ~xp (-:~,~t) e~.. (1.1~.) 
- -~+ i~  

The cons t ruc t ion  f r o m  ~( t ,  x) of the se t  of sca t t e r ing  data e (x ,  ~.), Xj, oj (the solution of the d i rec t  
s ca t t e r ing  p rob lem)  defines a mapping ~ F .  This  mapping is one to one - to inver t  it, it is n e c e s s a r y  to 
solve for  all  t the s y s t e m  of in tegral  equations (lVIarehenko equations) 

t 

K, (t, ~, x) =F(t§ x) + ~K~ (t, ~, x)F(~+~, x)d~, (1.13) 

t 

K2 (t, ~, x) = -  ~ K, (t, ~, x) F* (~+~, x) d~. (1.14) 

Then 
~( t ,  x) =4K~(t, t, x), (1.15) 

i [~ (t, x) [ 2 dt=-4K~ (t, t, x). (1.16) 

The mapping ~ F  is r e m a r k a b l e  in that the function F,  as shown below, sa t i s f i e s  a l i nea r  in tegrodif ferent iaI  
equation. 

It  follows f rom Eqs.  (I. 2) and (I. 3) that 

In what follows, we shall  se t  

Going to the l imi t s  t --+ • we obtain 

-~t(i p I ~+NO =0. 

]p[~+N==l. (1.17) 

p-~exp (--ilkt)p• exp (iIT.t). (1.18) 

~:=[ v~(z'i') r• ] (1.19) 
( r  ~ (x, 7.))* -v• (z, ~)J" 

Here ,  p•  k) a r e  t--independent m a t r i c e s  

(1.20) 

(I.21) 

F r o m  (I. 2), 
t 

p (t, x, 20 =exp (--2iM) ~ N (% x, 7.) e~ (~, x) exp (20~) dr+r- (x,)~) exp ( -2&t) .  

In the l imi t  t --+ - ~ ,  we can in (1.20) make  the subst i tut ion N --+ v - (x ,  ~). 
l inear ized  equation 

( ~7-~x)~'( t ,x)= ~d~ Iv-(x,)~)gO~)exp[2i)~(~:--t)]~(%x)d7.+~ r-(x,~)exp(--2i)vt)g()~)d)~. 

PROPOSITION 2. The function F(t, x) = �88 x), where F is the kernel of the Marehenko 
equations, satisfies the linear inhomogeneous equation (1.21). 

To prove this, we consider the common solution ~I, 0 of Eqs. (i. I) and (1.2) (note that the Jost 

The field ~ now satisfies the 

331 



function 

The functions ~+(x,  ~) for  given 
the l imit  t -~ +r We denote 

• does not sa t i s fy  Eq. (1.2)) and decompose  it with r e spec t  to the functions ~• 

W0=Z+O+=X-@ -. (1.22) 

~ : (x ,  k) sa t i s fy  l inea r  equations that can be obtained by going in (1.2) to 

/~/:~(x,X)= lim ~ exp['I(X--n)tlp~(x'~l! exp[-iI(~ '-~l) t]  

Using the well-known fo rmula  

r ; f ( n )  ~m j - -  exp (i~lt) d~l=• 

r N • (x, ~) 
~:~ (x, ~) = [ 

•  • (z, ~) )*g (~.) 

~• k) sa t i s f i es  the equation 

Oq) • 
Ox 

we obtain 

The function 

gOi)d~). (1.23) 

~ i r •  (x, )~) g(~.) ] ~ f~(~ ,~)  ] N• = j------T---- g ('q) d~l. (1.24) -lV• _~ ' ~ - ~  

- - -  iM ( 1 ) ~ + - ~ / } • 1 7 7  (i. 25) 

Compar ing  (1.22) and (1.8), we find 

F r o m  (1 .25)and  (1.26), 

Substituting in (1.27) the S 

S=@+ (O-) -~. (1.26) 

i (1 27) -~Sx --i~ [ ISl +~-~- (R+S-SR -) =0, 

matrix in the form (1.9), and making simple calculations, we obtain for a and b 

Oa /a [ v + (x, Tl) - - v -  (x, TI) ~x="~'.=' ~ g(~l)d~l' (1.28) 

Ob - 2#~b* + ib* (~+ (x, '1)-~- (x, ,]) g(,1)d,1 + : ~ - g 0 0 a r - .  (1 29) 
o~= T X  n-z+~0 

F r o m  (i. 27) we have fo r  c=b*/a 

where  

O$ iep (x,)~)c=--~ g()~)r-(x,)~), (1.30) 

�9 _~ , ] ' -~ ,+ iO  

is a function that is analytic in the upper  ha l f -p lane  of ~. 

The genera l  solution of Eq. (1.30) is 

c(x, ~) =c,(x, ~)+c~(x, )0, 

c,(x, )~)=c0(~) exp [it(x, )~) ], 

c2(x,~.)=-~gO~) i exp[i(~(x,)~)-~(y,)~) ) lr-(y,)~)dy. 
o 

(1,31) 

(1.32) 

(1.33) 

(1.34) 

Here ,  c0 0,) ----c (0, ~)~(x,)~)---= ~q~(g,~.)dg is a function analyt ic  in the upper  hal f -p lane  Im ). > 0. Equation (1.30) 
0 

proves  Proposi t ion  2 in the case  when there  is no d i sc re te  spec t rum in the p rob lem (1.1); for  making a 
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F o u r i e r  t r an s fo rma t i on  in (1.30), we see  a f t e r  s imple  calcula t ions  that L~ (t, x)  = F(2 t ,  x)  sa t i s f i e s  
Eq. (1.21). 

If there  is a d i sc re t e  s p e c t r u m ,  we use the following device for  the proof:  We cons t ruc t  se t s  
of functions c j ( x ,  7~), f j (x ,  h) that a r e  analyt ic  in the s t r ip  0 < Im 7 < 3' and converge  on the rea l  axis :  

c~~ ]~(x, s  ~,), ] ~ ,  IMP=0. 

It follows f r o m  Eqs .  (1.32)-(1.34) that for  all  j the solutions of Eq. (1.30) a re  analytic in the s t r ip  0 < Im 
< y .  Applying to them Eq. (1 12), we see  that all  F . ( t ,  x)  sa t i s fy  Eq. (1.21). Going to the l imi t  j --* 
we see  that this is t rue  for  F (t, x ) ,  and this comple t e s  the p roof  of Propos i t ion  2. 

F r o m  Eqs .  (1.28)-(1.29),  we can obtain the law of var ia t ion  of the sca t t e r ing  data with r e s p e c t  to x.  
It  follows d i rec t ly  f r o m  (1.28) that the ze ros  do not depend on x: 

OX~/Ox=O. (1.35) 

F o r  M~=c~/aj we have 
Mj(x)  =M~ ~ exp [i~(x, ~,j) ]. (1o 36) 

Equations (1.28) and (1.29) a r e  fo rmal ly  l inear ,  but in rea l i ty  they a r e  nonl inear  because  the functions v~(x, k) 
a r e  not independent.  

We r e p r e s e n t  the m a t r i x  o ( t ,  x, ~.) in the f o r m  

(1.37) 

Substituting (1.37) in (I. 6) and taking into account  (1.1), we see  that the ma t r ix  P0 does not depend on the 
t ime .  Going to the l imi t  t ~ ~=oo and using Eqs.  (1.22), (1.7), and (1.18), we obtain 

Hence and using (1.26) we find 

F r o m  (1.38), 

p+=So-S- ' .  (1.38) 

v+=v - ([al ~- ] bl ~) - a ' b *  (r-) * - a b , - ,  (1.39) 

r+=2b*av - - (b~r -)  *+aZr -. (1.40) 

Substituting (1.39) and (1.40) in (1.28) and (1.29), we obtain the n e c e s s a r y  equations for  a(x, ),), b*(x, )~), 
which need not be wr i t ten  out he r e .  In the specia l  case  r -  = 0, v-  = - 1  they a re  identical  to the equations 
cons t ruc ted  in [3]. Note that to cons t ruc t  the genera l  solution of the MB equation it is n e c e s s a r y  to solve 
Eq. (1.30) for  the function c(x ,  X), which, as in [3], is a l i nea r  but now inhomogeneous equation.  

Af ter  t rans i t ion  to the function F (t, x)  and solution of the in tegra l  equations (1.13)-(1.14),  the 
exp res s ions  (1.32)-(1.34) give the genera l  solution of the MB equations q. 1)-(t ,  3). 

2. Causa l  and S p o n t a n e o u s  S o l u t i o n s  

We now turn to the interpretation of our general solution. It is determined by the scattering data 
at x=O: c0(k), )~., Mj ~ and also by the specification of the function r-(x, k); in addition, it is necessary to 
specify the sign of 

v-(x, s  ~)r-. (2.1) 

The minus sign in (2.1) de sc r ibe s  the propagat ion  of waves  in a s table  medium in which the lower  level  of 
the a tomic  s u b s y s t e m  is m o r e  populated than the upper .  In con t ras t ,  the plus sign in (2.1) means  that waves  
propagate  in an unstable medium with population invers ion .  We shall  a s s u m e  that this medium occupies  the 
posi t ive  ha l f -ax i s  0 -< x < ~o, and that in the l imi t  t ~ -0o there  was "p repa red"  i~ this medium a ce r t a in  
s ta te  of  the a tomic  s u b s y s t e m  c h a r a c t e r i z e d  by the fluctuation polar iza t ion  t - ( x ,  X) and population u - (x ,  }~)~ 
Subsequently,  this polar iza t ion ,  evolving, is the source  of genera t ion  of the e l ec t romagne t i c  field ~(t~ x). 
In addition, there  is incident on the medium f rom without at the point x = 0 an e lec t romagne t ic  field pulse 
$0(t), which de t e rmines  a f t e r  the solution of the d i rec t  s ca t t e r ing  p r o b l e m  the function %(~.) and the 
p a r a m e t e r s  ~j M~ 

' .7" 

Two c l a s s e s  of p a r t i c u l a r  solutions of the MB equations a r e  natural ly  dis t inguished.  Suppose 
r - ( x ,  ~.) = 0; then the solution is comple te ly  de te rmined  by the incident pulse  $=0(t). Such solut ions,  to which 

333 



the t e r m  c~(x, k) c o r r e s p o n d s  in (1.32), we shal l  cal l  c ausa l .  This  can be mot iva ted  as  fol lows.  Suppose 
the pulse  en te r ing  the med ium sa t i s f i e s  the condi t ion $ 0 ( t ) = 0  fo r  t < to; then c0(k)  is a funct ion analyt ic  
in the upper  ha l f -p lane  and has  poles  at the points  X = Xj with r e s i d u e s  M) .  It can  be ver i f i ed  (we shal l  not 
dwell on the p roo f  of this  fact ,  which can be deduced f r o m  the in tegra l  r e p r e s e n t a t i o n s  fo r  the J o s t  functions)  
that  the function c o admi t s  as  X -~ ~ ,  Im  k > 0 the e s t ima te  

Ic0(~) [<c0~' exp (-2lm~t0)/[~l.  

It can  be seen  f r o m  (1 .3D that  in the l imi t  X ~ 

q~(x, ~)-+2~, ~(x, ~)~2~x. 

Thus ,  t he  in tegrand  in (1.12) has  f o r  Ira X > 0 the a sympto t i c  behav io r  exp[ iX(2t  0 - t + 2x)] ,  so that  
F ( t ,  x )  = 0 for  t < 2( t  0 + x ) .  It now follows f r o m  the Marchenko  equat ions  (1 .13)-(1 .14)  that  $ ( t ,  x ) = 0  
for  t < t o + x. This  means  that  the causa l  solut ion for  a potent ia l  of finite range  has a f ront  which p r o p a -  
ga tes  into the m e d i u m  with the ve loc i ty  of  l ight,  in comple te  a g r e e m e n t  with the notion of  causa l i t y .  

Now suppose  the re  is no incident  pu lse :  $0( t )=0 .  Then  the solut ion is en t i r e ly  d e t e r m i n e d  by the 
spec i f i ca t ion  of  the po la r i za t ion  f luctuat ions  r - ( x ,  k),  and we shal l  cal l  it spontaneous .  In this c a s e ,  the 
function c (x, X) is d e t e r m i n e d  by (1.84).  F o r  spon taneous  so lu t ions  a(0, ~.)=t, 

x 

a(x, ~,) =exp [--~ ~l -~'+iO (2.2) 

and a(x, ) 0 # 0  fo r  Im  k > 0. Thus ,  f o r  spon taneous  solut ions  the s p e c t r a l  p r o b l e m  (1.1) does not have a 
d i s c r e t e  s p e c t r u m .  The ge ne ra l  so lut ion is a l i n e a r  supe rpos i t i on  of  a causa l  and a spontaneous  solut ion.  

We c o n s i d e r  one f u r t h e r  spec ia l  c l a s s  of sol i ton so lu t ions ,  fo r  which t - ( x ,  k) = c0(h)  = 0; they 
a r e  en t i r e ly  de t e rmined  by the d i s c r e t e  s p e c t r u m  of the p r o b l e m  (1.1).  F o r m a l l y ,  sol i ton solut ions  may  be 
of  the causa l  type,  but fo r  u-  > 0 they have a s t rong ly  degene ra t e  na ture ,  a r e  uns table ,  and t h e r e f o r e  do 
not have phys ica l  meaning .  

We r ewr i t e  the e x p r e s s i o n  (1.31) f o r  go(x, k) in the f o r m  

_= ~-----~ - T ~ g ( z ) ~ - ( ~ , ~ ) .  
(2.3) 

In a s tab le  med ium,  u -  < 0 and the exponent ia l  in the causa l  solut ion (1.33) is a d e c r e a s i n g  function as  
x ~ ~,  so that  c 1 --* 0 as  x - )  oo. At suff ic ient ly  g r e a t  d i s t ances ,  the causa l  solut ion b e c o m e s  a pu re ly  
sol i ton  solut ion;  in the language  of  non l inea r  op t ics ,  it goes  o v e r  into a se t  of  in t e rac t ing  2u pu l s e s .  This  
is the e s s e n c e  of the phenomenon  of  s e l f - i nduced  t r a n s p a r e n c y .  

In a spontaneous  solut ion in a s tab le  med ium,  the in tegra l  in (1.34) is de t e rmined  in the l imi t  x -~ r 
by the ne ighborhood of the point  x.  We have 

~ig (~) (2.4) c2(x,E)-+ 2T(x,~.)-r-(x,X). 

F o r  a value of  the po la r i za t ion  r - ( x ,  X) which is un i fo rmly  smal l  with r e s p e c t  to x, a spontaneous  solut ion 
r e m a i n s  un i fo rmly  sma l l .  In a med ium with populat ion inve r s ion ,  when tJ- > 0, the a sympto t i c  behav io r  of 
the gene ra l  so lut ion as  x -~ ~ has  the f o r m  

o 

In the gene ra l  c a s e ,  the e x p r e s s i o n  in the squa re  b r a c k e t s  in (2.5) is not equal to z e r o .  At the s a m e  t ime ,  
c ( x ,  k) i n c r e a s e s  exponent ia l ly  as  x ~ ~ .  Since c=b*/a~ and the coef f ic ien ts  a and b a r e  r e l a t ed  by 
la12§ it fol lows that  as  c-~o% a-+0, Ib[-+i, so that  the S m a t r i x  takes  the f o r m  

[ 0 exp[i(z(x,~,) ] ] Im~(x,)O =0. 
S---- exp [--in(x, )~) ] 0 ' 

Subst i tut ing (2.6) in (1.39), we see  that  now as x-~oo v+-+-v  -. This  means  that  o v e r  suf f ic ient ly  g r e a t  
lengths  the re  is a r e v e r s a l  of the populat ion of the med ium,  the populat ion inve r s ion  becoming  no rma l  

(2.6) 
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population. 

If the initial pulse is chosea special ly in such a way that 

co(~) = - -  2 g(~) f r-(y,~)exp[--i~(y,~,)]dy, (2.7) 

then c(x,  ~) remains  bounded for all x and complete reversa l  of the population of the medium does not 
occur .  In par t icu lar ,  this is t rue for  purely soliton solutions, when r -  = 0, c o = 0. However, all these 
situations are  unstable - a small  deviation f rom fulfillment of the condition (2.7) is sufficient for there to be 
complete r eve r sa l  of the polar izat ion.  A purely soliton solution is unstable.  This instability explains the 
well-known paradox of superluminal  propagation of pulses in a medium with population inversion.  It is easy 
to calculate the one-sol i ton solution (see, for  example, [9]), for  which 

~Y(t,x)=2qsech{~][t--tQ--x( i--~---~ ~)z_t_,z . 

Here, ~? and t o are  independent p a r a m e t e r s .  Although the soliton (2.8) has superluminal velocity, no 
information can be t ransmit ted by means of it, since the shape of the soliton on the complete axis - ~  < 
t < ~ can be uniquely recovered  f rom its behavior  in an a rb i t ra r i ly  small  neighborhood of any instant of 
t ime.  If there is the sl ightest  deviation f rom the form (2.8), there a r i ses  a breaking front of the medium 
population, this propagating with the velocity of light. It is for this reason that all purely  soliton solutions 
are  unstable.  

3.  T h e  C a s e  o f  an  I n f i n i t e l y  N a r r o w  L i n e  

F r o m  the point of view of physics ,  a very  interest ing case is that in which the spect ra l  line is 
infinitely narrow, i . e . ,  

g (~) =5 (Z). (3.1) 

This case can also be real ized for a finite line width if the e lectromagnet ic  field pulse ~(t,  x) is sufficiently 
narrow (as we shall see below, this is the case  for  any form of the initial pulse at the exit of a long laser ) .  
In the case (3.1), Eqs.  (I. 1)- (I. 3) take the form 

( - ~  +-Tx) ~ 0_N= t (~.p+~O,) .  (3.2) ~ . = p , 0  0 =N~T, 0t 2 

In the limit ~ 0  , Eqs.  (3.2) have only two solutions p = 0, N = • these corresponding to unstable and 
stable media in the complete absence of fluctuations. To const ruct  the general  solution of the sys tem (3.2), 
it is convenient to cons ider  the l imit  f rom the situation with finite line width. 

To simplify the t reatment ,  we assume that the line profile g(X) is descr ibed by the Loreatz  function 

e ( 3 . 3 )  

and that the initial fluctuations r - ( x ,  X) are  small ,  so that we can set v- (x ,  X) = • Then 

r =2~, + " ; ~ -  (3.4) 
2 ( ~ , + ~ )  ' 

and as e -> 9 the exponential 

exp [i; (x, E) ] =exp [ i ( 2~, -t- 2 (Eq-ie) 

acquires  an essential  s ingular i ty  at the point k = 0. We cons ider  f i rs t  the case  of a medium with normal 
population, v- = -1 .  Since g ( e )  ~ ~ as e --) 0, the asymptot ic  expression (2.4) is satisfied in this l imit 
for  all x > 0. Substituting (3.4) in (2.4), we obtain 

c2 (x,  t~) = i e r -  (x, 1~) (3.5) 
( ~ - ~ s )  [ 4 ~ ( ~ + i ~ ) - t 1  " 

After  substitution in (1.11) we find that the function 
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Fsp(t, x ) =  ~nnJ c2(x, )~)exp(-i)~t)d~ 

tends  for  any f ini te  t to ze ro  as e --> 0. 
n o r m a l  popula t ion  in the ca se  of an in f in i t e ly  n a r r o w  l i ne .  

F o r  causa l  so lu t ions ,  we have 

T h e r e f o r e ,  spon taneous  so lu t ions  do not ex i s t  in  a m e d i u m  with 

x )-i)~t]d~. (3.6) 
2(~+ie) 

Thus ,  the i n t e g r a t i o n  with r e s p e c t  to k is  t aken  a round  the e s s e n t i a l  s i n g u l a r i t y  in the uppe r  h a l f - p l a n e .  

It can be s e e n  f rom (1.33) that  in the l i m i t  e --> 0 the funct ion c (x ,  X) a c q u i r e s  a r e m o v a b l e  
s i n g u l a r i t y  c (x ,  X) = 0. With a l lowance  for  c~b*/a, lal2+lbl~-~t it  fol lows f r o m  this  that  b(x, 0)=0,  ta(x, 0)] 
= i .  F r o m  (1.39), we now have v + = v - .  F u r t h e r ,  f r o m  Eqs .  (1.28) and (1.29) we find 

1 ~=0, ~-~ 

Qual i ta t iveIy ,  the p ropaga t ion  of a causa l  pu l se  in a m e d i u m  with n o r m a l  popula t ion  and in f in i t e ly  n a r r o w  
l ine  d i f fe rs  f r o m  the ea se  of a l ine  of f in i te  width by the a b s e n c e  of damping  of the nonso l i ton  pa r t  of the 
so lu t ion  ( therefore ,  this  e a s e  can  be ca l l ed  undamped) .  N e v e r t h e l e s s ,  in th is  ea se  too t h e r e  is  a s e p a r a t i o n  
of the so l i ton  p a r t  of the so lu t ion  due to the d i s p e r s i o n  s p r e a d i n g  of i ts  nonso l i ton  p a r t .  

Going o v e r  to a m e d i u m  with  popula t ion  i n v e r s i o n ,  v -  = 1, we find for  the c a u s a l  c o n t r i b u t i o n  to F 
an e x p r e s s i o n  ana logous  to (3.6): 

Qua l i t a t ive ly ,  a causa l  so lu t ion  in  the case  wi th  popula t ion  i n v e r s i o n  and n a r r o w  l ine  does not d i f fer  f r o m  the 
c a s e  of a l ine  of f ini te  width;  in  both c a s e s  t he r e  is  t r a n s i t i o n  f r o m  popula t ion  i n v e r s i o n  to n o r m a l  popula t ion .  
In a m e d i u m  with  popula t ion  i n v e r s i o n  and n a r r o w  l ine  spon taneous  so lu t ions  ex i s t .  

F o r  g(X) = 5 (~) ,  the m a i n  c o n t r i b u t i o n  to the i n t e g r a l  (1.34) as )~ --) 0 is  made by the ne ighborhood 
of the point  x = 0. T h e r e f o r e ,  we can  make  the a p p r o x i m a t e  subs t i t u t i on  r - ( x ,  k) = r - ( 0 ,  k) = r ( X ) .  With 
a l lowance  for  th i s ,  fo r  the spon taneous  c o n t r i b u t i o n  to the k e r n e l  Fsp of the Marehenko  equa t ion  we have 

~ ~ r(~,) t-exp[i~p(X)X] exp(_i~t)dL (3.8) 
Fsp(t, x) = -- ~ _ |  i+4~,(~+i~) 

We a s s u m e  that  r is  ana ly t i c  in a c e r t a i n  disk with c e n t e r  at  the o r i g i n  and r ad ius  So, and we 
d e f o r m  the con tou r  in  such a way that  i t  p a s s e s  below the o r i g i n  a round  a c i r c l e  of r a d i u s  e 0. In the l i m i t  
e -~ 0, the i n t e g r a l  a round  the new con tou r  - it  does not  depend on e - t ends  to z e r o .  However ,  in  mak ing  
the de fo rma t ion  of the con tou r  we pas sed  through the s i n g u l a r  point  k = - i s ,  whose  r e s i d u e  m u s t  be taken into 
accoun t .  In the l i m i t  e ---) 0, we have 

Fsp(t ,x)~ ~r(~)exp [ ~( 2~-~ ~-~ l T--i~,t] d~," (3.9) 

The  i n t e g r a t i o n  in  (3.9) is  a round  a c i r c l e  of s m a l l  r a d i u s  with c e n t e r  at  the o r i g i n .  The e x p r e s s i o n  
(3.9) d e s c r i b e s  the spon taneous  so lu t i ons  as  g() . )  --) 5 (~ ) ;  i t  i s  obvious  that  F ( t ,  x )  = 0 at  x = 0. 

In  (3.9), r ( k )  m u s t  be unde r s tood  as  the g e r m  of a func t ion  ana ly t i c  in the ne ighborhood of k = 0. 
As can  be s een  f r o m  Eqs .  (3.2),  p ---) 0 as  t --) - ~ .  Th i s  holds  for  the tota l  p o l a r i z a t i o n  ~o) in Eqs .  i f . l ) -  
([ .3).  F o r  the s i m p l e s t  of the so lu t ions  of the type (3.9), r ( k )  = r 0 = coas t .  In th i s  c a s e ,  Fsp ( t  , x )  has  
a s e l f - s i m i l a r  n a t u r e :  

I'OX 
Fsp(t, x) = : Ii (]]2x (t--2x)i, (3.10) 

2Y2x(t--2x), - 

We note a l so  that  in  the l i m i t  e --> 0 the l eng th  of the r eg ion  in  which t he r e  is  r e v e r s a l  of the 
popula t ion  i n v e r s i o n  tends  to z e r o .  T h e r e f o r e ,  fo r  a l l  x we ob ta in  f r o m  (1.28) v + = - v -  = - 1 .  F r o m  (1.28) 
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and (1.29) we now have 

a(x, ~.) ~exp (-ix/2)~), b(x, )~) =exp (2i~.x). 

Thus, a(x, s has for  spontaneous solutions an essential  s ingulari ty at the point X = 0. 

known [10] that for  f l~(t ,x)Idt<o~ the coefficient a(x, )~) is continuous up to the real axis.  This means 

that in the case g()t) = 6(X) all spontaneous solutions are  weakly damped, 

I~ (t,x) ]dt=oo. 

The express ions  (3.9) and (3.10) were  given without proof  in [5]. The la t ter  admits a curious interpretat ion.  
Since la l= l  on the real  axis and has a zero  of infinite o rde r  at the point )t = +i0, the spontaneous solution 
can be interpreted as a l imiting case  of a purely  soliton solution - the fusion of an infinite number  of solitons 
of infinitesimally small  amplitude. With the spect ra l  problem (1.1) there is associated an infinite set of 
t race  formulas  (see [10]), these having for  purely soliton solutions the form 

, r  

pk=ek 2 (~.jh)._~.~, ak=const(k), 

where 

~ (~*(~,--~'~,*) (t,x)dt, P,= ~ I~ (t, x) I2dt, p~ = - y  . . . .  

Since for  J identical soli toas (s P~]~.o~, it follows that in such a l imit  only the invariant  P~ 
)t o ~ ! / J )  can be nonzero.  

Indeed, it follows f rom Eqs. (3.1)-(3.3) that 

O ~ I~(t,x)I=dt = ~ g(~)[v-(x,~)-v+(x,~)]d~. 
Ox . . . .  

(3.11) 

It is well 

(if we set 

Hence, for  spontaneous solutions $( t ,  0) =0, g(~) =5(~), v + - - - - v - = - i  we have 

4 .  M i x e d  P r o b l e m  

F o r  the sys tem of MB equations (I.1)- ft. 3) it is natural on physical  grounds to pose the mixed 
problem determined by the initial and boundary conditions 

~,(t, O) = 6  ~, (t), (4.1) 

(0, x) =~2 (x), (4.2) 

p (0, x, ~) =p, (x, ~). (4.3) 

Fo r  a finite sample measur ing  L, this problem is posed in the ha l f -s t r ip  0 -< x -< L, t >- 0, it being 
assumed that ~ ( t ) -+0 ,  t-+~. 

The inverse sca t te r ing  method is not adapted to the solution of the problem (4.1)-(4.3).  We can 
solve only the asymptot ic  mixed problem descr ibed above in the half-plane x -> 0, - ~  < t < ~ with 
boundary condition ~0(t) and asymptot ic  condition p(t ,  x, )t) -> r - ( x ,  )t)exp(-2i)tt)  as t ~ _ o o  

It is however  possible to at tempt to reduce the mixed problem (4.1)-(4.3) to that asymptot ic  problem 
by specifying the condition eY~(t) = ~  (t, 0), t<0 and r - ( x ,  )t) in such a way that the conditions (4.2) and (4.3) 
are  recons t ruc ted  at t = 0. For  this, it is necessa ry  to solve the mixed problem with the conditions (4.2) and 
(4.3) "backward in t ime,"  imposing the subsidiary  condition ~(t ,  x) ~ 0  as t --> - ~ .  

When the sign of the t ime is reversed ,  so is the direct ion of the cha rac te r i s t i c s ;  in solving this 
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problem, it is therefore  incor rec t  to specify the value of ~ ( t )  at x = O. The boundary condition must  be 
imposed at x = L: 

$,(t) = $ ( t ,  L), (4.4) 

and chosen such that $(t ,  x ) ~ 0  as t -~ - ~ .  F rom the solution of this problem, it is possible to determine 
~ ( t )  and r - ( x ,  X), thereby reducing the mixed problem (4.2)-(4.3) to the asymptotic problem.  

In the general  case,  the solving of this problem is in no way s impler  than that of the original (4.2)- 
(4.3). However, if the initial conditions (4.2), (4.3) a re  sufficiently small ,  the problem (4.2)-(4.4) can be 
solved "backward in t ime,"  by using a l inear  approximation.  We give the resul ts  of this solution, assuming,  
as before, g(~)=e/~(U+e ~) and specifying 

32(x)=0, 90(x,~)=p~exp (~x), Ip~l<l. (4.5) 

F rom the solution of the l inear  equations, we find 

98 (t) = p~ [exp (--p2t) +0 (--t-L) exp (-p,t) l, (4.6) 
Pi--P~ 

i~--2s+Y (i~+28)'+4 (4.7) 
P"~= " 2 ~ -, 0( t )=0 (t~0), 0 ( t )= l  (t>0). 

We note the behavior of the auxil iary pulse g~(t) incident on the medium. For  - t  < L, this pulse grows 
exponentially, the argument of the exponential being equal to the growth rate y~ = Re Pl of the instability 
with wave vec tor  } (for - t  < L, the field at the point x = 0 "does not know" of the existence of the pulse 
~,( t ) ) .  But for - t  > L, the pulse ~'~(t) begins to have an effect, and the field in the complete volume of the 
sample begins to decrease .  Thus, the field at the point x = 0 reaches  the maximal value ~ = $ ~ ( - L + 0 ) .  
The condition of applicability of the l inear  approximation, $~<<1 ,  gives in o rde r  of magnitude a cr i te r ion  
for  the applicability of the l inear  t reatment :  

[ p~[exp (L"f~) <<i, ~f~ = max ~. (4.8) 

In [7], l a se r s  satisfying the condition (4.8) were said to be "moderately long." We do not give the 
expression for r - (x ,  ),), which is cumbersome.  

Knowing $'0(t), we can, solving the direct  scat ter ing problem with the potential ~0(t)=$~(t),  t>0, 
c0(~), ~j, d iscrete  spect rum.  Fur ther ,  and ~ , ( t )=~ , ( t ) ,  t<0, find and also the elements M~ of the 

knowing r - ( x ,  ~), we can r ecover  c .(x,  k) f rom the expressions ~ (1.31) and (1.34), and with it c(x,  k). 
Fur ther ,  f rom (1.11) we recover  F~t, x) ,  and the value of the field ~(t,  x) can be obtained af ter  solution of 
the Marchenko equations (I. 13)-(1.15). 

The procedure  we have described makes it possible to solve approximately the mixed problem (4.1)- 
(4.3) for moderately  long l a se r s  sat isfying the condition (4.8). It is c lea r  that this solution is strongly non- 
unique - we could impose the boundary condition for the pulse incident on the medium at any point x > L 
instead of the point x = L. However, this would mean that the conditions of applicability of the theory were 
less  we11 satisfied. 

5. A p p l i c a t i o n  to  t h e  P r o b l e m  o f  S u p e r f l u o r e s c e n c e  

One of the physically important  problems posed for the M]3 equation is that of superf luorescence .  
It is described by the mixed problem (4.1)-{4.3) under the additional simplifying assumptions 

~(t)=o, ~(x)=O. (5.~) 

The function o0(x , ~) is determined by the quantum fluctuations in the l a se r .  As is shown in [11, 12], this 
function can be assumed to be a random one with Gaussian distribution, and 

~0(x,~)p0*(y,~) 4~(x -y )~ (~ -~ )  , (5.2) 
Nog (~,) 

where N is the total number of active atoms in the sys tem,  a large  p a r a m e t e r  (in a typical situation, 
N > 10s~. 

0 

It follows f rom (5.2) that the initial condition P0 ~ 1/r is a small  parameter ,  so that if 
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l 
L~f~= << ~ In No, ~ =  = max ~ (5.3) 

the scheme descr ibed in the previous section can be used. In the f i rs t  step of the scheme, we must solve 
the auxil iary mixed problem in the l inear  approximation.  The function ~,(t) obtained as a resul t  of this 
calculation will be small  on the complete axis - :o < t < ~ .  Solving to this accuracy  (in the f i rs t  ]3orn 
approximation) the direct  sca t ter ing problem, we can readi ly calculate c(x,  ~,), a d iscre te  spec t rum being 
absent, and then calculate F (t, x) .  

In the superf luorescence  problem, one can take into account the specific boundary conditions (5.1) 
and use a s impler  method to calculate the kernel  F (t, x ) .  We use the identity of the equations for  F (t, x) 
and .eF (t, x) and show that 

F (2t, O) ='/~(F0 (t). (5.4) 

Indeed, ~0(t) being small ,  we calculate the S matr ix  in the f i rs t  Born approximation.  Fo r  this, we 
use the definition (1.8) of the S matr ix  and Eq. (1.1). It is readily verified that the function W-=W (t, 0, )~) 
sat isf ies  the integral  equation 

$ 

W-(t,k)=Wo-(t,),)+iWo-(t,)~) ~ (Wo-(~,)~) )-'gW-(z,)~)d~, (5.5) 

where we choose the function W0-=exp (-iI)~t) as the zeroth  approximation for  W- (t,)~) : 

~-(t ,  k)=~0-(t,  ~)+~,-(t ,  ) ~ ) +  . . . .  

Substituting (5.6) in (5.5), for the f i rs t  Born approximation we obtain the expression 

t 

W~-(t,k)=iWo-(t,k) ~ (Wo-(~,~,) )-'ItWo-(~,~,)d~. 

(5.6) 

(5.7) 

Using (1.8), and also taking into account (5.7) and the actual form of the matr ix  H, we obtain for  the S 
matr ix the express ion 

Hence 

co ()~) = -~"_ go (~) oxp (2ik~) d~. 

(5.8) 

(5.9) 

F r o m  the definition of the kernel of the Marchenko equation (1.11) and the expression (5.9) we obtain an 
express ion for  F(2t ,  0): 

F(2t, O) =~/,~0 (t). (5.10) 

It follows f rom this that in the region O~x~L, -~<t<~ 

F(2t, x)=l/4E(t, x), (5.11) 

where E (t, x) is the solution of the l inear ized MB equations with boundary condition (F0(t). 

We take g(X) to be the Lorentz  function (3.3); in the physics  l i te ra ture ,  the notation is T2*=t/e [ t3],  
the so-cal led  inhomogeneous broadening t ime. In this case ,  the expression for the kernel F (t, x) when 
t > x has the form 

x 

F(2t, x ) = ~ [  dz" [ d~ (t,x-x',~)~o(z ,~) 
4r~* : _: )~+ ( i f r ~ * )  2 ' 

,_~ (5. i2) 

G(t,x,)~):O(t-x)[ Io(2~lx(t-x)')§247 *) S dt'Io(2l/x~exp[ (i)~§ (t-t '-x) ] ]exp(-t/T2*). 
o 

We consider  the l imit  e --~ 0, the interest ing one f rom the point of view of applications.  Then the kernel 
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F (t, x) becomes 

F (2t, x) = ~ p0 (g) I0 (2~ (x-y)  ( t -x+y))  dg. (5.13) 

The kernel (5.13) increases  exponentially when t >> x. In this region, the dependence of F on x and t 
becomes se l f - s imi la r :  

F ( 2t, x) =x,9~" ( 2Y x( t - x  ) ), (5.14) 
where 

3-(y) = P~ (0) I, (Y). (5.15) 
2y 

For  t ~ x, the kernel  F is small  with respec t  to the pa r ame te r  1/4~0 , and therefore  we can ignore it in 
studying the region of the solution of the MB equations containing the bulk of the energy.  

The condition (5.3) guarantees the applicability and uniformity of the se l f - s imi l a r  approximation 
(5.14) in the complete region 0 ~ t < ~ ,  O~x~L. Therefore ,  the solution of the MB equations tends to a se l f -  
s imi la r  one, and this gives fur ther  justification for the resul ts  of [6, 7] and agrees  with experiment  (see, for 
example, the review [14]). 

6 .  A n a l y s i s  o f  t h e  S e l f - S i m i l a r  S o l u t i o n  

The MB equations (I. 1)-ft. 3) in the case of an infinitely narrow line g(k)  = 6(X) admit the se l f -  
s imi la r  ansatz 

~(t ,x)~x[~(z) ,  N( t ,x)=n(z) ,  p(t ,x)=p(z) ,  (6.!) 

where z=2Vx(t-z)  is the s imilar i ty  var iable .  The functions ~(z),  n(z), p(z) satisfy the sys tem of equations 

zF '+2~=2p,  (6.2) 

2p'=zn~, (6.3) 

2n'=--zp~'. (6.4) 

The s imi lar i ty  variable can take both real ,  t > x, as well as imaginary,  t < x, values.  To 
imaginary z there cor responds  the noncausat region in the x, t coordinates .  

The sys tem (6.2)-(6.4) has a o n e - p a r a m e t e r  family of solutions nonsingutar at the origin and 
completely determined by ~0=~(0)  and the sign of n 0 = n(0) .  For  it follows f rom (6.3) and (6.4) that 

n2+p2~t. (6.5) 

F r o m  given $0 we determine po=3~0 f rom (6.2), and f rom (6.5) we find n o = +~i- - P0 " Note that the 
sys tem (6.2)- (6.4) is invariant with respec t  to the substitution 

~=i~, ~(~)=-n(~), $~(~)=~(~), ~(~)=p(z), (6.6) 

and it is therefore  sufficient to calculate the solutions for positive n 0. Qualitatively, the behavior  of the 
solutions of the sys tem (6.4)-(6.2) depends on $0. In par t icular ,  there is a solution which is a symmet r i c  
with respec t  to the substitution (6.6). To it there cor responds  an initial condition invariant with respec t  to 
the t ransformat ion  (6.6): ~0=1, p0=i, n0=0. Fo r  ~ 0 = l ,  the solution becomes a symmet r i c  and has the 
asymptotic behaviors 

(F(z)-- ~ s i n (  - - - ~  <<Y• In I f--in(z) I Jolzl , 

where (Y• ~• are  constants whose values depend on iF0, the sign + cor responds  to z ~ ~ and the sign - 
to z ~ i ~ .  To asymptot ical ly  small $0 (ln~0<<-t) there correspond strongly asymmet r i c  solutions.  In 
this case,  the point zo, the s tar t  of the region of large variations_ of ~ (the f i rs t  zero  n(z 0) = 0), is 
logar i thmical ly  far  f rom the point z = 0, and $-=2~'~o/]/n. 

To values gf0>i there cor responds  a two-pa rame te r  family of singular solutions of the sys tem 
(6.2)- (6.4), which we shall not consider .  

Note that the sys tem (6.2)-(6.4) can be reduced to a single second-orde r  equation. 

Setting 
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we Obtain 

n-~cos@, p-~sin(i), ~ .=2_q) , ,  (9=~)(z), (6.7) 
g 

(I)" + l _  ~, = sin q). (6.8) 
Z 

This equation is satisfied by s e l f - s im i l a r  solutions of the s ine -Gordon  equation determined by the 
initial conditions Oo=q)(0), (1)'(0)=0 ; these solutions can be expressed  in t e rms  of the c lass ica l  Painlev~ 
t ranscendents  [15]. 

In the labora tory  coordinates ,  each value of the s imi lar i ty  variable z for fixed t cor responds  to 
two values of the coordinate:  

x,2 . . . . .  (6.9) 
2 

Suppose that at some point z 0 the function n(z 0) has changed sign for  the f i rs t  t ime. This means that 
N(t, x) changes sign for  the f i rs t  t ime at the t ime t o = 2z 0 at the point x 0 = z 0. In accordance  with (6.9), 
two waves t ravel  away with increas ing t f rom the point x 0 in opposite direct ions,  the condition N = 0 holding 
on their  fronts .  The position of the point depends logar i thmical ly  on the s imi lar i ty  p a r a m e t e r  ~0" The 
sma l l e r  ~0' the l a r g e r  x 0. In the limit t ~ oo, the front of the wave traveling to the left moves in accordance  
with the law 

Z=zoVt  + O  ( z / / t~)  . (6.10) 

The front of the second wave moves in accordance  with 

x=t--O(zo~/t). (6.11) 

The f i rs t  situation is real ized in the superf iuorescence  effect; the second, in the case  of a quantum 
amplif ier .  

As was established in Sec. 3 (Eq. (3.9)), the spontaneous solutions are  completely cha rac te r i zed  by 
the function r ( k ) .  We cons ider  the s imples t  case  r() .)  = r 0 = coast .  Then the kernel  F( t ,  x)  of the 
Marchenko equations takes the form (5.9). The spontaneous solutions corresponding to such a kernel  are  
s e l f - s imi l a r .  To see this, we substitute the express ion (5.9) in Eqs.  (1.13)-(1.14) and make the change of 
var iables  

i~=]/2x (t-x). (6.12) 

We obtain 
c o  to 

gt-(y)=j~(y)/y, So=to~2, K~=xYr The free t e rm and kernel  ~r of the inhomogeneous sys tem of equations 
(6.12)-(6.13) does not depend on x, and therefore  the solution of this sys tem,  which exists and is unique, 
is also independent of x. 

~" can be expressed  in t e rms  of the solutions of the sys tem of equations The e lect romagnet ic  field 
(6.12)-(6.13) as follows: 

~(t,  x)=4xYEi(~, ~), (6.14) 

i ]$'(t,x)]2dt------4~d~(~,~), ~----~(t,x). (6.15) 

The solution (6.14) is a s e l f - s im i l a r  solution for  the Maxwell -Bloch system,  and the variable -i~ xP2 is 
a s imi lar i ty  var iable .  

To establish the connection between the kernel and the solution of the sys tem (6.2)-(6.4),  it is 
sufficient to find the dependence of 6~ on s 0. To this end, we t r ans fo rm the sys tem of integral equations 
(6.12)-(6.13) to algebraic  form.  F i r s t ,  we use the Gegenbauer composit ion formula for ]3essel functions [16I: 

]k(1/~2+~12!= 2k(k--l)! ~ (k+l) ]k+z (r) 4+~ (~) C~(0) ' (6.16) 
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where  C~ (0) is the value of the Gegenbauer polynomial at the origin. In the se l f - s imi la r  case ,  the kernel  ~" 
of Eqs.  (6.12)- (6.13) can be represented  in the form 

~ ( ~ + ~ )  = z__),, (-~)~-%,-~(~).~-~(~a). (6.17) 

Then, assuming regular i ty  of the solutions JC~ with respec t  to 
se r ies  [17]: 

"~(~, ~l) = ~ (~) 1~-~ (~1) ~ ,  

~, ~?, we expand them [n yon Neumann 

(6. ~s) 

(6.19) 

Note that in the expansions (6.18)-(6:. 19) we have retained only the ]3essel functions with odd index. It can 
be shown that the coefficients corresponding to the t3essel functions with even index vanish identically by 
virtue of the integral equations (6.12)-(6.13). We substi tute (6.17)-(6.19) in (6.12)-(6.13). The sys tem of 
integral equations can now be reduced to an infinite sys tem of l inear  algebraic equations by using the 
biorthogonality proper ty  of the Besse l  and Neumann functions: 

• J,~ (z) Oh (z) dz=aaOa~, 
P 

(6.20) 

where  a0-----2~ti, ak=~t i  for  k > 0, and the contour F passes  once round the origin in the complex z plane. 
Multiplying the integral equation by Ou(~?) and integrating with respec t  to ~1 along the contour F, we obtain 

where 

,~(~)=s0(2k--t) (--1)"-~[ ]~k-~(~) +2 Qht (~)cp,(~)], Ck(~)=-s0*(2k-l)(-1)~-~2 ZQhz(~)*~ (~), 
l ~ O  l ~ O  

(6.21) 

Q~,(~)= ~ 1~_~(n)J~_~(n) d~. 
(6.22) 

This integral can be calculated and is equal to 

q"~(~)= 4[ )L : -m+k_. t  " ~ 1 ~  , _ q- k - - m  

2ra--2 

2(2m_t)-[]0 (~) +]2~-~(~) +2 (6.23) 

It is possible  to wri te  down a formal solution of Eqs.  (6.21) that is the analog of an infinite soliton solution: 

I 0 
~z  (~, ~) = ~ - ~ - l n [  det (E+ [ s0 [2B2) ], (6.24) 

where 
B~(~)=(Uk- i )  (-t)h-~Q~(~), E~=5~ .  (6.25) 

Thus, 

In [ det (E+ ] so ] 2B2) ]. (6.26) 

Moreover ,  the solution (6.24) makes it poss ible  to determine ~(~) up to the sign: 

We calculate ~(0),  
in powers of ~: 

$ ( ~ ) =  -~-V~4s~ i~ 0~0 ~i 0~0 l n [ d e t ( E + [ s o [ ~ B 2 ) l "  

seeking for  this purpose a solution of the sys tem (6.21) in the form of a s e r i e s  
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~,~ + qm~ j. 
%(~)=m=, ~(P~,~, r ~'~2h,,, O~(~)= 2(2m-1)  ~=~ (6.27) 

In the first  order  in ~, 

~a~=s0(2m-i)(-t) .... ( ~ 5 ~  + 8~ )__(ph, 
m! 2m- i  ' 

whence 

so Is0I 

*'~=6~'2(i+iso[~ ) , qD~=-~2(i+ls012)'. 
Substituting (6.28) in (6.27) and then in (6.18)-(6.19), we obtain 

(6.28) 

Therefore ,  

r 1 6 2  

2s0 ~ SJs~ 2 
' t+ls01~ 

Js01~-i n(0) = , ~  
is01~+t 

The dependence of ~0 on s o is not single valued. To each ~0 there correspond two values, s o and 
1/s~. This is due to the ambiguity in the choice of the sign of n 0. Thus, s o completely parametr izes  the 
solution, and the transformation s o = 1/s~ is equivalent to the transformation (6.6) for the initial data. 
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