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Abstract:
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equationsandtheirgeneralizationfor inhomogeneousturbulenceand turbulenceexcitedby acoherentpump.
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presenta detaileddiscussionof the limits of this description.
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Introduction

The efficiencyof solving someproblemin theoreticalphysicsdependson how far in a propermanner
the descriptiveformalism is chosenin the framework in which this problemis solved.Usually thereare
several calculationschemesavailable, which by a consistentapplicationwill lead to the sameresult.
Theoreticiansbiasedin favourof oneof them,intuitively, resistsall attemptsaiming to exploreanother
schemeclaiming that theydo not contributeanythingnew. Nevertheless,not all possibleschemescan
be treatedequally. In medievaltimesin the universitiesof Europetherecoexistednumerousalgorithms
for arithmeticdivision but all of them except asingle onearenowadaysof historicalinterestonly.

And the reasonis not only becauseof the maximum convenienceof the “best” calculationscheme.
The chosenschemebeing adequatefor the problemunder solution after a period of implementation
andadaptationbeginsto affect itself the style of physicalthinking and enrichesessentiallythe scientific
language.Finally, it has effects on the way new physical problemsare stated.This happened,for
instance,with the Feynmandiagramtechniquewhich originally seemedto be merely a simplification
methodin perturbationtheory.Besides,a calculationschemeadequatefor aparticularproblemusually
possessesan importantuniversality,which helpsto find similarities betweenvariousphysicalproblems.
In a numberof casessuch a schemeis of independentinterestfrom the viewpoint of mathematics.

The presentreview deals with methodsfor the descriptionof non-linearphenomenain plasma.
Non-linear phenomenasuch as the processesof modulationaland decay instabilities, self-focusing,
collapse,andvariousturbulentprocessesplay a crucial role in contemporaryplasmaphysics.Therefore
the problem of their adequatedescriptionis of greatimportance.

Accordingto ouropinion a Hamiltonianformalism is thebestmethodof description.The majority of
non-linearphenomenain plasmassuch as wavecoupling, self-focusing, or collapse occur with con-
servationof the total energyand allow a Hamiltonian description.Dissipativeeffectscan be takeninto
accountas small corrections.This approachis beingdevelopedsystematicallysince the latesixties by a
groupof Soviet physicistsformedandoriginally working in the Novosibirsk Instituteof NuclearPhysics.

The Hamiltonian approachis based upon the fundamentalfact that the equationsdescribing a
collisionlessplasmapossessa hiddenHamiltonianstructure.At the presenttime thisfact is provedeven
for the Maxwell—Vlasov equations[12].The Hamiltonianproperty of the Maxwell equationsand the
equationsof two-fluid hydrodynamicshas beenprovedby one of us in 1971 [6]. It permitssimple and
effectivecalculationsof matrix elementsof differentmodeinteractionsby meansof which we canobtain
the equationsin which only the necessarydegreesof freedomoccur. Theseequationscan be simplified
to a few standardforms within very generalassumptions.As a result, we have a set of standard
equationswith a high degreeof universality. It is easyto understandthe domain of validity of these
equationsand to take into accountthe necessarydissipative effects. (We then lose the Hamiltonian
structureof the equations,but theyarestill relatively simpleenough.)The program,formulatedabove,
constitutesthe contentsof the first chapterof this review.

The secondchapterdeals with wave instabilities in plasmas.We hope to demonstratehere the
efficiencyandconvenienceof theHamiltonian approach.Due to the standardform of the equationsit is
possible to consider from the common point of view the decay and modulational plasma wave
instabilities. The transition to canonical variables is not trivial. But we need to overcome these
difficulties only once.Then applicationof theseresultsdecreasesdrasticallythe numberof calculations
and the problem becomesmuch clearer. For example, all characteristicsof processesunder con-
sideration in this article (instability growth rates,their structure,etc.) are determinedby the matrix
elements,calculatedin the first chapter.
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The transition to a statistical descriptionof plasma turbulenceis the subject of chapter3. We
demonstratethat this transition is simple andnaturalin canonicalvariables.It is possibleto obtainnot
only the usualkinetic equations.The non-trivial generalizationsfor inhomogeneousturbulenceandfor
turbulenceexcitedby intensivecoherentradiationarepresented.

We demonstratethe usefulnessof the Hamiltonian approachmainly by the exampleof isotropic
Langmuirturbulence.As a result,magnetizedplasmasarediscussedwithout any detailsin our review.
This does not imply the existenceof any difficulties for wide applicationsof this tecnhiqueto the
problemsof drift or whistler turbulence.A solutionof theseproblemsis a matter for future research.

Our group hasbeen using the Hamiltonian approachto plasma physics problemssince the late
sixties.We developedthis approachmainly for pragmaticgoals,as a methodof solving someconcrete
physical problems.The crucial point of our theory is the introduction of canonical variablesand an
investigationof standardequations.However,the Hamiltonian structureof thehydrodynamicaltypesof
equationsis of a strongindependentinterest. A flood of paperson this subjecthasbeenpublishedin
recentyears(see,e.g.,refs. [26to 29] andreferencestherein).The main purposeof thesepapersis the
calculationof Poissonbracketsfor variousphysicalquantities.The Poissonbracketsfor componentsof
velocities, electrical and magneticfields, distribution functionsat different points and velocitieswere
calculated.It wasproved that the Poissonbracketshave,practically in every case,a grouptheoretical
origin. They arethe Lie—Kostant—Kirillov typebracketson skew-adjoint representationsof certainLie
groups.This outstandingmathematicalfact is not very usefulfor physics.After calculatingthe Poisson
bracketsthe introduction of the canonical variables, which are necessaryfor effective exploring of
perturbationtheory, is a non-trivial problem. On the otherhand, it is not difficult to calculatePoisson
bracketsfor any quantitieswith the helpof the canonicalvariables.Details can be found in ref. [29].

1. Methodsof describingnon-linear phenomenain plasmas

In the physicallymost importantsituationsa plasmais describedby a systemof kinetic equationsfor
all kinds of particlesandby Maxwell’s equations.Within the frameworkof thisdescriptionit is possible
to find the plasmaequilibrium in the fields of a given configurationand to studysmalloscillationsabout
that equilibrium [1,2]. However, this problemhasneverbeentrivial. Even in a homogeneousplasma
placedin a constantmagneticfield thereare sevenoscillation branches(not counting higherBernstein
modes)whosedispersionlawsdependin a complicatedway on the magneticfield, density,temperature,
direction of propagation,and dissipationor growth rate, and also in the structureof the distribution
functions.

The problem of non-linearinteractionsof thesewavesis furthercomplicated,evenif this interaction
is assumedto be weak.Successiveuseof a kinetic descriptionleadsto cumbersomeformulaewhich get
even furthercomplicatedby attemptsto describestrongly non-linearphenomena.It is someimprove-
ment to usea two-fluid hydrodynamicalapproach.A changeto ahydrodynamicaldescription,however,
does not result in significant simplifications, although in so doing information concerningsome
importantphysicaleffectsis lost.

The causeof thesedifficulties is that both kinetic and hydrodynamicalapproachesare universaland
automaticallydescribeall degreesof freedomof a plasma.However,in the given examplesonly waves
of oneor two typesaregenerallyexcited.Thereforeit is necessaryto constructmethodsof describinga
plasmawhich allow the neededdegreesof freedomto be explicitly separatedin a specific instanceand
their interactionto bedeterminedin the simplestway. Certainly,the plasmamodelsconstructedin such
a mannerare not universal;however,this is compensatedfor by their adaptabilityandsimplicity.
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The first attempt to separateexplicitly the plasmadegreesof freedomwas madeat the beginningof
the sixties,whenthe kinetic equationsfor the wavesdescribinga weakplasmaturbulencefirst appeared
[3,4, 5]. However, theseequationsareaveragedand havea statisticalcharacter;the derivationcontains
the randomphaseapproximationfor interactingwaves.In manycasesthis hypothesisis groundless.As
will be shown in this review, the applicability of the weak-turbulenceapproachshould be carefully
checked in all cases; a variety of very important phenomena,such as collapse and self-focusing,
generallyarenot describedby a weak-turbulencetheory.

Thereforethe separationof degreesof freedomshouldbe madebefore averagingat the level of a
dynamicalplasmadescription.A separationof this kind is widely usedin theoreticalphysics.In solid
statephysicsor in the theory of elementaryparticlesit is commonto startfrom an effective Hamiltonian
systemwhen only the neededdegreesof freedomaretakeninto account.However, in plasmaphysics
the Hamiltonianapproachhasstill not gainedwide popularity.Specialistsin solid statephysicshaveto
deal with a Hamiltonian from the very beginning. In the sameway, a plasmaphysicist beginswith a
system of kinetic or hydrodynamicalequations,and the possibility of writing this as a system of
Hamiltonianequationsis not evident.

Hamiltonian variableshaverecently beenfound for a numberof plasmaphysicsproblems.We hope
to demonstratethis in the presentreview. It is convenientto choosefor a descriptionof Hamiltonian
systemscanonicalvariables,the classicalanalogueof quantum-mechanicalBose operators.The linear
problemis trivial in thesevariables.Thus,for non-linearproblemsit is not necessaryto solve thelinear
problem,which is oftenvery complicated,manytimes.As a result,we avoid manytechnicaldifficulties,
which arenot inherentto our problem.

The selectionof standardvariablesfor all kindsof wave motion resultsin a uniformity of non-linear
equations.The informationabouta concretephysical systemis containedin the dispersionlaw and in
the form of the interactionmatrix elements.

The separationof the only important typeof motion can lead to reasonablesimplifications of the
dynamicalequations.As a result of their uniformity the simplified equationshavea large physical
generality. As an example, we can mention the non-linear parabolic equation, describingquasi-
monochromaticwavepropagationin isotropicmedia.Some othernot so well knownexampleswill be
discussedbelow.

The developmentof a descriptionof Langmuirturbulencetakesasignificant partof thischapter.The
fastestprocessesin a plasmaappearto be the Langmuiroscillations.As aresult it is possibleto simplify
the dynamicalequationsto averagethem over a fast time period w;1. For a description of the
turbulenceit is necessaryto take into accountkinetic effects(interactionwaveswith ions andelectrons).

It breaksthe Hamiltonian structureof the averagedequations.But they arestill very effectiveand
powerfultools for investigatingthe turbulence.TheLangmuircollapseanalysisis thebrightestexample
of it.

1.1. Hamiltonianformalismin non-linearmedia

The Hamiltonian formalismfor continuousmedia, including plasmas,representsa naturalgeneral-
izationof a standardHamiltonianformalism in classicalmechanics.Somepeculiaritiesarisedueto the
existenceof a translationsymmetry in homogeneousmedia.Let the mediumbe describedby a single
pair of field variables,i.e. the canonicalcoordinateq(r, t) andthe canonicalmomentump(r, t) obeying
thecanonicalequations

= —~t°/~q; ~9q/at= ~‘/~p. (1.1.1)
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Here~ is the Hamiltonianof the system,a real functionalof p andq. Expand~‘ in the variablesp and

= z~+ ~ +....

The first expansionterm ~ can alwaysbe madequadraticin p and q andis of the form

= Jdr dr’{~A(r- r’)p(r)p(r’) + B(r — r’)p(r) q(r’) + ~C(r - r’) q(r) q(r’)}. (1.1.2)

The fact that the functions A, B and C in formula (1.1.2) dependon r — r’ reflects the translational
invarianceof the medium. The structurefunctions A(x)= A(—x); C(x)= C(—x) and B(x)= B(—x)
describethe propertiesof thismedium.Now let usmakethe Fourier transform

p(r) = (21T)312JPk e~rdk

(1.1.3)

i ~. ______ I ikrdk

~ (2ir)312j “,~e -

Due to the reality of p, q we have

p(—k)= p*(k); q(—k)= q*(k) (1.1.4)

Substituting(1.1.3) into ~, we obtain

= J~ + Bkpkqk+ ~Ckqkq~}dk

where Ak = f A(x)exp(ikx)dx; Bk and Ck are determinedin a similar manner.It is not difficult to
confirm that the Fourier transform (1.1.3) is canonical; and Pk, q~are the new pair of canonical
variables,so that

öPkI&= CThq~ aqk/~9t=~i~/C/Tip~. (1.1.5)

When ~‘ = ~Co,we have

aqkIat = Akpk+ B~qk
(1.1.6)

oPk/at= —Bkpk— Ckqk.

From the evennessof A(~),C(~)therefollows the reality of Ak, Ck

A — — f’ — ç’ ——k k k, ‘~~_kL-kLk.
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Splitting Bk into its real andimaginaryparts,

Bk= B
1(k) + i B~(k)

B1(—k)= B1(k) (1.1.7)

B2(—k) = B2(k)

andassumingthat j.’k, q~ exp(—iwkt),weget

= B2(k) ±\/AkCk — B~(k). (1.1.8)

The mediumis stablewith respectto smallperturbations,if

AkCk — B~(k)>0. (1.1.9)

It is necessarythat in this casethe functionsAk and Ck havethe samesign.
For Wk we have two expressions,wj,2(k), differing in the sign in (1.1.8). Now let usshow that only

one of them has a physicalsense.For this purposethe following substitutionis made

Pk = akak + a_ku_k
(1.1.10)

qk =I
3kak+13_ka_k

andit is requiredthat thisrepresentsa canonicaltransformation,or, strictly speaking,it is requiredthat
the variablea,, obeysthe equation

a,, = —i~’Tha~,,. (1.1.11)

Substituting(1.1.10)into (1.1.5) and using(1.1.11), we will find the condition for a,, and/3k:

2 2. 2_ 2
— a_~ P~ — P—k

(1.1.12)
ak/3k—a.,,/3k= —i.

Now let us demandthat a,. be a normal variable, i.e., that its time variation is accordingto the law
ak exp(—iw,,t) (where Wk is one of the w

12~,it beingunknownwhich of them). Substituting(1.1.10)
into (1.1.6), we get

/3,. = .__— * ak. (1.1.13)
lWk + B,,

Substitutingnow (1.1.13) into (1.1.12)we will find that in a steadymedium

C,, (1.1.14)
2\/A,,C,, — B~(k)
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Thus, the sign in front of the radical in (1.1.8)must coincidewith the sign of C,, (or A,, since for the
steadymediumA,,C,, >0). Finally we obtainthat

= B
2(k)+ sign CkVA,.Ck— B~(k). (1.1.15)

In thiscasefor the Hamiltonian ~ we have

~°o J w,,a,.a~dk. (1.1.16)

In the majority of casesthe Hamiltonian coincidesin its physical sensewith the waveenergy in the
medium;thusthe formula (1.1.15) actuallydefinesthe energywave sign. When w,, >0, the waveshave
positiveenergy,andwhen to,. <0 theyhavenegativeenergy.

If the mediumis invariant with respectto coordinatereflections,the condition

(1.1.17)

shouldbe fulfilled. This is possibleonly in the casewhen B2(k)~0.The condition (1.1.17)is true for a
plasma,including the casewhenit is containedin amagneticfield, if its distributionfunction is an even
velocity function,

f(v) = f(—v)

but it is not true in a plasmawith a currentor in the presenceof ion or electronbeams.
When B2 � 0 in a stablemediumthe coexistenceof waveswith both positiveandnegativeenergyis

possible.When B2 = 0 this is possible,asa rule, if thereis an instability region A,,C,, — B~(k)<0 in the
medium. The only exception is the case when the surfaceswhere the functions A,,, B,, and C,.

vanishcoincidewith thosewherethe frequencyto,. is equalto zero. It is evidentthat such a function is
unstablewith respectto a small perturbationof the propertiesof the medium.With the exceptionof
this degeneratesituation, it can be statedthat in a stablemedium which is invariant with respectto
coordinatereflection the waveenergyhasthe samesign in the wholeof k-space.

The formula (1.1.14) definesthe modulusof a,, only. It meansthat the phaseof a,, can be chosen
arbitrarily; in this casethe canonicalvariablesa,, will bedeterminedapartfrom a trivial transformation.
Without restrictingthe generality,wecan put

1/2

a,. = _________ I . (1.1.18)
— B

2,,-’

The next term in the expansionof the Hamiltonian Y~’in powersof the a,, is cubic in the a,, andtakes
the form

~1)= ~J{VkkIkla~aklak
2+V,,1,,2a,.a~a~}t5(k — k1 — k2)dk dk1 dk2

+ ~J (U,,,.~,,2a,,a,,1a,,2+ U,,1,,2a~a~a~)i5(k + k1 + k2) dk dk1 dk2. (1.1.19)
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The coefficients V,,,.1,,2and U,,,,1,., exhibit an obvioussymmetry

V,.,,1,.2= V,,,,2,,1
(1.1.20)

U,,,.1,,2= U,.1,,,,2= U,.,,2,,1

~~(2) containstermsof fourth order in the a,,. As arule, only oneof them is significant:

= T,,,,j,.2,,sa~a,,*ia,,2a,.3O(k+ k1 — k2 - k3)dk dk1 dk2 dk3. (1.1.21)

The coefficient T,.,,1,,2,.3exhibitsthe symmetry

‘7’ ‘7’ ‘rkklk2kl — ~ kikk~k~— 1 kk~ksk~— 1 k2klkkl .

If the medium is describedby N pairsof canonicalvariables,severaltypesof waves(not morethan
N) can propagatewithin it. Insteadof the coefficientsA,.,B,,, C,. therearisethe matricesA0,B0, C~in
this casethe problemof the diagonalizationof the quadraticHamiltonian becomesmorecomplicated.
As will be shown below, it is easilysolvedfor a plasma.

1.2. Hamiltonian formalismin hydrodynamics

Hydrodynamicsof an ideal barotropic fluid is a simple, but non-trivial exampleof a model of a
continuousmediumadmitting a Hamiltoniandescription.We will considerevena moregeneralmodel,
assumingthat the pressurenon-locally dependson the densityandrequiringthe following condition to
be met:

(1.2.1)
p op

whereg is somefunctionalof the density.For a barotropicfluid, whenp = p(p), ~‘ = f ~‘(p)dr, sothat

(1.2.2)
8p

2 pt9p

Thequantity g’ hasthe meaningof the internal energydensityof the fluid.
The hydrodynamicalequationstakethe form

ap/at+ div(pv)= 0 (1.2.3)

av/9t+ (vV)v = —V8~S/6p. (1.2.4)

The equationof motion for the vorticity follows from (1.2.4):

-~-curlv — curl[v curl v] = 0. (1.2.5)
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The vorticity is transportedalongwith the fluid. Now let usconsiderthe function ~ (r, t) satisfying
the equation

(V~ curl v) = 0. (1.2.6)

In this casethe curl of the velocity is tangentialto the ~ = constantsurface;hencethe ~a= constant
surfaceis woven of vorticity threads.This suggeststhatthe

4ii = constantsurfaceis transportedtogether
with the fluid. Thus, thefunction ~ satisfiesthe equation

a~~/at+ (vV)~= 0. (1.2.7)

For constructingcanonicalvariables,let ustake an advantageousformal approachsuggestedby B.I.
Davydov in 1949 [7]. Considerthe continuityequation(1.2.3)andthe equationof curl v transfer(1.2.7)
as additionalconditionsimposedon the dynamicsof a particlesystemwith potentialenergy~. Thenthe
action for the hydrodynamicalequationscan be written down as follows:

5~a= J{p~+ ~(p~+divpv) A(~t+(vV)~)}drdt_J~dt. (1.2.8)

Here 4. and A are Lagrangemultiplierscorrespondingto the conditions(1.2.3) and (1.2.7). Assuming
that &l’a/&V = 0, we find

(1.2.9)
p

where A and ~s are the well-known Clebsch variables (see, e.g., ref. [30]). From the conditions
= 0 and~‘

9a/~P = 0, it follows that

div(Av)= 0 (1.2.10)

~+ ~v~—~-(vV)~+— 0. (1.2.11)
at p

It is not difficult to check that the equations(1.2.3), (1.2.7), (1.2.10) and (1.2.11) are the Hamiltonian
equations

aA/at=~YC/~; 3p~/at=—~iJvf/&A; ap/at=?~’Th4,; a4Vat=—&WThp (1.2.12)

where ~° = f ~pv2dr + ~ is the total fluid energy,andwherev is given by (1.2.9). In the particularcase
of potential flow ~ = A = 0, only one pair of variablesp, 4 is left. In this case(1.2.11) becomesthe
Bernoulli equation.For an incompressiblefluid div v = 0 and 4 is determinedfrom the condition

= —div~-V/L. (1.2.13)
p
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Now only one pair of variablesA and ~ is left. The curl of the fluid velocity is determinedfrom the
formula

curl v = {V~-XVia]. (1.2.14)

The describedprocedureof constructingcanonicalvariablescan be readily transferredto the caseof
the equationsof relativistic hydrodynamics:

3p/ôt+ divpv = 0

api at 4- (vV)p + mV 6~’/~p= 0 (1.2.15)

p= mv/\/1—v~/c.

Conversionto the canonicalvariablesis expressedby the formula

= ~ + v~.
mp

The equationsfor them keepthe form (1.2.12), where

~= ~ f ~2~r (1.2.16)

~ V1—v~/c~

the equationsfor p, A, ~ keeptheir previousform; the equationfor 4 takesthe form

açbwA
—+———(vV)ia +—= 0
at m p

w = mc2/V1— v2/c2. (1.2.17)

The Hamiltonian formalism can be used also for a non-barotropic(e.g., a non-uniformly heated)
fluid, underthe conditionthat the flow in it is isentropic,i.e., thereis no dissipationof any form. In this
casean additional pair of variables~‘, S is introduced,whereS is the fluid entropy,so that

v=~(AVia+ViVS)+V~. (1.2.18)
p

The internal energymust be a functional of p, S. The Hamiltonian formalism for a non-uniform
incompressiblefluid or free-boundaryfluid can be obtainedusing the passageto the limit (1.2.18),
howeverthe discussionof theseproblemsis beyondthe scopeof this review.

The simplestmodelsof a plasmalie directly within theframeworkof the above-mentionedequations
of generalizedhydrodynamics.Now let usconsideran electronplasma(ions areassumedfixed) havinga
not too high relativistic temperature.The kinetic calculations show that Langmuir waves with a
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dispersionlaw tok can propagatein such aplasma,where(non-relativistically)
—

— (1)p~~~ 2~ FD

(1.2.19)
r~=

4irne
Long-wavenon-linearoscillationsof this plasmaaredescribedby the systemof equations[1—5]:

+ div pv =0
at

+ (vV)v= V (—f-- ~— ~ &p) (1.2.20)
at m mp

4ire
V2ç~= 6p.

m

Here~p= p — Po, P0 is the electrondensity.It is not difficult to checkthat the system(1.2.20)is aspecial
caseof thesystem(1.2.4), so that

&p(r) 8p(r’) dr dr’ + ~ ~p2dr. (1.2.21)

2m Ir—ri 2mp
0

Now let usconsiderthe hydrodynamicsof slow motions of a non-isothermalplasma[1—5]

+ div pv =0

+ (vV)v = — —f- Vq~ (1.2.22)
at M

4ire

= _~_ü_(p_poeT).

Herep, v arethe densityandvelocity of ions, M is the ion mass,T the electrontemperature(the ion
temperatureT,~ T doesnot enterinto this problem);~ theelectrostaticpotential.

Onecan show that the system(1.2.22)belongsto the type(1.2.4), and

= ~—J(V~)2dr+~~J{e~~1T(~— i) + i} dr. (1.2.23)

Calculatingthe variationalderivative?~‘i~p,we have

= Jp(r) {— —~--~2 b~t’(r’)4-~ ee~~~/
T~(r’)} dr’. (1.2.24)

4ir ôp(r) MT &p(r)
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On the otherhand,calculating8ço(r’)/6p(r) from the Poissonequation,we obtain

~c~(T)+~~_e~T 6çc~(r) —f- O(r— r’). (1.2.25)
41T &p(r’) T ~p(r’) M

Comparisonof (1.2.24)and (1.2.25)showsthat

(1.2.26)
&p(r) M

Finally, let usconsider a relativistic electron plasma interactingwith an arbitrary electromagnetic
field, which is not necessarilypotential(the ions areassumedfixed, as before).The equationsfor such a
plasmaareof the form

~+divpv =0

(-~-+(vV))p —eE—~ [v X H] — 3TV~ (1.2.27)

laH . 4ire
curlE=———; d~vE”——--(ppo)

cat m

laE 4~
curlH=—————epv.

cat mc

Now we introducescalarandvectorpotentials~ andA, and takefor A the Coulombgauge:

divA =0. (1.2.28)

Then the Poissonequationtakesthe form

4iw
V2p = (P — po).

m

It is known (seee.g. [8]), that in the Coulomb gaugethe vector potentialA is a canonicalvariable.
Canonicallyconjugatedto it is the vector

1 i1~A ~ E
B—(——+VçcJ————. (1.2.29)

4irc ~c at / 4irc
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Substitutioninto Maxwell’s equationgives

at 4~
(1.2.30)

aA / 1
—=41Tc2(B—-—V~
at \ 4irc

We rewrite Euler’sequationin the form

+ Vw — [v curl p] = —eE— ~ [V X B] — 3TV
at C Po

andchangeto the generalizedmomentum

P=p-~A.

The vectorP obeysthe equation

~+Vw—[vcurlP]— eVip +3TV~=0.
at Po

The canonicalvariablesareintroducedby the formula

P/rn = A V
1a/p+ Vq5. (1.2.31)

A check shows that ~ A, 4 in formula (1.2.31) obey the equations(1.2.7), (1.2.10), (1.2.17). The
equationsfor A, ,.~ p, ~ areof the form (1.2.12), wherethe Hamiltonian~Wtakesthe form

J{p~+p2+±(curlA)2+2~j.C2B2+±.(vcL,)2c(Bvcc~)}dr (1.2.32)
m 2mp0 81T 4ir

For B andA we have

aB/at = —&~/6A; aA/at = 6~r/3B. (1.2.33)

Taking into accountPoisson’sequation,

divB=~J._V2p (1.2.34)
4iw

it is not difficult to verify that the Hamiltonian ~ coincideswith the plasmaenergy.As seenfrom the
equationsfor A and ~, thereexistsa special typeof plasmamotion for which A 0. Thus, even in
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the presenceof a non-potentialelectromagneticfield the analogueof the theoremof conservationof
vorticity is kept {curl P = curl(p — (e/c)A)is the conservedquantity}, andit is possibleto find analogues
of the potentialoscillations.

1.3. Changeto normal variables

After constructingthe Hamiltonianformalism a separationof different degreesof freedomcan be
achievedby a changeto normalvariables.This procedureis heredescribedusingthehydrodynamicsof
an electronplasmawithout a magneticfield as an example.Let the Hamiltonian (1.2.23)be written in
the form

(1.3.1)

where~‘o is the quadraticpart of the Hamiltonian

= ~J {pov~+ —~---(curl A)2 + 4i~-c2B2+ -~-~-~p2— ço V2ço — 2c(BVp)~dr

4ir mp
0

(1.3.2)

v = V~--~--A.

mc

We changeto a Fourier transformin k andmakea substitutionof variables

1/2

~k”~(~) (a,,—a~,.)

k
2Po

/ \1/2

~p,,=k(—~-~-) (a,,+a~,.) (1.3.3)
2w,.

2 1~’2

A,, = c(~.f) ~ [S~(b~+ b~)]

B,, = _~(~~_
2)

112~ [S~(b~— b~)]+ ~4~!k.

Here12,, = Vw~+ k2c2 is the dispersionlaw for electromagneticwaves.After the substitution(1.3.3)the
Hamiltonian ~‘o takesthe form

= J {w,,a,,a,,*+ [2,,(b,,±b,.+*+ b~b~*)}dk. (1.3.4)

In (1.3.3) S,,A is a unit polarizationvectorsatisfyingthe conditions

‘,~S’k’— . I A A’*\ — . A —!L~ k) I. ~ k ) .5,5’, ~
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As is seenfrom (1.3.4), the variablea,. is the complexamplitudeof Langmuirwaves,and b,,A are the
complexamplitudesof electromagneticwavesof differentpolarization.

The cubicpart of the Hamiltonian,

= ~J~pv~dr= ~J&p (v~_—~---A)dr, (1.3.5)
mc

after the substitution(1.3.3) can be divided into the sum of threetermsof adifferentphysicalnature

= ~‘(1) + X~2~+ ~3)~

Here

=
312J (~~)1/2 k(k1k2) O(k + k1 + k2)(a,,+ a~,,)(a,.,— a~,.1)(a,.,— a~,.2)dk dk1 dk2

2(2ir) 8w,,po k1k2
(1.3.6)

1 ____

= — _-~_J( ~ ) ~ + k1 + k2)(a,,+ a~,,)(a,,1— a~,.1)~ (k5S,.~2)(b,.~2+b~2*);
4rrm wjI,,2 k1 .5

(1.3.7)

1 e~J ( Po )
112k(a~+a~,.)

4rn ir w,,12,,
112,,2

x O(k + k1 + k2) {~~ + b~1)xS,.~2(b,,~2+ b~~)}dk dk1 dk2. (1.3.8)

~ +~,~ arethe first termsin the Hamiltonianof the waveinteractionin a plasma

~nt01~2+~. (1.3.9)

In constructinga perturbationtheory,when ~ ~ ~, theseterms will describedifferent elementary
processesof a non-linearwave-interaction.The Hamiltonians~ ~ give non-trivial answersevenin
first order of perturbationtheory. ~ describesthe fusion processof two Langmuirwavesinto one
electromagneticwave, and the inverse processof the decay of an electromagneticwave into two
Langmuirwaves.The Hamiltonian ~‘S.~”describesthe decayof an electromagneticwave into another
electromagneticwave (of the sameor with a different polarization) and a Langmuir wave and the
reverseprocess.The Hamiltonian ~1) correspondsto the fusion processof two plasmawavesinto a
third one. This processis forbiddenby the conservationlaws, and it makesa contributiononly in the
secondorder of perturbationtheory.

The Hamiltonian ~ is a single term in ~ which existswhenneglectingrelativistic effects. All other
terms have a relativistic origin and arise from the expansion of the expression c

2f (po+
— v2/c2)~dr. Thus

~r
2=~Jv4dr. (1.3.10)
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Substituting(1.3.3) into (1.3.10), it is not difficult to find all fourth order terms in the interaction
Hamiltonian,which, togetherwith the third orderterms,areresponsiblefor the four-waveinteractions.

Let therenow be a uniform magneticfield H0 in the plasma.In thiscasetheproceduretransforming
to normal variablesbecomesmorecomplicated,by virtue of the fact that the correspondingpotentialis
a linear function of the coordinates.Let us chooseit in the form

A0=~(—iy+jx)Ho; H0=H0k (1.3.11)

andmakethe canonicaltransformationto new variablesin two stages.In the first stagelet uschangeto
the symmetricvariables~‘, A’, ~‘

A = ~(A’ 4-ia’); ia = (2p)
112 (ia’ — A’); ~ = ~ + A’2—~’~ (1.3.12)

In the secondstagelet us eliminatethe constantpotential component.Changeto the variablesA”, ia”,

A’ = A”+ (wHp)hh’2y; ~1 ~ (wHp)L12x
(1.3.13)

= 4”— (w~/p)’~’2(xA”+y~”).

In this case

A=A”=A-A
0.

Here WH = eH0/mc is the Larmorelectronfrequency.In the new variables,which will be written below

without primeslike initial ones,we obtain

= - (~) (iA +fia)+ v~- —f--A+ -~-(A Via - ia VA). (1.3.14)
rn p mc

It is not difficult to check that both substitutionsof variablesarecanonical;andthe equationsfor them
areprescribedby formulae(1.2.12), (1.2.33)with the sameHamiltonian (1.3.32).The differencelies only
in expressingthe velocity v through the canonicalvariables.We expandthe velocity in powersof the
canonicalvariables

V = V0 + V1

Vo_(~) (iA+j~)+Vçb~A
Pa mc (1.3.15)

= ~(~)
1~’2oA+jia)~+—~---(AVia — ~VA).

2 Po Pa 2Po

The Hamiltonian ~W’expandedin powersof the canonicalvariablesis an infinite serieseven for a
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non-relativisticplasma.The cubic term YCi is of theform

= ~J ~pV
0

2dr + J po(vovi)dr. (1.3.16)

For further calculationsonly the linearized equationsfor the new canonical variablesare needed.
We will write down theseequationsin k-spaceassumingthat all variablesvary as exp(—iwt+ ikr). It is
not difficult to checkthat theyhavethe following form:

k2A ep
0

ROB= + —

417- mc

—iwA = ~
4irc

—iwA = —(wHpo)
1”2vo~, —iw

4~=

—iw~=~—3T-~— (1.3.17)
m mp0

—ito
3p = —ip

0(kvo)

(kA)=0

- ~J~~-~(iA+iia)+ikcb---~--A.
mc

The characteristicequationof the system (1.3.17)is of fourth order in to
2 and describesfour typesof

wavesin the electronplasmawith the dispersionlaws co,(k) (i = 1, 2, 3, 4). It is clear that w(k) > 0. To
eachof the oscillation branchestherecorrespondsa set of quantitiesA,(k), B

1(k), A.(k), ia~(k)

which aredeterminedapartfrom multiplicationby an arbitraryfunction f,(k). Now let us introducethe
complexwaveamplitudesa1(k) making the substitution

A(k)= ~ fj(k) {A1(k)a1(k)+ A~(-k)a~(-k)}

1.1 (1.3.18)

ia(k)= ~fj(k){iaj(k)aa(k)+ia~(—k)a~(—k)},

and so on, into the quadraticHamiltonian ~ (1.3.2). The functionsf1(k) are definednow from the
conditionthat ~Cotakesthe form

= ~ J w1(k) a.(k) a”(k) dk. (1.3.19)

Furtherthe substitutionof (1.3.18) into (1.3.15)—(1.3.16) makesit possibleto expressthe Hamiltonian



V.E. Zakharov et aL, Hamiltonian approach to the description of non-linearplasma phenomena 303

~ in the form

= J{~[(V~~1,.2a~(k)a1(k1)a,(k2)+c.c.) Ok_~1_k2
ii,

+ (U~.L1,.2a1(k)a1(k1) a,(k2)+ c.c.) 5k+~l±k2]}dk dk1 dk2. (1.3.20)

The quantitiesV~1,,2,U~1,.2representthe matrix elementsof different typesof wave interactions.The
above-mentionedmethodof calculatingthem is muchsimpler than the use of kinetic equations.

It is of principal importancethat when using the Hamiltonian approach,there is no necessityto
checkthe symmetryof the matrix elements.

In reality different oscillation branches are those which significantly differ in frequencies,this
appreciablyalleviatesthe calculations.For example,let usconsidershort-waveoscillations kc~ w~,in
themagneto-activeplasma.In this casethe oscillationscan beseparatedinto potentialand electromag-
netic ones.The electromagneticoscillation frequencyis large, as comparedwith the plasmaone, and
theypropagatepractically in the samemannerasin vacuum.To calculatenormal variablesfor potential
oscillations in accordancewith the above-mentionedscheme,it should be noted that in the equations
(1.3.17)we have

A0, B—
1-—Vço.
4irc

The quadraticHamiltonianZ~,is a sum of the kinetic energyof the particles,an electrostaticenergy
andthe thermalenergyof the electrons

= I dr (po~—+~ ~ (1.3.21)
3 \ 2 81T 2rn Po’

The solvability condition for the system (1.3.17) leads to a dispersion equation describingtwo
branchesof high-frequencypotential oscillations:

— w2(w~(k) + w~)+ w~(k)w~cos20 = 0. (1.3.22)

Here 19 is the anglebetweenthe wavevectorandthe magneticfield, w~(k)= w~+ ~K2 r~, w~.

The dependenceof the wave frequencyon the propagationangleis illustrated in fig. 1.1. In a weak
magneticfield the upperbranchcorrespondsto Langmuiroscillations;in a strongfield thelower branch
correspondsto magnetizedLangmuiroscillations to w~cos�11.It shouldbe notedalsothat (1.3.22)is
valid for describingthe lower branchonly when cos 19 > \/mIM; in the oppositecasethe ion motion
shouldbe takeninto account.

Introducing the frequenciesof the upper and the lower branchesw~,we obtain from (1.3.17) a
relationconnectingv

0 and~pIp~,v~= ut ~p~/po

Uk = k
2(2 2) {w±(k)_[~±(k — ~ k~h)— itoHhk] }, (1.3.23)
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~*1Q~

~

900&

Fig. 1.1. The angulardependenceof thefrequenciesof thepotentialoscillationsin a magnetizedplasma.

whereh is a unit vectordirectedalongthe magneticfield. Therelation (1.3.23)becomesevident if it is
rememberedthat ~p/po= —(mk2/4irepo)p,and, hence,Uk is the well-known expressionfor the particle
velocity in a constantmagneticfield underthe actionof the electric field E = ik~, [1,3,4]. Introducing
normalvariablesa,.

= a~(a~+ a~) (1.3.24)

andsubstitutinginto (1.3.24), we determinethe multiplying factor:

7 1/2 2 2 1/2
+ ,sw± (0+ (Or-f

= 1/2 2 2 (1.3.25)
Wp(2po) w÷w_

The connectionbetweenthe hydrodynamicalpotential4’ and~p is readily determined:

i4’t=—--~-~. (1.3.26)
k w+ Pa

The connectionbetween&p and A and~ can be found projectingthe last of the equations(1.3.17)on
the x- andy-axes

* / * k
7w~\/po\”

2~pt—
kw± (054 Po

(1.3.27)

* / ~ k~W~\ / Po~1/2

kw± toH Po

Expressingthe interactionHamiltonian ~ (1.3.16) throughthe normalvariable,using (1.3.24)—(1.3.27),
we calculate the specific form of the matrix elements V~

1,,2,describing the interaction between
potentialhigh-frequencyoscillationsof a magneto-activeplasma.They are listed in tables1.1—1.3.

Above we consideredonly an electronplasma.It is not difficult to take into accountthe ion motion,
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Table 1.1
Connectionbetweenthedensityvariation8n

1 andthe
normalvariablesfor thebasic potentialplasmamodes

= a5 (ak + a_i)

Oscillation a~

kVno/2mw~

(~1~ ~
Wp 2mno w~—w~

r~- 2 2k iw WHW_
w

Vknof2MC~

WH (~)~j / flOWLH
WLH

WpWLH ‘2m(w
2+w2)

(2,, V(J~- ~Hi)flO/~

(2. (I2+_w~~
- 2T,, Q~-u1~

w~ Langmuir waves; w~,w_, high-frequency
potential oscillationsof magnetizedplasma;w,,, ion-
soundwaves; WLH, oscillations with frequenciesclose
to the lower-hybridone;(1,,, ion-cyclotronwaveswith
frequenciesclose to nwH; (1±,low-frequency oscil-
lations of a magnetizedplasma. &n,, is the Fourier
transformof theelectrondensityvariation for thefirst
threemodes,for others8n

5 is the ion density varia-
tion. The electromagneticwavefield is connectedwith
thecanonicalvariablesby therelation(1.3.3)

E5 = i(8irw&)’°~S~(b~-b~).

The S~are unit polarizationvectors definedby the
conditions

(kS~)=0; (S~,S~’)=8AA;

(S~S~)=1; S~=S~

For obtaining the matrix elementsof the interaction
with sound it is necessaryto substituteinsteadof the
fluctuation op in (1.3.7), (1.3.8) the ion density varia-
tion expressedin terms of thecanonicalvariables.

introducingadditionalcanonicalvariables(p, 4’, A andia). Therebythe numberof inherentoscillations
andpossiblenon-linearprocessesincreases.Theycanbe consideredin a similar manner,anda seriesof
the most importantexampleswill be presentedbelow.

1.4. Varioussimplijications

We haveobtaineda sufficient set of Hamiltoniansfor the interactionsbetweendifferent types of
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Table 1.2
Matrix elementsof the three-wavescoupling in isotropic plasma

Process

1 e2p~k
2(S~,S~)

Wk4W5,+0k2

2V2n- m
2[w~

2’w~

~ e (k,k1—k2)(k1—k2,S~)
wk-*wk +wk

l6lrmw* k1k2

1 e
2 fmn

0l2,\”
2 1~

(~)k~Wk2+flsk2 ~—-—---) V— (s~ ,S~)
2V2irm2 w

5w1

e f(2~Ø~,\1/2 [~(k1,S~)
Øk~Wk+f2~5 1I

4irm\w~J VT k1

I ~ w~, Vk2 (kk1)
— —

(21T)~’

22V2(Mnoc,,)”2 kk
1

c~ I(kk1)kY
2 (kk

2)\/k1 (k1k2)\/k
+ + —Vkk1k2

16(lT
3Mno)U2 ~ \/kk~ /kk~ ~

plasmawaves. Now let usconsiderthe possibilitiesfor a simplification of theseHamiltonians.Assume
that we havea cubicHamiltonianfor couplingthe sametypeof waveswith amplitude a,, anddispersion
law to,,, such that for the waves under considerationthe resonanceequationsfor the three wave
processes

~k~kl4-~k2, Wk+Wk1+to~2_O (141)

k+k
1+k2=0

have no solutions.A general form of such a Hamiltonian is expressedby (1.1.19). The absenceof
solutionsof (1.4.2) means that the quadraticnon-linearitiesresult in the existenceof inducednon-
resonanceoscillations and may be eliminated. For this purpose,it is convenientto make a trans-
formationfrom the variable a,. to a newvariable c,. accordingto the formula

a,, = c,, — V,,,,1,,2 3(k — k1 — k2) C~1C~2dk1 dk2
(l~)~ toki

tok2

+21 V~,.,,
1c,,1c,,2 o(k2— k — k1) dk1 dk2 J U,,,,1,,2c,,*1c,,~ O(k + k1 + k2) dk1 dk2. (1.4.2)tok

2
toktok

1 ~k
4-~kl4-~k2

The transformation(1.4.2) is canonical,accurateup to third-order termsin c,, and, after substitution
into the Hamiltonian (1.1.19),it getsrid of the cubicterms.In sodoing,thereappearfourth-orderterms
in the c,.; amongthem only the term

= JT,.,,
1,.2,,3c~c~c,.2c,.3O(k+ k1 — — k3) dk dk1 dk2 dk3 (1.4.3)
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Table 1.3
Matrix elementsof thethree-wavecouplingin amagnetizedplasma

Process

++ — + —1/2
+ + — 1 8

5651ô52 k1k2 /w~,w~2

(27r?/22w~(2mno)’
0 k 50k

x {k(u~i + u~2)+ _~-j[(ui u~
1)(kiu~2)+ (u~uk2)(k2uki)l}

_______ w~1
2 2 2 {w±(k_—k~h)+iwH[hkl}

k (w+ WH)

1/2

2 2
—

+ - - 1 o;o~,ts;2k1k2 ~W~1~~2’1

1°

(2ir?°4w~(2nom)’0k wi~

x {k(ui~i+ u~
2)+ [(up u~,)(kiui2) + (u~*u~2)(k2u~i)]}

+ 12k2 (2ir)3/2 Sk,ök ~(ku~,)

- - - 1 6kök115k2 k1k /w5w51\”
2

(2i?~4w~(2mno)”2k
2 W52

x {k2(u~*+ u~1)+~ [(u~2’U~*)(kU *) +

If the ions aremagnetizedandtwo low frequencymodesexist

~ ~

A± Ilk W5~

should be left. In an endeavourto eliminatethis term using a canonical transformationof the type
(1.4.2) containingcubic termsthereariseexpressionshavingdenominatorswhich vanish on the surface
determinedby the equations

to~+ ~k1 — ~k2 tok3 = 0, k + k1 — k2— k3 = 0.

The denominatorsin the otherfourth-ordertermshavesingularitieson the surfacesdeterminedby the
equations

~ + ~ ~ tok3 0, k+ k1+k2— k3= 0 (1.4.4)

to7~+ Wkl+tok2+ tok3 0, k + k1+k2+k3= 0. (1.4.5)
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As a rule, theseequationscannothavesolutionsif the equations(1.4.1)haveno solutions.Therefore
the above-mentionedfourth-ordertermsareunimportant.The matrix elementT,.,.1,.2,.3 is given by the
formula

— U_(,,2±,.3),.2k, U_(,.±,.1),.,,, U~(k+k1),.,,,U_1,.2+,,31,,2,.,
— _________________________—

tok2+k3+ tok2+ (0,, ~k+ki+ ~ +

— V2±,.3 k2k3 V,,+k1 kki — v;+,.1 ~ k2k3 — 2 V,.,,2 ~—k2V~’3,.,k3—k~

~k2~k3 ~k2 to~3 Wk+,.l~to~— ~k3—k14- to~j ~k3

—2 V,.1,.3 k1—ks ~ k2—k — 2 V,.1,.2,kl—k2 Vk3k,ks—k — 2 V,.,,3,k—k3 V,.*2,,1, k2—k, (1.4.6)
~k2—k4-~k~k2 ~k3—k

4-~~~k3 tok2_k1+tok1tok2

and possessesobviously the symmetryproperties(1.1.22).
The equationsof motion for Ck areof the form

+ iw,.c,. = —i f T,.,.
1,,2,.3c,,*1c,,2c,,38(k+ k1 — k2 — k3) dk1 dk2dk3. (1.4.7)

It follows from (1.4.7)and(1.1.22)that (1.4.7)possessesthe integral of motion

= J c,,j
2dk. (1.4.8)

The integralI is, strictly speaking,an adiabaticinvariantwith respectto thefull initial system.It will be
called the numberof quasi-particlesor the wave action integral.

The above-describedcase takes place for the interaction between Langmuir oscillations in an
electronplasma.In this case(see(1.3.6))we have

— — 1 ~(w,.IW,,2\~2 k(k
1k2) (~,,~,,\1/2 k2(kk1) f~k~k2\ k1(kk2)

V,.,.1,,,— t(klk2 — 4(2ir)
312p~j2L ‘~2w,. ) k

5k2 + I\2w,.2) kk1 + ~ kk~

(1.4.9)

Up to k
2r~(~1)order terms in (1.4.6), it can be assumedin (1.4.9) that tok = wi,. The obtained

expressionfor T,,,,
1,,2,.3hasa uniqueproperty.Namely,

= 0 if kIIk1IIk2IIk3. (1.4.10)

The validity of this equation can be confirmed by directcalculations.Theproperty(1.4.10)resultsin the
fact that the interaction of Langmuir waves in an electron plasma (electron non-linearities) is
anomalouslyweak for spectrallynarrowwave packets.

If Langmuirwaveswith acharacteristicvalueof the electric field E0, awavevectork andan angular
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width ~0 are prescribedin the plasma,the characteristictimes of electronnon-linearitiesare of the
order

l/T — w~,max(~~2 k2r~,E02/8irnT,(kr
0)

4 E02/8irnT) (1.4.11)

andareso largethat they usuallycan beneglected.
There is anotherpossibility to simplify Hamiltonianswhen we considerthe problemof coupling

high-frequencywaves with amplitude a,. and dispersion law to,, with low-frequency waves with
amplitude b,. anddispersionlaw 11,,. In this case,amongthe termsin the cubic Hamiltoniandescribing
such an interaction,one needsonly retain the following one:

= J (V,.,.
1,,2b,.a,,1a~+ c.c.) O(k + k1 — k2)dk dk1 dk2, (1.4.12)

asthe othertermsof the three-wavecouplingin the Hamiltonianarefastoscillatingterms.
The correspondingequationsof motion areof the form

+ iw,,a,.= —if { V,,1,.2,.b,.1ak2
0 (k — — k

2) + V,.l~,,,,2b,.*1a,.2O(k+ k1 — k2)} dk1 dk2 (1.4.13)

ab,./at+ iI2,,b,, = —if V,.*,.1,,2a,,*ia,.20(k+ k1 — k2) dk1 dk2. (1.4.14)

1.5. Equationsfor envelopes

If the system of interactingwavesconsistsof narrow packets,a furthersimplification of the wave
interactiondescriptiontakesplace.Let us considerthe interactionof threespectrallynarrowpackets
with typical wavevectorsk1,k2, k3 lying on the surface

~ki — ~k2 — (O~3= 0, k1 — — k3 = 0. (1.5.1)

Imaginea,. as a1(k1+ ‘ce) + a2(k2+ 12) + a3(k3+ 1(3), ~ ~ k. The substitutionof this expressioninto the
Hamiltonian(1.1.19), usingthe smallnessof K andneglectingunimportantterms,gives

~nt = Vf [a~(Ki) a2(K2) a3(sc3)+c.c.]O(K1— ~2 — 1(3) dK1 dK2 dK3

(1.5.2)
V V,.I,.2,,3.

Then, using the narrownessof the envelopes,we expandthe dispersionlaw in the quadraticHamil-
tonian in powersof ~:

= J to,, a,, a*,, dk = ~ [w(k~)+ ~J ,.,., Ki] a~(K5)a~(K1)dI.
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We changeto the variablesc, = a exp{i w,(k) t}, which correspondsto a variation of the zeroof the

frequencies.In this variablewe have

= ~‘ — ~ f w(k1) cc~dk = ~ J (i,v1) c,(K1) c~(K,)dK5

+ VJ {c~(Ki)c2(K2) c3(K3) + c.c.} O(K~— — 1(3) dK1 dK2 dK3 (1.5.3)

aw
Vi=-i~. ,,=,,~.

Now let us performthe inverseFourier transform4’i = 1/(21r)
3/2f c, exp(iK,r)dK

1. We obtain

= ~v.J ~ —c.c.)dr+ I7J (~cti24f3+c.c.)dr]
(1.5.4)

V= V(2i~)
3~’2.

Varying the Hamiltonian (1.5.4), we obtain the well-known equationsdescribing the resonance
three-waveinteraction

aifr
1/at — (v1V)ifr1 = —i Vç1t24’3

a/í2/at— (v2V)~i2= —i17~4i1 (1.5.5)

a4i3/at — (v3V)çli3 = —i %fr~t/i1.

It shouldbe underlinedthat the Hamiltonian ~‘ of (1.5.4) immediatelygives a non-trivial integralof
the system(1.5.5). -

Besidesthe Hamiltonian~W,the well-known Manley—Rowerelations -•

m~= J(I~~iI2+ cfr2I )dr; m2 J (14,112+ 14131)dr

areintegralsof motion of (1.5.5),as well as the momentumof the wave system

P=>~p,; p,=~J(41iV41~_c.c.)dr; ~=~r1+~p,v,.

In the propagationof a single narrowenvelopethe three-waveinteractionis unimportant(it mustbe
taken into account in higher-orderperturbationtheory), and the interaction is describedby the
Hamiltonian(1.4.6).

Now let us analysehow the dynamicalequationsdescribingmonochromaticwavepropagationare
simplified.
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If the carrierwavevectoris denotedby k0, it can be assumedthat

a
2w

w(k) w(ko)+ (1(v) + ~ (1.5.6)
aka ak~

= T,,
0,,,,,0,.0=

Introducing,as before,the envelopeof the quasi-monochromaticwave 4,

4, = exp~—iw(ko) t + ikor} J a(ko+ K) exp(iKr) dKI(27T)
3”2

andmaking the inverseFouriertransformin (1.4.7)we obtain

i4i~+ i(vgrV)cfr + ~ a2 a~ — ~ ~ =0. (1.5.7)
2 aka ak~,, ~ aK~aK~

In an isotropicmedium,when the frequencydependsonly on the modulusof the wavevector

akaalçj KaK~ g

24-1,2 K11=(Kko)/ko
and(1.5.7) is appreciatelysimplified:

i (cL’~+ vgr~)+ ~-‘ V~4,+~-~-~— D 4,~241=0. (1.5.8)

The z-axis is chosenin the direction of the wavepropagation.
It should be noted that, in contrastto the caseof three-waveinteraction,we shouldexpandw(k)

accurateto the K
2 terms, since the secondterm in (1.5.8) can be eliminatedchangingto a reference

systemmoving with the groupvelocity.
Let in (1.5.8) 4,, = 0. Then (1.5.8)describesa stationarywavepacketwith characteristiclongitudinal

and transversesizes,111 and l~,respectively.Assumingthat

~4, Vgr V2
Vgr

az 2k
0

we find Ill -= l~k0,that is i~~‘ l~.Since to” — Vgr/ko, the term w” a
24,/az2can be neglectedas compared

with othertermsin (1.5.8). In this casetherearisesthe knownequationof stationaryself-focusing
~ (1.5.9)

az 2k
0 Vgr

Of course,it takesplaceonly if 1’ <0.
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In deriving (1.5.8) it was assumedthat the matrix elementT,,,,,,,2,,3is a continuousfunction when all
the argumenttendsto k0. It is not alwaysso; in somecasesthis limit dependson the direction of the
vectork relativeto the direction of k0. In thesecases(1.5.8) shouldbechangedby a morecomplicated
equation.

As for thethree-waveinteraction,the fact that (1.5.8)is Hamiltonianimmediatelygivesan integralof
motion,i.e. the Hamiltonian

XPvgr+12 I2=~J{~(v~.41)2+~ ~ 2~ ~i141~4}dr (1.5.10)
k0 2 az

HereP = ~if (4,a4,*/az— c.c.)dr is a conservedquantity, too, i.e. the momentumof the wavesystem.
It shouldbe notedthat from the symmetryof relations(1.1.22) it follows that the value T is real.
Now let us consider, within the framework of the system (1.4.13)—(1.4.14),the problemsof the

interaction of a narrow packetof high-frequencywaveswith low-frequencywaves Liii. Let k0 be a
meanvalueof the high-frequencywavenumber.Then in (1.4.9) onecan makethe substitution

V,,,,1,.2=f(k)~V,.,.,,,0 k4k0

simultaneouslyexpandingthe high-frequencydispersionlaw accordingto the formula (1.5.6). In (1.4.13)
k -+ k0 + K shouldbesubstitutedin the argumentsof the high-frequencywavesa,,, whichcorrespondsto
a changeto envelopes,as in the previousexample. The form of the function f(k) dependson the
low-frequency wave nature. This function can be simply calculated,if the low-frequency waves are
soundwaves12,. = c~k.

The sound is characterizedby a variation in the densityof the medium ~p and the velocity v. By
virtue of the fact that k ~ k0, their values aresignificantly changedon a scalemuch greaterthan the
high-frequencywave period. Therefore it is possible to write for the local dispersion law for the
high-frequencywavesw(po+bp, V, k)

w(po+ ~p, v, k) = w(k)+ bp + v. (1.5.11)

In the majority of casesthe oscillation frequency dependson the velocity of the medium only
throughthe Doppler shift bw = (kv), andthe last term in (1.5.11)describesthe changein waveenergy
throughthe mediumentrainmentby high-frequencyoscillations.

The local high-frequencywaveenergydensity

~‘= w(ko)Ja,,a,,*dk

alsovarieswhenthereis propagationof sound in the medium

= J~ I4,(r)I
2dr (1.5.12)ap av
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which is clearly the sameas the interaction Hamiltonian. Here 41(r) is the envelopeof the high-
frequencywave.

As shown above, for soundmotionsthe variables&p and a hydrodynamicalpotentialarecanonical.
Introducingnormalvariables

p,,= \f~b,,(b,.+b*,,); v,,___ik~J~~(b,,_b~,,) (1.5.13)

andsubstituting(1.5.13)into (1.5.12) it is found that

f(k,k
0)= 1 ~ (1.5.14)

V2(217-)~ap c5 \‘kpo

As to orderof magnitudewe haveaw/ap w/po, and the ratio of the secondorder to the first onein
(1.5.14) is about —~c5/vph. When c~~ V~hthe effects of the wave entrainmentby the medium can be
neglected.So in somecases,for an examplefor potentialoscillationsin a magneticfield, the oscillation
frequencydoesnot in generaldependon the density,andthe waveentrainmentby the mediumis the
main interactionmechanism.

Besidesthe interactionwith sound, the intrinsic high-frequencywavenon-linearityshouldbe taken
into account.Adding (1.5.12) to the interactionHamiltonian (1.5.10) and varying, we will obtain the
interactionwith sound,which resultsin (1.5.8) in the appearanceof the additional terms

(i~iit+vgr~)+~V~4i+~~~Dl4,12 4, = (~!~~+ ko~)41. (1.5.15)

Adding (1.5.12)to the quadraticHamiltonianandvarying in ~p and 4’, we will obtain

= _ko~~~I4,!2
at az

(1.5.16)
a ~p aw
—4’ + c~— = — ~14112.
at Po ap

The equations (1.5.15) and (1.5.16) representa universal system describing the interaction of a
high-frequencywavewith soundin an isotropicmedium.

The physicsof the interactionof high-frequencywaveswith sounddependson the ratio of thesound
velocity andthegroupvelocity of high-frequencywavesci Vgr. If Vgr ‘~ c~,in (1.1.15)onecan changeto a
staticapproximation,assumingthat

-~ 6,~= -~-4’ =0.
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In this case

= l41I~, poV24’ —k
0-~-~4,~2.

c5ap az
If the entrainmenteffect can be neglected,the substitutionin (1.5.8) will be the only result of the

interaction:

~ ~p0(~9(0)
2 (1.5.17)

c
5 a~

It is remarkablethat the correctionsign for D dueto the interactionwith sound is alwaysnegativeand
favoursself-focusing.Taking into accountthe entrainmenteffect the changeto (1.5.8) is possible,if all
the quantitiesdependonly on the variable ~ = z — n1x — n2y. Due to the above-mentionedeffect, there
arisesa correctionfor T~

t=_~~2(1+n~+n~y1 (1.5.18)

dependingon ni and n2. In this case(1.5.9) is replacedby an equationof the type (1.4.7), the matrix
elementT,,,.1,,2,.3being a discontinuousfunction as k5 —~k0.

It shouldbenoted further that the above-mentionedprocedureis alsoconvenientfor the interaction
of narrow high-frequencypacketswith otherlow-frequencywaveswhosepresencechangesanyof the
parameters(e.g., a magneticfield, temperature,etc.) entering into the dispersionlaw for the high-
frequencywaves.

1.6. Averageddynamicalequations[9]

As shownin the previoussection,the descriptionof interactingwavesis markedlysimplified if they
haveclosewavevectors.It standsto reasonthat in this casetheyhaveclosefrequencies.The inverseis
not true, generallyspeaking.Thus,all Langmuir waveswith the dispersionlaw

= w~(l+ ~k
2r~,)

when k2r~4 1 haveclose frequenciesalthough their wavevectorscan differ by severalorders. This
narrownessof the frequencyspectrumof Langmuirwavescan beusedas asmallparametersignificantly
simplifying the descriptionof non-linear interactions.In this casethe interactionwith ions should be
takeninto account.

As mentionedabove,in a hydrodynamicaldescriptionthe ions may be obviously included into the
Hamiltonian approachscheme.In sodoing, however,someimportantkinetic effectsarelost which are
connectedwith the Landaudampingon the ions of forced harmonicsof Langmuirwaves.

Therefore, in the scheme,describedbelow, of averaging over a fast Langmuir frequency it is
expedientto retain the kinetic ion description.In the caseswhen the ions can be describedhydro-
dynamically, we will automaticallychangeto simplified Hamiltoniansof the type (1.4.10)or (1.4.3).
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The averagingmethodis basedon the fact that in a plasmawith a weakmagneticfield H 4w~the
harmonicoscillationswith frequencyw~,arethe quickesttypeof motion.

The plasma motions can be divided into two types: high-frequency electron oscillations and
low-frequencyones involving ions. Below we will confine ourselvesto the considerationof long-wave
oscillations,kr04 1. This makesit possibleto considerlow-frequencymotionsas quasi-neutraland to
describein the termsof hydrodynamicshigh-frequencymotions whosephasevelocities considerably
exceedthermalones.The interactionof high-frequencyoscillationswill beneglected,which allows us to
describethem usingthe linearizedhydrodynamicalequationsfor an electrongas

~ + div(n0+ 6n)v~= 0

(1.6.1)

~ ~

at ~0 m

Theseequationscan be complementedby Maxwell’s equationsfrom which the magneticfield

a
2E/at2+ c2 curlcurl E— 4ire(no+ &n) ave/at= 0 (1.6.2)

is eliminated.

In (1.6.1), (1.6.2) the electrondensityis imaginedin the form

n= n
0+6n~+bn, &fle,~n4no.

Herebn andôn~arethe densityvariationsconnectedwith low-frequencyandhigh-frequencymotions,
respectively. In (1.6.1) and (1.6.2) the terms of the order (~n~/6n)v/v~are eliminated. From the
continuityequationit is seenthat as to orderof magiii~udethisis theratio of the phasevelocitiesof the
low- and high-frequencymotions c5k/w~-. kr0\/m/M4 1. Before making further considerations,it
shouldbe notedthat in the non-linearterms andthe termsdescribingthe thermaldispersion,the linear
relationscan beused for connecting6n~,Ve. Taking thisinto account,it is not difficult to reduce(1.6.1)
and(1.6.2) to the equation

1 /a
2 \ 3v~- w~6n

— (~—+w~)E+curlcurlE——~VdivE+ ——E = 0. (1.6.3)
c2 at2 c2 c2 n

0

In the linear approximation,when 6n = 0, it describesLangmuir and electromagneticwaveswith the
dispersionlaws

2_

2j~2 2 . 2_ 2~I2 2
WLtopT.)~t VTe~ (0tWp~”~C

Now let us consider oscillations with a frequency close to the plasma one (for the Langmuir
oscillationsthis meanskr

04 1, and for electromagneticoneskc4 w~)andimagine the electric field in
the form

E = (E exp(—iwt) + c.c.). (1.6.4)
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Here E is a slowly varying quantity aE/at4 ~E.Substituting (1.6.4) into (1.6.3) and neglectingthe
secondderivative,finally the following expressionis obtained[31]:

—2iw~~-~+ c2 curlcurl E— 3v%~VdivE+ ~ ~nE =0. (1.6.5)
at

Equation (1.6.5) is convenient for describing oscillations with a frequencyclose to the plasma
frequency.Taking into accountthe intrinsic electronnon-linearity in (1.6.1), (1.6.2) could lead to the
excitation of oscillations at double plasma and zero frequencieswhich could lead, in turn, to the
appearanceof termsof the type r~,V2EE/nTin (1.6.5). They are negligibly small if the characteristic
time of the non-linearprocessesfollowing from (1.6.5)satisfiesarathersoft condition

1 E2 ___

>WP 2 ~ (kr~,f
r mnvPh 8irnT

(v~his a characteristicphasevelocity).
Besides,it should be noted that in (1.6.5) the quantity (v-,-,Ic)2 is a small parameterallowing the

separationof potentialand non-potentialoscillations.Assumingthat E V4i andtaking the divergence
of both partsof (1.6.5) we obtain

/ a 3v~ ~ ~in
V2(i—+——V2~4,=w~div—V4,. (1.6.6)

‘at 2w~ / 2n
0

Equation(1.6.6) conservesthe integral I = f IV4,1
2 dr coinciding, apartfrom a multiplying factor, with

the numberof Langmuir plasmons(seesection 1.4). Equation(1.6.5) conservesthe analogousintegral
$ El2dr havingthe meaningof the total numberof Langmuirandelectromagneticplasmons.

To close (1.6.5) it is necessaryto find anotherconnectionbetweenan and E. For this purposeit
should be noted that the phasevelocities of the electronstaking part in low-frequencymotions are
considerablyless than the thermalvelocities,and they can be describedin hydrodynamicalterms and
consideredstationary:

e e T~Vn
(VeV)Ve = — Vipei = — — Lv X H] + — —. (1.6.7)

m mc mn
0

Here the bar meansaveragingover time, and Pet is the electrostaticpotential of the low-frequency
motions.Usingthe identity (vV)v = ~Vv

2— [v xcurl v] andMaxwell’s equation(1/c)aH/at= —curl E, we
obtain

2 1
(VeV)Ve +~ [VeX H] ~Vv~= 2 2 VIEI2 = —V4’. (1.6.8)

mc 4mw~ m

Thus, it is evidentthat high-frequencyoscillations lead to the appearanceof force having apotential 4’
(Miller’s force), andpushingout the electronsfrom the region of theelectric field localization.It should
be underlinedthat this force acts on electronsonly (the correspondingforce acting on ions is m/M
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times smaller).As regards(1.6.7), it describedthe Boltzmanndistributionof electrons,

(1.6.9)

for which a thermodynamicalequilibrium has time to be establisheddue to the slownessof low-
frequencymotions.The ion distribution function obeysVlasov’s equationin the potential Wet

~-~+ (vV)j~—-~-(V~ei~) = 0. (1.6.10)

The quasi-neutralityconditions

an~=ffadr_ n0= &n = ~(ecoet—4’)

allow c~eito be determinedand thus the systemof equations(1.6.5), (1.6.10)to be closed.
The equation(1.6.10)takesinto accounta non-linearinteractionof low-frequencywaveswhich in the

majority of casescan be neglected.After linearizationof (1.6.10) thevariation of the densityan can be
expressedlinearly by the high-frequencyforce potential 4’(r, t). This connectioncan be expressedin
terms of the dielectric tensor;however, it is more convenientto introduce a plasma Green function
GKO, defining it by the relationsbetweenFourier images

n0 n0 fEe

T~ T~ ‘s

Here e is the longitudinal part of a dielectrictensor,and Ee is the electroncontribution to it. For GKQ
from (1.6.9), (1.6.10)it follows that

T~ LKfl fI(af01/av
Ga — _____________- LNO = dv. (1.6.12)

Mn0 1 — (Te/MflO)LKU’ j 1W — 12

The Greenfunction possessesobvioussymmetrypropertiesanalogousto thoseof r:

= G~ = G_,,~.

What is more, sinceit is expressedthrough e, G,ca it is also analytical in the upperhalf-spaceof the
variable12.

In some cases the system of equations(1.6.5)—(1.6.11) can be considerably simplified. If the
characteristictimes of all the processesare rather great r

1 4 kvT, the ion distribution in the
low-frequencyelectric field can be consideredas a Boltzmanndistribution:

anln
0= —e~o~1/T141.
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With the helpof aquasi-neutralityconditionfrom (1.6.8) it follows

an 4’ — El2
no T~+T

116irno(T~+T~)~

In the potential casethe equation (1.6.6), within the framework of the above-mentioned“static”
approximation,is of the form

V
2(i4,, + ~w~r~V24,)+ divJV4,~2V4, = 0. (1.6.13)

32lTflo(Te+ T~)

Fromthis equationthe following estimatefollows:

1/r— to~W/nT— to~k~r~,;W—~E2/8
1r.

Fromthis the applicability conditionsfor (1.6.13)follow:

W mT, mT1
—4—— (krD)

24——.
nT MTe’ MTe

In the opposite limiting case ~‘ kv~ for low-frequency motions the following hydrodynamical
descriptionis valid:

(~2 c~V2)an =
16ITMVIEI; c~= ~ (1.6.14)

In anon-isothermalplasmaT~~‘ T, (1.6.14)is applicableat all amplitudesof thefield; in thelong-wave
limit k

2r~< (m/M)T
1/T~for small intensive oscillations W/nT< (m/M)T1/T~the statistic equation

(1.6.13) follows from (1.6.14). In an isothermalplasmaT, — T~equation(1.6.14) is valid for describing
turbulencewith a high noise level W/nT> (m/M, k

2r~,)max,when the plasmamotion becomessuper-
sonic under the pressureof a high-frequencyfield. In this casethe term c~V2bn in (1.6.14)can be
neglected.The simpleasymptoticsGKn correspondto the simplified equations(1.6.13),(1.6.14). First of
all, it shouldbenotedthat GNn is a function of theparameter~ = 121KV-

1-. In the limit ~41 or 114KVT

we have

GKn = — Te/(Te+ T1). (1.6.15)

In the hydrodynamical limit ~ 1 or 12 ~ KVT1 G,,~has a pole correspondingto ion-sonicwaves.

Expanding(1.6.12), weobtain

GKn = 112_K~C;+2iy~-12~ (1.6.16)
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When comparedwith (1.6.14),the Greenfunction accountsfor the sonicwavedamping

1/2

(1.6.17)
In (1.6.16)only the Landauion dampingis directly takeninto account;however,within the framework
of the above-mentionedschemeit is not difficult to accountfor the Landauelectrondamping.Presented
in fig. 1.2 is the plot of thereal andimaginary partsof ~ at arbitrary ~. The plots arepresentedfor

ReC

(b)

~JmC

1. T~= 7’e
2. Ti. = O,5Te

3. Ti.=c~3~ (a)

4. Ti. 0,25Te

3

2

—

Fig. 1.2.A plot of the Greenfunction of the real and imaginary parts for different T~/T.(a)Greenfunction (imaginarypart) Im G(x) = —Im G(—x);
x = (11kvi-.. (b) Green function (real part) Re G(x) = Re G(—x).
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different ratiosof the electronand ion temperatures,which, as can be seen,influencesignificantly the
form of the Greenfunction when ~— 1.

Finally, in the last variant of the simplificationsof the dynamicalequationsvalid for a sufficiently
strongdampingof ion-sonicoscillations we can considerlow-frequencymotionsas forced.

The relation(1.6.12)can be rewrittenin the form

aflKfl = noe2(2irY2JG,,
1,,2,~(E,,1,~ W2) 5(k1— — k~)ö(w1— to2 — 11) dk1 dk2dto1 dw2.

4mto~Te

(1.6.18)

It is obviousthat at a low level of non-linearitywe have E,., E,,5(w— to,.), to,. is the law of wave
dispersionreckonedfrom the plasmafrequency.With thisaccuracythe inverseFourier time transform
can bemadein (1.6.18):

‘2 \3/2
8nK(t) =‘ ~‘ j G,,~,.2,~1~2(E,.1E~’2)o(k1 — — k2) dk1 dk2. (1.6.19)

l6irnTe

Consideringthe oscillationsto be potential,let us introducethe variable

a,. = i(8irto~)~’~’
241,,,E,. = —iki/i,. (1.6.20)

determinedin such amannerthat the value

Jw,,~a,.J2dk

would coincide with the total energyof Langmuir oscillations.Substituting (1.6.19) into (1.6.6), we
obtain finally

i ~-~-~-+ (to,. + iyk) a,. = if T,,,,
1,,2,,3a,,*1a,.2a,.~ö(k + k1 — Ii2~k3) dk1 dk2 dk3

(1.6.21)

T — ~ 1(kk2)(k1k3)G((toi—w3)Ilki —k3J)+ G((w1—w2)IIki—k2~)(kk3)(k1k2)

kklk2k3 — (2ir)
34nT~L kk

1k2k3
The plasmaoscillation dampingwhich can be consideredto be collisional y,. v~is included into
(1.6.21).The matrix elementT,,,.1,,2,.3 in (1.6.21)possessesthe symmetry propertiesfollowing from the
symmetryrelationsfor the Greenfunction:

T,,,.1,,2,,3= T,,*2,,3,,,.1

when

to,, + ~ = Wk3 + to~3~
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It shouldbe noted that in the above-consideredstaticapproximation

— w~ 1(kk2)(k1k3)+(kk3)(k1k2)
T,.,,1,.2,,3 — (1.6.22)

(2ir) 4n(T~+T1)i. kk1k2k3

satisfiesthe symmetry relations(1.1.22).Thus, (1.6.13) is a Hamiltonian of the type (1.4.7). Certainly,
this can easily be checked.If, simultaneouslywith the substitution(1.6.20),we changeto the normal
variables(1.5.13) for the soundoscillations,the systemof equations(1.6.16), (1.6.14) is reducedto the
form (1.4.13), (1.4.14), wherethe matrix interactionelementis

v,,,,1,.2= 1 ~ ~ ~ (1.6.23)
(2ir)

3~’22\/2Mnc
5 k1k2

As mentionedabove, the real and_imaginarypartsof the Greenfunction GKn quickly decreasesif
11 ~ sv~1-1.Therefore,when krD>> \/m/M (1.6.21) shows that only the oscillationswith close wave-
vectors__interact with one another. The condition__(w,.l— w,,3)/Jki— k31 — 1 gives k11 — k31
r~VmT1/MT=kdlr. Herethe quantity kd~f~r~1VmTj/MTeis introducedwhich hasthe meaningof a
characteristicsize of the matrix interactionelement.

For the validity of (1.6.21) it is necessarythat the non-linearcorrectionsin the argumentsof the
Green function would be negligibly small. In the region of the spectrum k

2r~,< m/M when the
Langmuiroscillationscannotexcitesound,this conditionis of the form

lIr— tot, W/nT—(krD)2wP<kvT.

That is, in this case (1.6.21) makes the static approximation equationsmore precise. When
k2r~>m/M, for the validity of (1.6.21)it is necessarythat all the sonic oscillationswould be forced,that
is, all characteristictimes r would exceedthe sounddampingtime YsT> 1.

Using the expression(1.6.16) for the Green function in a hydrodynamicalapproximation,from
(1.6.21)we obtainfor a characteristictime of a non-linearprocess

-iT —to
t’nTy.

Here %‘ is the energydensitywithin the interval of wavevectorsof the_orderof the Greenfunction
size. If the noise densityis uniformly distributedover the scalek, then W Wkdlf/k, the applicability
conditiontakesthe form

-~~-‘4 kr~~~/(Y)2 (1.6.24)

In particular,in the isothermalplasma,whereYs -— to
5, the condition(1.6.24)is in the form

W/nT<k
2r2~,.
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Listed in the tableare the valuesof the ratio ~ for different ratiosof electronandion temperatures:

TC/T, 2.1 1.4 0.9 0.8 0.64 0.5 0.36 0.25 0.16 0.1

y
5/cu, 0.65 0.52 0.39 0.36 0.3 0.24 0.17 0.1 5 x 10~ 4.2 X 10-2

Above, when deriving (1.6.21), the electric field was consideredto be potential. In actual fact, the
plasma inhomogeneity,arising from high-frequency pressure,mixes polarizations, that results in
convertingplasmaoscillations into electromagneticones with close frequency k — ~ w~,and vice
versa.To obtain the equationsdescribing the above-mentionedprocess,the electric field can be
representedas

E,. = i(8irw~)
112~ S,.

5a,,~ (1.6.25)

whereS,,~arethe unit polarizationvectors,for the LangmuirwavesS,.A = k/k, andfor the electromag-
netic wavesS,,5 satisfythe conditions

~YA_ C’*A. C C* — - uic, —
~ ~Y—,,, ~ U~’, ~ —

Then, substituting(1.6.25)into (1.6.5),we obtain

aa,.

___L~ill,.5 a,.5 = ~, J (S,.AS,.~’)anK a,.5.ô(k — k1 — K)dk1 dK.

In theseequationsthe fundamentalfrequenciesareexpressedas:

— li 2 2/ . — — S 7 2 2
= J~,,— 2?~C /(0p, ~~k3 = — 2

top~ r~D

Eliminating bflK, it is possible to obtain an equationgeneralizing (1.6.21). The conditions of its
applicability areanalogousto the conditionsof applicability of (1.6.21).

1. Z Averageddescriptionofthe oscillations of magnetizedplasma

Now let us considera magneto-activeplasma.The magneticfield leadsto the appearanceof new
oscillation branches,changesthe wave dispersionlaw and makesthe descriptionof the interactions
morecomplicated.Nevertheless,heretoo the separationof adefinite high-frequencyoscillationbranch
significantly simplifies the description of non-linear effects and allows changing to the averaged
description.

It is not difficult to take into account the effect of a weak magnetic field on Langmuir and
electromagneticoscillationswith a frequencyclose to the plasmafrequency,and to elucidatehow the
equationsobtainedin the previous section are modified. For this purpose,it is enoughto take into
accountthe Lorentz force F = (e/c)[vH] in the electron equationof motion (1.6.1). In virtue of the
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smallnessof the magneticfield it is possibleto assume,with an accuracyup to the quadratictermsin
(074/top, that

e ie2
F=——[vH]~’— [EH]. (1.7.1)

C mcw~,

As a result, (1.6.5) is obtainedwith an addition conditionedby themagneticfield

iE, — ~-~[hE]+--~-—curlcurlE—~ graddiv E+ w~-~-E= 0,
2 tot, 2w~ 2n

0 (1.7.2)

h = H/H.

Equation (1.7.2) is suitable for the description of long-wave kc ~ w~,oscillations.To describethe
influenceof the magneticfield on the short-wavekc~ w~,Langmuir oscillations,it is necessaryto take
into accountthe termsquadraticin H (in eq. (1.7.1)).Assumingthe electricfield to bealmostpotential
E = V4,, weobtain a generalizationof (1.6.6) taking into accounta weakmagneticfield

V
2(i4,, + ~w~k2r~V24,)— -~-~-~V~.4J— ~, div 8n V4, = 0. (1.7.3)

2w~ 2n
0

Since the magnetic field does not influence the ion motion, the equationsdescribing the low-
frequencymotionsareunchanged.Therefore,it is evidentthat thestructureof (1.6.12),(1.6.19)in which
themagneticfield leadsonly to a changein the dispersionlaw of theoscillations,remainsunchanged.It
should benotedalso,that (1.7.2), (1.7.3)conservethe total numberof waves.

In a strongmagneticfield toH ~ wi,, an essentialreconstructionof the oscillationspectrumtakesplace.
We shall restrict ourselvesto the considerationof two branchesof potentialoscillationskc~

being describedby the dispersionequation(1.3.22). In this casealso we shall considera transverse
propagationof oscillationswhen the frequencyof a lower oscillation branchbecomescloser to the
lower-hybridone, LH = w~w~/(w~+ ~),andthe ion motion affectsthe dispersionlaw in an essential
way.

As seenfrom (1.3.22), the oscillation frequencieschangewithin wide limits with a changein the
wavevectordirection.Therefore,as a rule, thereis no necessityto take into accountthe correctionsto
the law of wavedispersionconnectedwith the thermalmotion of particles.

High-frequencyoscillationsaredescribedby the linearizedhydrodynamicalequations

div(n0+ane)ve= 0

a e e
VeE~[VeH1 (1.7.4)

at m c

E V~Qei

as in the caseof an isotropicplasma.Here the electronnon-linearitiesareomitted which havegrowth
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rates, as in the caseof an isotropic plasma,which havean additional small factor ~k2r~,.However,
other processes,for examplethe decayprocessesinside the lower oscillation branch,can certainlynot
always be neglected.Besides,in (1.7.4)we neglectthe high-frequencywave plasmaentrainment,i.e.
non-linearterms which incorporatethe velocity of the slow motions. In accordancewith the general
resultsof chapter1, they makean essentialcontribution, when the law of wave dispersiondoesnot
dependon the density(e.g., for a weak magneticfield toe,> ~ to — w~IcosøJ). In thesecasesthe
equationsbecomemore complicatedalthough the general schemeremainsthe same. Appropriate
calculationswere carriedout in a paperby B.!. Sturman[10].

Dynamicalequationsdescribingtheinteractionbetweenoscillationsandlow-frequencymotionshave
the simplest form in the k-representation.We will confine ourselvesto the investigation of the
analoguesof (1.6.21),sincein the coordinaterepresentationthe complicateddescriptionis not justified
by someinterestingphysicalapplications.The region of frequenciescloseto lower-hybridone toLH is an
exception.It will beanalysedseparately.

Now let uschangeto the canonicalvariablesa,. introducedin section1.3.Then it is possibleto obtain
the analogueof (1.6.6)from the system(1.7.5):

* i I to~:;l_to~t
= j ±2 -2 (ku~,)3nN a~—ô(k—ki—K)dk

1dK. (1.7.5)
at 2 k

It should be noted that the superscripts± belong to the upper and lower oscillation branches,
respectively,andthe notation introducedin section 1.3 is used.Whenderiving (1.7.5), weomitted the
termscontainingthe small frequencychangeduring the interaction to,. — to,, <<to,,.

Derivation of the equationdescribingthe plasmadensityvariation affectedby ponderomotiveforces
is morecomplicated,as comparedto the previoussection,dueto the necessityto takeinto accountthe
scatteringby electrons.

- Let usdivide the electrondistributionfunction Ic into quickly oscillating andslowly oscillatingparts
(f andf respectively).Analogously,for an electricpotential~ = ~ + ~ E = —V~we have

~+ (vV)f— toH[ vh]f --—Vp = 0 (1.7.6)
at may

— —e aj0 e af
—+(vV)f— toH[ vh]f +—Vip —= ——Vi —. (1.7.7)
at m av m av

A line abovethe termson the right-handsideof (1.7.7)denotesthe averagingover time, andthe term
itself describesthe action of ponderomotiveforces.

The ion distributionfunction f, is describedby an analogousequation

+ (vV)f1+ (w74Evh]_~ V~) —0. (1.7.8)

Thelinear equations(i.7.6)—(1.7.8)are easilyintegrated(see[1, 2]). AssumingkrH 4 1 (rH is the Larmor
radius), it is possibleto obtain, as a resultof somecumbersomethoughsimple, calculations

8n,,~= G,.04’,,~no/T. (1.7.9)
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Herethe Greenfunction G,.~is prescribed,aspreviously,by the formula (1.6.11),G,,a= e~/e— 1 where
by e is meantthe longitudinal part of the dielectric constant,and the high-frequencypotential hasa
morecomplicatedstructurethanin an isotropicplasma,

T~I ..-~ (k1u,.2)
cb~w—Ja~7a~

(1.7.10)
, 1/2 2 2 1/2

* ,s.to~ (0± (074q=(k,to); a~— 1/2 2 2 -top(
2Po) w+—w_

If the ionsarenot magnetized,ky
7-1~ wa,, the Greenfunction coincideswith (1.6.12).In the opposite

limiting caseandin a non-isothermalplasmaG,.~hastwo polescorrespondingto the two low-frequency
eigenoscillations:

12±= ~ + K
2~~±{(to~+ ic2c~)2— 4w~K2c~}1”2]

(1.7.11)
K2c~(fl2 w~cos2 t9)

GKn (Q2.Q2)(l12~Q2)

If T~-— T
1, we may useagain(1.6.12)assumingthe ion motion to be one-dimensional.

At very nearly transversepropagationof oscillations, the interaction betweenoscillations and
ion-cyclotron waves can be significant. It is not difficult to write the appropriateexpressionfor G,,~,
becausethe expressionfor a dielectric constantin this case is presentedin many books (see, for
example,[1,2]). It should be only noted that for ion-cyclotron waveswe can also introducecanonical
variables[10] anddescribetheir interactionwithin the framework of the above-mentionedformalism.

For nearly transversepropagation,the inducedscatteringby electronsbecomessignificant, too. In
this case,for non-magnetizedions the expressiongeneralizing(1.6.12)is obtained:

TeLeLi= TeLi + T~L~

(1.7.12)

L — I k~v~f~dv~- L — I (kv)fo,dvej k~v~—w‘ ky—to

Whenthe oscillation frequencyapproachesthe lower hybridone,it is importantto take into account
the ion motion, andthe system(1.7.4)mustbe supplementedby the equations

av, e e a

~E~VWe, an1+divn0v1’O

(1.7.13)

= 41Te(an~—
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In the linear approximationthe equations(1.7.13),(1.7.4) describeoscillationswith a dispersionlaw

i M~. i M\
= (1 + cos20—) = w~(,~1+ cos20—) (1.7.14)

ml ml

which passto the branchw, when cos0 > \‘mIM.
It is not difficult to establishthat in thiscasethe connectionbetweenthe canonicalvariablesa,. and

the densityvariation bn
1 takesthe form

a,. = ~ ~j
2nom(w2~+W~L)~!. (1.7.15)

(VHWTh Wkk

The equation (1.7.5) retains its form, but, using the condition cos0 <Vm/M, it can be greatly
simplified:

i I w~k
1(~+ 1a)~) a,. = — — I 2 2 (kukl)— a,.1 ô(k — — K) dk1 dK

\t9t ‘ 2 (WH+wP)k

2 (1.7.16)
u,.

k ~

andtheconnection~nKand ak is given by the expression

a~ k2k1u,.2
—= G,.~ 2 2 j~aqjaq2o(qi+q2_q)dqidq2. (1.7.17)

no Wp+WH k1 n0T

In this caseG,... is determinedby the expression(1.7.12).
The relations(1.7.15)—(1.7.17)involve a full descriptionof plasmaturbulencewith a frequencyclose

to o~LH; however,theyarerathercomplicated.On theotherhand,whencos0 <Vm/M, the dispersion
law of theoscillationscontainsa high constantfrequencyWLH, that allows the analogueof (1.6.6) to be
obtainedby averagingover the high frequency.However, it will be moreillustrativeto obtainit directly
from the hydrodynamicsequation,andnot by the simplification of (1.7.16). Let us introducea positive
frequencypart of the electricpotential

E = ~(Vç1rexp(—iwLHt) + c.c.)

and, taking into accountthatfor suchsmall frequenciestheelectronvelocity is determinedby their drift

in the electric field
v=c[V~/iH]/I-P

we obtain

V
2 (i~

1— = 4lTe div 6n v. (1.7.18)
2 m t9Z
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For the anglescos0 ~ V’m/M, when the angulardispersionbecomessmall, it is necessaryto account
for thermaldispersion.Thenthe dispersionequationtakesthe form (see,for example,[1,2])

w
2-~WLH(l+2cos 0MIm +~k2R2)

1~,,2 2 ‘~-~- (1719
k2R2=~Jt~TDieIij, WH>Wp

tk2T~i(~+3TiITe), WH<Wp.

Taking into accountthe thermaldispersionin (1.7.18)is carriedout in the samemanneras for Langmuir
oscillations,we obtain asa result,

V2(i~+ ~R2V2~-)— -~—~ = 4~rediv 6n v. (1.7.20)
2 m 8z

Slow motionsof electronsalong amagneticfield arecausedby the ponderomotiveforce

f=(vV)v~ ie
mWHWLH aZ 8z

It is evident that, as in an isotropicplasma,it is potential.
Now let us considera static approximation(seesection1.6), when the distribution of electronsand

ions can be consideredas Boltzmannian.Then&n is simply connectedwith ~

6n = —ecb/(T~+Ti).

Finally we obtain

V2 (i~fr~+ WLH2 V2~fr)- 2m ~ - 2mwLH(T~+7~)(w~+ 2) div([V~Vç~*]~[hV~])=0.

The propertiesof thisequation,the conditionsof its applicability andphysicalsituationsdescribedby it
are discussedin detailin [10], for example.

2. Decayandmodulationalinstabilities

2.0. Introduction

The non-linearequationsdescribingwave interactionswhich were obtainedin chapter 1 are very
complicated.The simplestproblemwhich can be solvedusingthem is theproblemof amonochromatic
wave instability. Its solutionallows the characteristicvaluesof non-linearinteraction timesandscalesof
exciting oscillations to be obtained.On the one hand, the descriptionof this instability within the
framework of the equationsfor the normal amplitudessubstantiallysimplifies calculations,becausethe
solutionof a linear problemin thesevariablesis trivial. On the otherhand,by virtue of the fact that all
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physical information is containedonly in specific expressionsfor the matrix elementsand dispersion
laws, it is sufficient to find only oncethe connectionbetweenthem andthe instability parameters.For
instance,the instability growth rateshappento be proportionalto the value of matrix elements,and,
therefore,tables1.2 and1.3 presentedin chapter1 can serve,in addition,as a tableof the growth rates
of variousdecayprocesses.

As far aswe know, the decayprocessesaredevelopedin the regionsnearthe surfacesin k-space,on
which the decayconditions,i.e. the laws of conservationof energy-momentumfor waves,are fulfilled.
Thewidth of theseregionsis definedby the waveamplitude.It is evidentthat the conceptof wavesas
interactingquasi-particles,i.e. the conceptof decayprocessesas well arevalid only until theinstability
growth rateexceedsthe minimumfrequencyof the interactingwaves. In the oppositecasetherearises
the intersectionof decayregions,and complexmodified instabilitiesoccur.

The type of theseinstabilitiesessentiallydependson the structureof the matrix elements.In this
chaptertheyare investigatedon the basisof the interactionof high-frequencywaveswith sound.A very
importantproblemof the instability of a high-amplitudeLangmuirwave is also investigatedin detail.
Instabilitiesarisingunderthe actionof a homogeneoushigh-frequencyexternalfield on a plasma,or the
so-calledparametricinstabilities,areconsideredin a separatesection.

In a homogeneousplasmathe thresholdfor the decayinstabilities is definedby a linear dampingof
the excited oscillations, i.e., the energy flux generatedby pumping must be compensatedby its
dissipation.

In an inhomogeneousplasmathe oscillationschangetheir wavevectorand get out of resonancewith
the pumping.Due to the narrownessof the resonanceregion, it is the energycarrying-out from this
region, that defines the thresholdsof the decay instabilities in a lot of experiments.Therefore in
concluding this chapter the authorsanalysethe effect of inhomogeneitieson decay instabilities. It
should be noted that thereare many questionsof importancestill unclarified, thereforewe tried to
describea physicalpictureof the phenomenonin the simplestmannerandhaveobtainedan expression
for the thresholdvia simple estimates.

2.1. Decay instabilities

Let us considerthe problemof the stability of monochromaticwaveswith a small amplitude in the
medium describedby a three-waveinteraction Hamiltonian (1.1.19) where only those terms are
appreciablewhich do not containfast time oscillations.If we restrictourselvesto the caseof waveswith
a positiveenergy,the interactionHamiltonianis of the form

= J~V,.,.1,.2a~a,.1a,.2+ c.c.} ~5(k— k1 — k2) dk dk1dk2 (2.1.1)

andthe interactingoscillationsareobservednearthe surface

= W1~~+W~2 (2.1.2)

k=k1+k2. (2.1.3)
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The equationsof motion correspondingto the Hamiltonian (2.1.1)areof the form

aa,./at+ y,.a,.= —i 8(~°+ ~3~)/&a~

= _i{w,.a,. + J [V,.,.
1,.2a,.1 a,.2 5(k — k1 — k2) + 2V~’,,.,.2a,.1a~ö(k1— k— k2)] dk1 dk2J..

(2.1.4)

A damping of the oscillations with a rate y,. is phenomenologicallyintroduced. In (2.1.4) the
monochromaticwave

ak = aoö(k— k0)exp{—i w(ko) t}, a0 = (21T)
3”2,

is an approximatesolutionof (2.1.4).The coefficient (2ir)312 is chosenso that the energydensitywould
be in the form w,.

0a~.Since Va0entersall theresults,interestingfrom a physicalpoint of view, in what
follows the coefficients (2ir)

3”2 will be omitted as in the expressionfor matrix elements and for
monochromaticwaves. It is seen from (2.1.4) that a monochromaticwave can interactwith a small
amplitude waveoccurringvery closeto the surfaces

= tu,. + ~ (2.1.5)

= — ~ (2.1.6)

If these surfaces are far from one another, both these processescan be consideredseparately.
Conservingthe termscorrespondingto the process(2.1.5)in the equationfor small amplitudewaves,we
obtain

e,. + y,.c,. = —i Vt,. ,.~-,. a
0c,.~_,.exp(—i iXw t)

Cko—,.+ y,.,_,.c,.0_,.= —i v:0,.,.0_,.a0c,.~exp(—i ~ t)

A(s) = ~ ~ — W~0_,., c,. = a,. exp(iw,.t).

Theseequationshavesolutionsof the form

c,. = c0exp(—i Aw/2 t — u,. t), c~_,.-~ exp(i Aw/2t — i w,. t).

In order to avoid complicatedformulae, let usconsiderfirstly the casey,. = y,.0,.= 0. Then

w,. = V~~(Aw)2_Yo
2 y~ V,.

0,.,,.0_,.a01
2. (2.1.7)

Thus, the instability with the maximum growth rate Yrnax = ~o proportionalto the oscillation amplitude
developsnearthe surface(2.1.5). The condition Aw = 0 can be consideredas a law of conservationof
energyfor interactingwaves,and the instability as a processof the decayof the wave a,.

0 into a,. and
a,.0_,..Thereforethe instability (2.1.7) receivedthe name“decay instability”. Thewaveswith frequen-
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cies w,.~, u,. and u,.~_,.may belongto different parts of a spectrum,and, nevertheless,the way of
consideringthe instabilitiesandthe resultingformulaedo not alter.

The domain of the interaction near the decay surface Aw =
2yo can be estimatedfrom the

uncertainty relation. The wave frequency which increaseswith the growth rate Yo is determined
accuratelyto within y~.

The decayinstability wasfirst obtainedas earlyas 1962by V.N. OraevskyandR.Z. Sagdeev[13]on
the exampleof the decayof a Langmuroscillation into Langmuir and ion-soundoscillations.From
(2.1.7) it is seenthat the maximumgrowth rateof the decayinstability is universallyconnectedwith the
value of the matrix interactionelementandthe decayingwave energyg (1a

01
2 = ~‘Iw,.).Therefore,the

table of matrix elementsfor different typeinteractionswhich is presentedin chapter1 can alsoserveas
a tableof growth ratesof differentdecayinstabilities.

The decayinstability has a thresholdassociatedwith wave damping.Assuming for simplicity that
Aw = 0, weobtain

= i[—~(y,. — y,.
0_,.)+V~(~,.+ y,.0_,.)

2— y~] (2.1.8)

andfor the thresholdvaluey~= I V,.,,. ,.~_,.I2IaoI2 we have

2

— YkY,
0—k-

In a plasmawith a sufficiently high ion temperaturefor decayprocessesinvolving high-frequencywaves
and sound the situation is typical when y~< <~, where Yb and y. are the dampingrates of the
high-frequencyand the sound wave, respectively. In this case it follows from (2.1.8) that for the
instability growth ratewe have

Y~~Yo~IYs. (2.1.9)

The condition Ys> y~is theconditionof the applicability of the dynamicalequationswhich arevalid in
an isothermal plasma also. It will readily be seen that (1.6.21) has a solution in the form of a
monochromaticwave

— I~— \. — — 2a,, — aoexp~—1w,.0t,, (Oko — 1 kokokoko a0

After examiningthe latter for stability, we find that unsteadyoscillationsincreasewith a growth rate

y = T,.,.01a01
2= T(~I~°) aoI2

T,.,.
0= Im T,.,.0,.,.0 (2.1.10)

T,.,.0=—T,,0,.= ~‘ ImG(’~~0).
4irnT !k—koI

As seenfrom the plot Im G(~)presentedin fig. 1.2, as a resultof the instability only oscillationswith
IkI <1k01 are excited.In a non-isothermalplasmaT,.,.0 hasa sharpmaximumwhen ~ = 1k — koic. (see
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theexpressionfor Im G(~)in the hydrodynamicallimit). It is evidentthat this relationis identicalto the
decayconditions(2.1.5).In an isothermalplasmathemaximum of the instability growth rateis achieved
when ~ — Cu,. = ~Ik— kojc.. This relation is the analogueof the decay conditions for an isothermal
plasma.Here the factor ~ shows that together with the induced ion scattering,the decay involving
strongly dampedion-soundoscillationsmakesa greatcontribution.

Now let us considera similar problem of a spatial increaseof oscillationsas a result of a decay
instability. We use the equationsof the envelopederived in chapter 1. Assumefor simplicity that
damping does not take place and the decay conditions for frequenciesare valid. Linearizing the
equation(1.5.5) againstthe backgroundof a uniform pumpingwavewe obtain

19a,.1/ôt+ U1 8a,.,/& = iy0a~exp(iAkx)

aa,.2/at+ u2 âa,.2/~9x = iyoa,.~1exp(iAkx) (2.1.11)
Al_I I I. 2...Tz 2

— IIO~1~, Yo v,.0,.1,.2a,.0

Now let usconsiderastationaryproblemof a spatialdistributionof oscillations.Thesolution of (2.1.11)
is of the form

Ak * .Ak
a,.,— exp(i—~--x+ ikx); a~2—.~exp(_i-~--x+1KX).

For K we obtain an equationsimilar to (2.1.7),

)(2= (Ak)
2/4—y~/u,u

2. (2.1.12)

It is seenthat for wavespropagatingin one direction,u1u2>0, thereexistsa spatial instability: fixing
the oscillation amplitudesat somepoint, we seethat they exponentiallyincreaseas we movealong x.
The instability fails if

(Ak)
2>4y

0
2/u

1u2. (2.1.13)

If three-waveprocessesarenot permissibleby conservationlaws, four-waveprocessesbecomebasic.
As a result of monochromatic-waveinstabilities, thoseoscillationsareexcitedwhosewavevectorsare
nearthe surface

2k0 = k1 + k2,
2w~

0= ~ + w,.2. (2.1.14)

As mentionedabove,a non-linearwave mediumis describedby (1.4.8) in the absenceof three-wave
processes.This equationhasthe exactsolution,

a(k) = a0 exp{i~(ko)t} 8(k — k0)

where

= w(ko) + T,,0,.~,.0IaoI
2-
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Linearizing(1.4.8) againstthe backgroundof this solutionandfurtherdoing as in the caseof decays,we
find the instability growth rate.If dampingis neglected,it is equalto

= [T,,0,.0,.0,.0Ia~j]
2—

(2.1.15)
Acu = 2c~,,~—c0k~— W~

2.

Hereall the termsarerenormalized,taking into accountnon-linearities

= W~12+2T,,1 2,.o,.121ao1
2 -

The maximum growth rate is obtainedwhen Aco = 0 andproportional to aol2: Ymax = T,.
0,.0,.1,.21a01

2.
Thereforethe process(2.1.14)is calledan ordinary second-orderdecayinstability.

For satisfying the decayconditions(2.1.4), it is necessarythat the dispersionlaw should be convex
cu~<O.However, when k

1, k2—*k0, we have Aw—*0, as the maximum growth rate remainsfinite.
Therefore,the process(2.1.4) occurring with a small changein k: 2cu,.0= (U~O+K+ CV~OK~K ~ k0 is of
greatinterest.

In the simplestcasewhenthe Hamiltoniancoefficientsarecontinuousas k —* k0 (2.1.15)gives

Ct) =(Kv)±V~fIaoI2L1~1~2 (2.1.16)

Here T = T,.0,.0,.0,.,,zi = (a
2cu/3kai3k~)Ko,Ks.For an isotropicmediumzi = L(0) ,(2, where0 is the angle

betweenK andk
0

L = w’~cos
2 0 + (o4jko) sin20 -

Thentheinstability criterion takesthe form

L(0)D<0.

This condition is often called the Lighthill criterion [14].
As seenfrom (2.1.16), increasingperturbationspropagatewith a groupvelocity closeto the primary

wavevelocity; thereforethey areabsoluteperturbationsin that referencesystemwherethe wave rests.
As distinguishedfrom the first-orderdecayinstability, it resultsin a group of modulationsfixed with
respectto the primary wave.Thegroupvelocity of the perturbations,is dw/dK Vg.+ ~)(2 33w/3K3,and,
consequently,an absoluteinstability characteris retained

K/k
0 — (y/w)

113

When co” <0, the function L(�1) is alternatingand therefore instability exists for any sign of i~
Along eachdirection the instability region is boundedby the values ,2 < 4ITa~IL(0)I, the maximum
growth rate equal to Ta~being achievedwhen K2 = I2Ta~IL(O)l.For the angle tan20 =

L(0) = 0, andalongthis direction the instability regionis bounded,andwith increasingK it transforms
to a second-orderdecayinstability.

The above-consideredinstability showsitself as an increaseof long-wavemodulationsof an initial



V.E. ZakharovetaL, Hamiltonianapproachto thedescriptionof non-linearplasmaphenomena 333

monochromatic wave, and therefore it is very often calledmodulational.It should be noted that as a
result of the development of the modulational instability wave self-focusing takes place, and therefore
this instability also is called self-focused.A non-linear stageof this instability will be analysedin
following sections.

In conclusionit shouldbe noted that in the caseswhen the matrix elementsare not continuousif
K —*0, it can be shown that the above-mentionedformula (2.1.11) holds, however the coefficient T
becomes dependent on the angle 0.

Thus, the canonicalequationsallow the decayinstabilities to be systemizedand described,their
growth ratesreadily beingexpressedthroughmatrix interactionelements.

2.2. Modifieddecayinstabilities

As mentionedabove, an independentconsiderationof different decayprocessesis true only at not
too great initial wave amplitudes y I co,.. In the oppositecasethe resonance zonesintersect,and there
appear different combinedinstabilitiesthe propertiesof whichdependon an interactiontype.

Nowlet us consideras an exampleof thiseffect theinteractionof a narrowhigh-frequencyoscillation
packet with sound [111.In this case two typesof processestakeplace: the decayof a high-frequency
waveinto a high-frequencywaveand a soundone

= WkO_K + IlK (2.2.1)

and a scattering of high-frequency waves on one another,

2w,.0 = W~0+K+ Cüko_K. (2.2.2)

It is evident that the distancebetweenthe decaysurfacesis (1KLK
2. In view of the smallnessof the

sound frequency, even if K — k
0, the condition y > 0,. is fulfilled in the majority of experimentalcases.

Besides,even at not too greatoscillation intensitiesthe growth rate becomeslarger than the sound
frequencyfor the processesrunningwith a small variation in a high-frequencywavenumber.

Interactionbetweenhigh-frequencywavesand soundare describedby (1.5.15), (1.5.16) derivedin
chapter 1. Consider them in the simplified variant neglecting the intrinsic non-linearity of the
high-frequencywaves (assumingT= 0) and the entrainmenteffect k04~I (8w/8p)~p.In this casewe
have

thfr Vgr ~ t9
2ç1i ow

i (c~’~+ vg~.-~--)+ V~t+ -~- -~—~- = — ~fr

Vgr Ow/0k w’k
0/k0 (2.2.3)

4ap—c~bppo~~I~l2.

The system(2.2.3) hasa trivial exactsolution ~1’= a0.
Linearizing (1.5.15)—(1.5.16) against the backgroundof a monochromaticwave and assumingthe
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perturbationsto beproportionalto exp(—iflt + ipr) we obtain the dispersion equation

{(1l — pu cos Ø)2_ ~L2(0)p4} (Il2 — c.2p2)= L(0)p4a~f32po
(2.2.4)

/3 = c9~/8p.

Here a
0 is the initial waveamplitude,cos0 = pk0/pk0

L(0) = w” cos
20 + (u/ko) sin20; u = Ow/Ok.

Assumingthe waveamplitude sufficiently small, let us first considerthe first-order decayinstability.
As far asp is smallwhen comparedwith k

0, the equationof the decaysurfacecan be re-written in the
form

—pucos0+~L(0)p
2+pc.=0.

Nearthissurfacethe equation(2.2.4)can be simplified as:

(11 — pu cos0+ ~L(0)p2) (11 — pcs) = /32a~pp
0

2c~

Now the dispersionrelationfor the decayinstability can be obtained,

11 = ~(pucos0 +pc.—~Lp
2)±\//3aOPP0+(PU cos0 _Pcs_~LP2)2

coinciding with the expressions(2.1.7) with taken into account the matrix element (1.5.14). The
maximuminstability growth rateis achievedon the surface(2.2.1)andequals

Yd = f3a

0 ~ —

which alsocoincideswith (2.1.7).
In orderto obtain the second-orderdecayinstability, it is assumedthat .0 pu cos0. Then (2.2.4) is

reducedto the form

(11 — pu cos0)2_ ~L
2p4= — Teffa~Lp2

(2.2.5)
/32poTe~ 2 2 2c

0—u cos 0

This expressionis equivalent to (2.1.16)but the differenceis that the non-linearityresulting from the
interactionwith soundis anisotropic.It is obviousthat as the high-frequencywave interactswith sound
there arisespontaneousmodulationsin a transversedirection.The maximum instability growth rate
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y= Teffa~is achievedat the anglesdeterminedby the condition

~Lp2= Tena~.

When deriving (2.2.5), (2.2.4) the following conditions are assumed to be fulfilled:

Lp2>y; y<pc,. (2.2.6)

In the oppositecasethe separationof decayinstabilitiesof the secondorderbecomesimpossible.
Combinedinstabilitieswill be consideredin the most interestingcaseu ~ c,, when the effect of

low-frequencywavesis significant only for almosttransversepertubations.Thus it canbe assumedthat
L u/k

0. Now let us introducethe notation: q f3
2po/c~.Then the following casesbecomepossible:

1. qa~/w,.
0<c~Iu

2.

In this casefor p/ko~‘ ((c,Iu)qa
0

2/w,.
0)

113first-orderdecayinstability takes place. For smaller p the first
of the conditions (2.2.6) is broken, and for p/koI ((c,/u)qa~/w,.

0)
1”3the term Lp2 of (2.2.4) can be

neglected,andthis equationcan besimplified:

(11 — pu cos20)2 (0 — pc
0)= —(UIko)p

3c.qa~. (2.2.7)

The strongestinstability takesplaceon the conecos0 = c.Iu where

Im 11 = ~\/3p((uIko)c.qao~)1”3. (2.2.8)

2. c~/U2Iqao2Ic./u.

Now for p/k
0> (u/c.)qa~Iwko the decayinstability is againrealized. For smallerp the secondof the

conditions(2.2.6) fails, andthen (2.2.4) is of the form

112(11 — pu cos0 + (U/2k0)p
2)= p2c~qa~. (2.2.9)

The instability hasa maximumon the surfacecos0 = —~p/kowhere

Im 11 = ~V3(p2c~qao2)1~~3. (2.2.10)

The instability (2.2.10) is called the modified decayinstability. When p/k
0 — ((c~Iu

2)qaO2/wk
0)

1”4its
growth rateis comparablewith Lp2. For smaller p (2.2.9)shouldbe replacedby

112(11 —pucos 0)2 = (u/ko)p4c~qa~. (2.2.11)

The maximum growth rate

Im 11 = p((u/k
0)c~qa~)

1”4 (2.2.12)
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is attainedwhen 0 = ir/2.

3. qa~/w~0>c~/u.

This casediffers from the precedingonein that thereis no domain of first-orderdecayinstability, and
the modified instability extendsto p — k0. The maximumgrowth rate of the modified instability is
expressedby

y — (k
2oc~qao2)113. (2.2.13)

It shouldbe notedthat all the instabilities,exceptfor the modulationalonesare convectivein the
reference frame of the HF wave.Theirgroupvelocitiesof the perturbations0.0/Opsubstantiallydiffer
from those of the primary waves. For the modulational instability the group velocity of the pertur-
bationscoincideswith the group velocity of the primary waveswith an accuracyof non-linearterms.
Thus,modulationalinstabilitiesarenot so sensitiveto plasmainhomogeneitiesor to the coherenceof
the primary wave.

Also it should be notedthat for the instabilities (2.2.12),(2.2.8) and (2.2.5) for smallwavenumbers
the growth rate is proportionalto p. With the help of the initial dispersionrelation (2.2.3) it is not
difficult to seethat this correspondsto the neglectof the term Lp2.

The neglectof the diffraction termis the transitionto the non-lineargeometricopticsapproximation,
andthereforethe instabilitiescan beobtainedwithin theframeworkof the Vedenov—Rudakovequation
(seechapter3). The modified decayinstability as well as the maximummodulationalinstability growth
rate can be obtainedtaking into accountdiffraction effects.

2.3. Instability ofLangmuirwaves

The first sectionof this chapterdealswith the first- and second-orderdecayinstabilitiesof waves
which can be describedwithin the framework of a unified formalism. To describemodified decay
instabilities, in the casewhen decayzonesbegin to intersect,a specific form of matrix elementsis
significant. In theprevioussectionwe investigatedtheseinstabilitieson thebasisof HF waveinteraction
with a long-wavesound.In this sectionwe will considera very importantproblemof the stability of
Langmuirwaveswith finite amplitudes.Onthe onehand,in specific casesit is reducedto theproblems
considered above. On the other hand, within the framework of specific equations,we can study the
problem in more detail, and then the role of the above-mentionedapproximationsbecomesmore
evident.

Consider a stationary Langmuir wave,

= (A/k
0)exp(—iw ,.0t + ikor); bn = 0.

Let us linearize the basic system of dynamical equations (1 .6.6)—(1 .6.11) on the basis of this solution and
assumethat

bçlr — exp(—iwkot + ik0r + iKT — LOt)

bcfr* — exp(—i.Ot + i,r + iw0t — ikor) -
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For fl the following dispersionrelationis obtained:

1+~-~G(K,11)f (k0,k0+~)
2 + (ko,ko—K)2 I=o (2.3.1)

4T n~ 1k~Jk
0+ ,c1

2(w,,
0÷,. — 11—w,.~) k~Jk0— KI

2(w,.
0_,. + .0—

It shouldbe notedthat herew,. is countedfrom the plasmafrequencyWk = ~w~k
2r~,W = A2/8ir is the

oscillationdensity,and G,.,a is the Greenfunction introducedin thefirst chapter.
The instability charactersignificantly dependson the waveamplitudeandthe wavevectoras well as

on the temperaturerelationbetweenions andelectrons.The situationsunderconsiderationaretightly
connectedwith the simplificationsof G,.,a analysedin the first chapter.

Let usconsiderthe caseof an isothermalplasmaand not too high amplitudes.In this casethe wave
instability resultsfrom its inducedscatteringby ions.In the dispersionequation(2.3.1)the secondterm
in squarebracketsplaysthe main role, andin the argumentof the Greenfunction 11 can be changedto
co,.

0 — w,.0_,~.Since the width of the Greenfunction is of the orderof the sounddampingrate Ys, such a
procedure is valid as long as the instability growth ratey I Ys.

The equation(2.3.1) takesthe form

w~W (ko,k0 — K)
2

11 +Cu~

0_~~ WI(0+ 2 2 2 G,.,,.,00_,,00_,.0.
4Tn0 kolko—KI

For the growth ratevaluethe following expressionis correct:

cu~,(ko,k0— K)

2 W Im G(w~
0— CU~o_.c) (2.3.2)

4ngTh~jkO—KI
2 IKI

Apart from the notation,this expressioncoincideswith that consideredin section2.1 and is obtained
directly from eq. (1.6.21).

A hydrodynamicalapproximationfor the Green function (1.6.16) can be used in a non-isothermal
plasma.

In this case eq. (2.3.1) takes the form

K2V2T ~ (ko,ko+K)2 + (k
0,k0—K)

2 —0

4 noTf12_ ~ MLk~jk
0 + Kj

2 (—11 + w,.,+,. — cu,.,) ko~lko+K12(11 + w,.
0_,.— cu,.0) —

(2.3.3)

When the wave amplitudesare small and krD > ~Vm/M, omitting the secondterm in the square
bracketsandassumingthat 11 11,., (2.3.3)canbe simplified to the form

3 22(U~KTD m
(11—11,.)(11+ w,.0_,.—w,.0)+————--————=0. (2.3.4)

8 ~ Mn0T

This is a partial caseof eq. (2.2.4) describingthe first-orderdecayinstability. Its maximumgrowth
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rateis expressedby

y__~~4\J~—i(KrD)hh’2‘J~ (2.3.5)

It is achievedfor backscatteringthat K = 2ic~.When ~c4 k0, eq. (2.3.1) in the hydrodynamiclimit passes
to (2.2.4)which in the notation of the presentsectionis as follows:

[(.0— 3v~,-rD(KkO))
2— 9w~(KrD)4](.02 — K2c~)= ~ —~- K2c~(KrD)2. (2.3.6)

n
0T

In accordance with the resultsof the previoussection,whenthe valuesof K arerathergreat,but K 4 k0,
we have from (2.3.6) the decayinstability (2.3.5)andthe modulationalinstability with maximumgrowth
rate

y w0W/noT (2.3.7)

which is achievedwhen (KTD)
2 — W/noT

When

WM1
K <Kcr k

0~,
n0T m k0r0

we have the modified instabilities consideredabove. When W> n0T> (kOrD)Vm/M the modified
decayregion extendsup to K —~ k0, andfor its growth ratewe have,analogouslyto (2.2.13),

W k~ 1/3
y wp(_—_—--~) . (2.3.8)

Mn0 cut,

It shouldbe noted that the plasmatemperaturedoesnot figure in this formula. It is alsovalid when
T1 Te.

The growth rate (2.3.8) is achievedwhen K — 2k0. The instability retainsits characterup to the
intensities W/noT— (M/m)(krD)

4. With greatintensitiesthe instability is developedwith agrowth rate
of the order (2.3.8), but non-localizedin the vicinity of the surface~ co ,.~. The growth rateof this
instability is almostconstantwithin the region K I(O. It is important that for suchgreatamplitudesthe
instability resultingin the excitationof scalessmall comparedwith the initial wavelengthpossessesthe
greatestgrowth rate(aswill beshownbelow).

The longLangmuirwave instability krD <~Vm/Mdependsqualitativelyslightly on the temperature
ratio of electronsand ions. For small-amplitudewaves W/noT < (krD)2 a static approximationfor the
Greenfunction (1.6.15)maybe used.In this casea modulational-typeinstability takesplace

Y = V~qo4K2r~,W/n
0T—

(2.3.9)
q = (T1+ Te)/Te
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the maximumof which, y~,,— ~qcupWinoT is achievedwhen (KrDY ~W/n~T With increasingWin0T,
the wavevectorof growingperturbancesbecomesgreaterthan k0, andfor intensitiesW/n0T>k~r~it
can be assumedthat k0 = 0. Within a hydrodynamicallimit the equation(2.3.1) is simplified to the form

(112_c~K
2)(—I12+

4
2w~K4r4D)+ ~w~(KTD)~-~-- —~- cos20 = 0. (2.3.10)

Mn
0T

Here 0 is the anglebetweenthe wavevectorandthe electric field of the initial Langmuirwave. It is
obviousthat when the condition

_~~cos20> (KTD)
2 (2.3.11)

n
0T

is satisfied,the instability takesplace.
For wavesof not too greatamplitudeW/n0T< m,/M, .0 maybe neglectedwhen comparedwith the

soundfrequency.In fact, in this casea static limit of G,,a maybe used.
As is seen,thereis the instability with the growth rate

y wpV~(KrD)2(W/noT)cos
20 — ~(KrD)4. (2.3.12)

The maximum growth rate y ~w~WinoTis achievedwhen (KTD)2 = ~W/noT,cos20 = 1. For large
amplitudesthephasevelocity of the perturbationsbecomesmorethanthesoundvelocity, and(2.3.10)is
simplified to the form

112(112 —~W~(KrD)4)= ~ cos20. (2.3.13)

When K aresmall, we have

i3 W m 2 \1/4
y w~(KrD)(———— cos 0 . (2.3.14)

~4n
0TM /

When KTD ~ ((miM)(W/noT)cos
20)hI~2,the growth rateachievesthe value

W 1/2
ywpi(___cos2O’) (2.3.15)

‘n
0T /

which is not practically varied up to (KrD)
2— (W/n

0T)cos
20 and then, on the stability boundary

(2.3.11),dropsto zero.
In the literature devotedto Langmuir turbulence,thereexists a greatterminological muddle.For

example, the instability (2.3.7), (2.3.9) as well as (2.3.12) and (2.3.14)arecalledmodulational.By this is
meant that the instability (2.3.7), (2.3.9) results in an initial monochromaticwaveamplitudemodulation,
and (2.3.12) and (2.3.14) result in the appearanceof the plasmadensitymodulation.To distinguishthem
(2.3.12)will be called a subsonicmodulationalinstability (SMI-I), and(2.3.14)a supersonicmodulational
instability (SMI-Il).
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In conclusion,it is appropriateto presentschematicallythe basic resultsof this section (fig. 2.1).
Illustratedin this figure arethe maximumgrowth rateof the Langmuirwaveinstability dependenton its
amplitudeandthe wavevector,aswell as the wavevectorcorrespondingto this valueof thegrowth rate.

When the amplitudes W/n0T< kr0Vm/M are sufficiently small in the decay spectrumregion
kOrD > ~\/m/M, the first-orderdecayinstability (2.3.5) (region I) possessesthe maximumgrowth rate.
With increasingintensity the region I turns into the modified decay (2.3.8) (region III). Within the
non-decayspectrumregion at small intensitiesthe modulationalinstability K <k0 (2.3.9) (region II)
possessesthe maximum growth rate. With increasing W/noT it turns to the subsonicmodulational
instability (2.3.12) of the Langmuir wave condensatewith k0 = 0 (region IV). And, finally, at great
intensitiesa supersonicinstability of the Langmuircondensate(2.3.14)(regionV) is of greatimportance.

2.4. Parametric instabilities

Among various decay instabilities a specialclass standsout: the instabilities of a homogeneous
external field which are often called parametric instabilities. As a rule, the problemsof exciting
potentialplasmaoscillationsby electromagneticwavesbelongto thisclass.It hasbeenknownthatwhen
a homogeneoushigh-frequencyfield is superimposedon an electronicplasma,the oscillationsarenot
excited [15].Only a uniform electron motion in an external field arises.Therefore,the electromagnetic
wavedecayinto two high-frequencypotentialoscillationsis possibleonly with taking into accountthe
finitenessof the electromagneticwavenumber(seetable1.2).

Parametricinstabilitiesof a homogeneousfield in a plasmaarisewhenoneof the excitedoscillations
is a low-frequency one, e.g., a sound oscillation involving ions. Thus, a parametric instability is an
exampleof the interactionof low- andhigh-frequencywavesmentionedabove.

/ rmav~m)v3
/

-~ _______

~ L~-~Z~YLI~~kjI 2 ~i k~J ~

~ frw ~ i
~ z’~0

U

3 YiW

Fig. 2.1. Location of different instability typesfor themonochromaticLangmuirwavein an isotropic plasma.k is thewavevectorcorrespondingto
maximum growth rate. I, first-order decay instability; II, modulational instability; III, modified decay;IV, subsonicmodulational instability, V,
supersonicmodulationalinstability.
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The linear theory of parametricinstabilities is describedin detail in the book by V.P. Silin [15];
thereforethe principal object of this section is to demonstratethat parametric instabilitiesmay be
investigatedwithin the frameworkof a Hamiltonianformalism in a rathergeneralform. Let apair of
wavesin the medium be excited— a high-frequencywavewith the amplitudea,. and a low-frequency
wave with the amplitudebk. Hamiltonianof the interactionwith an externalfield ~umping)H~can be
obtainedassumingin (1.4.12)oneof the high-frequencyamplitudesto be h exp(—iwot):

= Z + ~, = f (w,.a,.a~,,+ Il,.b,.b*,.) dk + J {hV,.a,.(b_,.+ b,.*) e_~~~~0t+ c.c.} dk. (2.4.1)

Here V,. = V_,.~~,., h is the amplitudeof the externalfield of frequencyw0.
The term a,.b*,. in the Hamiltonian should be retained only in the case when the instability growth

ratesarecomparablewith the soundfrequency.By virtueof the fact that (b_,. + b~)— bn,., it is shownin
(2.4.1) that the high-frequencywaveinteractiontakesplacevia densityfluctuationscattering.In the case
of the interactionwith an electric field hV,. linearly dependson an electric field andthereforedepends
on kE only, i.e. Vk = V_k. For example,for the decayinto an electromagneticwaveand sound (see
table1.2) we have

— (cu~Il~)1~~2 ~ E~ kE0-‘I2V2 ‘8irn0TkE0

The equationsof motion,correspondingto (2.4.1)are:

i9a,./Ot+ ico,.a,. —ihV,.(b,.+ b’!,.)e
t”°’

(2.4.2)
Ob,./Ot+ iIl,.b,. = —ih[V~~ — V_,.a~,.e_i~00t].

A zeroth-ordersolutionof (2.4.2) can be unsteadywith respectto the oscillationgrowth,

b,., b*,. e”°’; a,. — e~1~’°~”°~’; a*,.

For the complexfrequencyco the following dispersionequationis obtained:

(w2—8~)(w2—1l~)—41l,.ô,.h2V~, 8,. = w~—w,.. (2.4.3)

It should be noted that (2.3.6) is a partial caseof (2.4.3) with 8,. = ~ thereforethe above-
mentioned Langmuir wave instability with k

0 = 0 is a partial, very special case of a parametric
instability.

If the externalfield is not too largehV,. <11, (2.3.4)mustdescribetwo typesof instabilities:first- and
second-orderdecayinstabilities.The first-order decayinstability possessesthe maximum growth rate.
Its growth rateis maximalon the sphere

w0=w,.+1l,. or —8,.=w,.—w0=—1l,.
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and (2.4.3) in the vicinity of this surfaceis simplified to the form

w~Il,.+iVh2V~_~(8,,_Il,.)2. (2.4.4)

As is seenfrom (2.4.2), the sum of the phasesof the exciting waveshasa well-definedmagnitude(it is
equalto ir/2 on the decaysurface).This phasecorrelationis conservedat somenon-linearstageof the
instability developmentalso, and is of importancewhen studyinga super-thresholdsystembehaviour
(seechapter3). Within the otherregion of k-spacethereappearsa second-orderdecayinstability near
the surface

2w0cu,.+w_,. or 8,.~0.

In thiscasethe equation(2.4.3) takesthe form

w
2= ~ 8,.. (2.4.5)

The instability takes place when 8,. <0. The maximum growth rate y = 2h2V~/11,. is achievedwhen
8,. = —2h2V~/[l,.. It is evident that theseresultsare perfectly similar to thoseobtainedin section2.1,
andthereforeparametricinstabilitiesareaspecialcaseof decayones.Theinstabilities (2.4.4)and(2.4.5)
were obtainedindependentof the works devotedto decayprocesses.Therefore(2.4.4) is often calleda
periodic instability, and (2.4.5) an aperiodic, or two-stream one.

Due to the simplicity of the dispersionequation(2.4.3), the investigationof combinedinstabilities
when hV,. > 11,. is simplified. We have

w2 ~(8~+ I1~)±V~(1l~— 8~)2_4D,.6,.h2V~.

It is evidentthat, when hV,. is great,aperiodicandperiodic oscillationbranchesareobservedas well.
It should be notedthat if the externalfield frequencyis lessthanthe plasmaone,only an aperiodic

instability can be developed.
Now let us consider the problemof Langmuir and ion-sound wave excitation. In this casethe

dispersionequationtakesthe form

= ~(11~+ 8~)± — — 41fl6,.w~, E~ cos20
4 8irn

0T

cos 0 = kEo/kEo; 6,. = w~(Li—~k
2r~); Li = (coo— w~)/w~.

Firstly let us consider the periodic instability 6,. >0. When E
0

2/8irnoT< krD\/m/M, we have an
ordinarydecayinstability of an electromagneticwavewith maximumgrowth rate

1/2

I ‘~0 2
cos 0

\ 8irn
0T

In the oppositelimiting casewe haveE~/81TnoT> krDVm/M. When 8,. is not so great,we havefor the
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instability growth rate

y ,sjIl~~-‘~- cop . (2.4.6)
2 8rrn0T

It achievesits maximumvalue

1/4
Yrnax ~üp (~Li

2 ° ~tT~2 (2.4.7)M l6irn
0T

when

k
2r~=~Li; 6,.=~w

14; cos
20=1.

This expressionholdstrue if the following conditionsarefulfilled:

________ 2 ~0
ôkCUp >11k, ‘1k >8,.. (2.4.8)

l6irn
0T l6irn0T

The first condition is valid for not too small densitiesof the externalfield E0
2/l6irnoT> miM The

secondconditionis valid for not too greatmismatchesLi only: Li2 < (E~i16irnoT)m/MWith increasing
mismatchthe expression(2.4.6)for thegrowth rateholdstrue, andits maximumis determinedfrom the
condition co~11~E~i8irnoT— ô~.For the maximumgrowth ratethe following expressionis valid:

Yrnax cop(~k2r2~,8irnoT) cot,(~8irn
0TLi). (2.4.9)

This expressionholdsas long as the exciting oscillationsdo not fall within the strongLandaudamping
region.This takesplacefor a Maxwell distributionfunction whenLi 0.3. In this casethe characteristic
growth rate width is about 8k/k0— YiWko, where k0 is the characteristicwavevectorof the exciting
oscillations defined by the condition Li 3(korD)

2. Figure 2.2 showsthe maximumgrowth rate of a
periodic instability asa function of mismatchundertheconditionthat we arewithin themodified decay
instability region

E~/8irn
0T>korD\/m/M.

Now let an aperiodicinstability be considered.When the externalfield intensitiesare small, (2.4.6) is
reducedto (2.4.5)anddescribesthe second-orderdecayinstability with growth rate

y w~(Eo
2/8irnoT). (2.4.10)

For largeE~/8irn
0Tan aperiodicinstability is investigatedsimilar to a periodic one, andits maximum

growth rate coincideswith (2.4.9) as to order of magnitude.Presentedin fig. 2.3 is the wavevector
dependenceof the parametricinstability growth ratein themost interestingcaseof greatintensitiesand
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r

~q2

(~o
2rn’\’/2 2 ~42 q250,37 k’td

L1~Tu1.T~~~1I j~O,~25 4:404

Fig. 2.2. Maximum growth rateof periodical instability asa function Fig. 2.3. Growth rateof parametricinstability for greatintensitiesand
of mismatch4 = — al,,)/wp. mismatchesasafunction of theexcitationwavenumber.

mismatches.It is evidentthat numericallythe aperiodicinstability growth rateoccursto be greaterthan
the periodic one.

It shouldbenotedthat (2.4.9)doesnot dependon temperature,andwhenv
0~,,— Vph (v00~= eEo/mcoo)it

transformsto the well-known resultby V.P. Silin [15]for a cold plasma.The maximumpossiblegrowth
rate of a parametric instability is expressed by

Ymax wi,,(rn/Al)”
3

In the presentsectionthe oscillation dampingwhich definesthe instability thresholdsis ignored,but
in somecasesit influencesthe growth rate structure.The detailedanalysisof the dispersionequation
(2.4.3), taking into accountdissipations,is presentedin the book by V.P. Silin [15].

2.5. Theeffectof inhomogeneityon decayinstabilities

In a realplasmathe decayinstability thresholdis often determinednot by the wavedamping,but by
the plasma inhomogeneity or that of the initial wave. In thesecasesthe wave interactionregion is
restricted by the pump wave localization region or the scaleson which the wavepropagatingin an
inhomogeneousplasmachangetheir wavevectorandgo out of resonance.

The departureof waves from the interaction region is just the factor defining the instability
thresholds.

In the description of such effects the inhomogeneity scale is assumedlarge comparedto the
wavelength.The interactionof threewaves a

0, a1, a2 will be describedusing the envelopeequation
generalizingthe equationsobtainedin chapter1:

Oao/i9t+ u0 Oao/Ox+ iwo(x) a0 = i Va~at

3a2/Ot+ u2 0a2/Ox + i w2(x) a2 = i Va0a~ (2.5.1)

8a1/Ot+ u1 8a1/Ox+ i wi(x) a1 = i Va0a~.
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Here V is the interaction matrix element Vk0k1k2 in which the inhomogeneityeffect can be neglected.
The frequenciescu in (2.5.1) correspondto the wavevectorsk,(xo), w,(x, k.(xo)) taken at a point x0,
wherethe decayconditionsarefulfilled:

~k,(x0)=0.

It is convenientto write down eq. (2.5.1) as follows. Let at a point x0 the decayconditionsfor the
wave frequencies~ w(kj(xo),x0)= 0 be valid. Then, since when propagatingin an inhomogeneous
mediumthe wave frequencydoesnot change,the decayconditionsfor the frequencieswill befulfilled
over the wholespace.

Let usexpandthe frequenciesin (2.5.1) in a seriesandchoosethe origin at x = x0. Then we have

w.(x, k(0))= w,(0,

dx

From the condition w(k, x) = constantit follows that

dw1/dx = —U, dk,/dx.

Substitutingvariablesandassumingthe pump waveamplitudeprescribed,eq. (2.5.1) takesa more
conventional form:

t3a/t9t+ u1 Oa/Ox = i y~(x)b* e
t~

Ob/Ot+ u
2 Ob/Ox = i yo(x)a * e”~ (2.5.2)

4 ~

Here y0(x)= Vao(x)is the instability growth rate in a homogeneousmedium.Now let us considerthe
casewhen secondarywavespropagatein one direction.Oscillationsbeginto increaseon the instability
region boundary, and during the time of their prolongation they reach their final level. It can be
determined using a simple estimate. Let us considerthe caseof inhomogeneouspumping. Let the
instability be localized within a region of size L. Then, according to (2.1.12) the oscillations,after
passingthe interactionregion,will achievethe value

A = A0exPf( )1/2} = A0e”.

Whenthe condition K > A (A is the Coulomblogarithm)is valid, the oscillationlevel is determinedby
non-lineareffects. Thereforethe growth rate value Yo Vu1u2A/L is naturally called the threshold.

In the casewhen the thresholdis defined by the inhomogeneity,the instability zonesize can be
determinedfrom the following considerations.Propagatingin an inhomogeneousmedium, the oscil-
lationschangetheir wavevector,andthe decayconditionsarebroken.The interactionregion boundary
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is determinedfrom (2.1.13)

~= Aklh=x—~--(ko—k1—k2)=~—~
Vu,u2 dx 2

i.e., the instability region size is L — 4yo/Vu,u2k’,andfor the amplificationcoefficientwe have

42

K ~Yo
u1u2k’

which is in good agreementwith the resultK = iry~/u1u2k’obtainedby an exact calculation.
Let usconsiderwavespropagatingin oppositedirectionsanddiscussfirst the uniform pumpingwave

excitationin the linear inhomogeneitymedium.In thiscasethesolution (2.5.2) is expressedby parabolic
cylinder functionsandhasbeeninvestigatedin [16,17]. The instability is of a convectivecharacter,i.e.
the waveafter passingthe interactionregion amplifiesup to the finite value

A = A0exp(wyo
2/uiu

2k’).

If the density profile is smooth, the instability becomesabsolute(for a quadraticprofile see[15,17]), i.e.
when the critical value is increasedby pumping, thereare no stationarysolutions,andthe oscillation
level is determinedby non-linear effects. To understandthe characteristicpeculiaritiesof absolute
instabilities,let usconsiderthewaveexcitationwithin the layer.Let usconsiderthe stationarysolutions
of (2.5.2)

uiOa/Ox=iyob*, ‘Yo, 0<x<l
(2.5.3)

—u2Ob/Ox = lyoa*, 0.

Natural boundaryconditionsare that the amplitudesof enteringinto thelayerare small, on the level
of thermalnoises,and it can be assumedthat a(0)= 0, b(l) = 0. Thenthe solution (2.5.3) is

a(x)sinKx; b(x)=cosKx.

This solution exists only when K
2 = y~/u

1u2= t
2(~r+ mIT)2. For such stationarysolutionsthe energy

flow to the systemfrom the pumping wave is compensatedby the departurefrom the region of its
localization. The basic solution rn = 0 correspondsto the threshold pumping value, when y~>
~u

1u2(ir
2/l2)the noise level is restrictedby non-lineareffects. m = 1, 2,... correspondto stationary

solutionsquickly oscillatingin space,and thereforeleading to a greatenergydeparturefrom a layer.
Probably they haveno particular physical sense,becausethey are unstablewith respectto small
parameter changes.

An estimate of the inhomogeneityeffect on the inducedscatteringby particles is of particular
interest. For correctnesslet us confine ourselves to the consideration of the electromagneticwave
conversionto the Langmuirone by ions. In a homogeneousplasmathe growth rate of this processis

/&o~CO~\

y,.-=ImG~ k )Yo
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wherey~is the maximum growthrate. Propagatingthroughthe inhomogeneity,the oscillationchanges
its wavevector,and Im G decreases.As wasmentionedabove,the width of Im G — kvT; therefore, in
order for the growth rate to be markedly changed,it is necessaryto changethe wavevectorby the
magnitude of it itself. For Langmuir oscillations it takes place over the scale 1—L(krD)2 L1 =

d In n(x)/dx. In sodoing the oscillationsincreaseby afactorexp(yL/v~),as a resultof instability (the
instability is convective),andthe condition yLfu > A can bewritten down as a threshold.

So far we have ignored the wave damping. Taking this into account and transforming from
dissipationlessthresholdsto instability thresholdsis not trivial. The point is that the dissipationchanges
theinteractionzonewidth, thereforethecalculationsbecomecomplicated(seereview[15]),andit is not
expedientto do it in a generalform.

It follows from the resultsdescribedabovethat the instability thresholdsare minimum for those
waveswhich groupvelocitiestendto zero. In this caseOk/Ox transformsto infinity. If groupvelocities
do not vanish simultaneously,an anomalousinstability thresholddecreasedoesnot take place,since
(Ow/Ok)Ok/Ox= —8w/Ox. So, when an electromagneticwavedecaysinto a Langmuirwaveand an ion
sound one, in a plasma thereappearsjust such a situation.lithe turningpointscoincide,the instability
thresholds really decrease. In this case the instabilities becomeabsolutealso for a non-lineardensity
profile. However,our quasi-classicdescriptionhasnot alreadybeenapplicable.A detailed investigation
of the problemsbelongingto the classunderconsiderationmaybefound in thereview [15].It shouldbe
notedonly that the situationwith the coincidenceof two turning pointsis not exceptional.This often
can be achievedby selectingatransversevalueof the wavevector.Becausea minimumthresholdvalue
is of greatestinterest,the considerationof such a situationis very important.

3. Statistical description of wave interactions

3.1. Introduction

In many physical situationsthe interaction of such a greatnumberof monochromaticwavestakes
placethat it is necessaryto describethesephenomenastatistically.In thisdescriptiontheinformation on
interactingwavephasesis lost and the wave field is describedusing the languageof meanquadratic
amplitudes.Thesevaluescan bedeterminedas follows. Let the wavefield characterizedby thecomplex
amplitudea,. be statically uniform. Thenfor the correlationfunction (a,.a~)we have*

(a,.a~.)= (2IT)3n,.6,._,... (3.1.1)

The value n,. enters an infinite set of equationsfor correlationfunctions following from dynamical
equationsfor a,,. The statisticaldescriptionproblemis a problemof obtaininga closedequationfor n,,.
Suchan equation,if it can be obtained,is calleda kinetic equation.

To derivea kineticequationit is necessaryto makesomeassumptionsaboutthepropertiesof higher
correlation functions. If the wave field is a Gaussianstochasticprocess,for the fourth correlation
function we have [3 to 5]

(akakla,.
2ak3) = n,.n,.1(6,._,.28,.1_,.3 +

6k—k3öki—k
2). (3.1.2)

* The factor (2ir)
3 will beomitted togetherwith (2

1ry
3°in matrix elementsof three-waveinteraction andwith (2ir~’in thoseof four-wave

interaction;thefinal resultsarethe same.
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A similar property is fulfilled for even correlation functions of a higher order. Odd correlation
functions turn to zero. For the applicability of a kinetic equation it is necessary that the wave field be
close to Gaussian.

The Gaussianstochasticprocess(3.1.2) is compatibleonly with linear equationsfor a,.(t). Therefore
for the applicability of a kinetic equation the requirementof a small level of interacting wave
non-linearity is necessarythat will be assumedbelow. Sufficient applicability conditions for kinetic
equationsare moredetailedanddependon a detailedstructureof the function n,. andthe interaction
characteraswell.

In a conservativemediumwherefirst-order decays(three-waveprocesses)can takeplace,a kinetic
equationcontainstermsquadraticin n,.. If three-waveprocessesareforbidden,the termsquadraticin n,.
describeonly the self-consistentfield type effects, a relative frequencyshift of various waves. In a
statistically uniform situation these effects do not lead to energy transfer between waves. In a
non-conservativemedium the self-consistentfield effects also lead to a mutual renonnalizingof the
wavedamping,that alreadymeaninteraction.

Suchaninteractiontakesplace,for example,for theinducedscatteringof Langmuirwavesby plasma
ions. In a conservativeinhomogeneousplasma (or in a homogeneousmedium with the function ii,.

dependenton the coordinates)the self-consistentfield effectslead to an interaction,since non-linear
frequency shifts changethe interacting wave packet trajectories.The correspondingtheory will be
calledbelow the collisionlesswavekinetics.

In the caseswhenfor a statisticaldescriptionof a wave field a kineticequationis applicable,wewill
saythat we havea weakwave turbulence.Below the kinetic equationsof a weak turbulencefor basic
physical situationswill be derived. A more rigorousderivation as well as a calculation of the next
approximationsrequiresthe usageof a diagramtechniquedescribedin [18].

3.2. Kinetic equationfor decayprocesses

Let in a medium admitting the wave propagationof a single type with amplitude a,.(t) and the
dispersionlaw co,. which permit the three-waveinteraction (2.1.3). Such a mediumis describedby an
interaction Hamiltonian (2.1.1). The equationsfor a,. are of the form (2.1.4). Let us multiply this
equationby a~,addto it the complex-conjugatedone andaveragethe equationusing formula (3.1.1).
Now we havethe equation

y,.nk —2 Im J dk1 dk2{V,.k1,.21,.,.1,.2ö(k — k1— 1c2) + 2 ~ 8(k1— k — k2)} = 0. (3.2.1)

Here I,.,.1,.2= (a*,.a,,1a,.~)is the third-ordercorrelation function. For a Gaussianstochasticprocess
I,.,.~= 0. In our case‘kklk2, thoughsmall, differs from zero.For it the equationmust bewritten which
can be obtainedby the samemethodas usedfor (3.2.1). In so doing ~ is then expressedin termsof
fourth-ordercorrelation functions. Consideringthe wave field to be close to a Gaussianone let us
assume the hypothesis (3.1.2) for fourth-ordercorrelators.The equationfor the fourth-ordercorrelator
takesthe form

81kkjk~

_______ — i(w,. — co,.1 — w,.2)I,.,.1,.2= —2i{ V,.,.1,.2n,.1n,.2— V,.2,.,.1n,.n,.1— V,.1,.,.2n,.n,.,.}. (3.2.2)
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Let usneglect(aiot)I,.,.1,.2 as comparedwith the characteristicfrequencydifference in the packets.
Assumingthat the waveshavea smalldampingy,., let ususethe well-knownformula Im8..0(x+ ie)~’=
IT 8(x). Thenthe finally knownkinetic equationfor wavesis obtained[3 to 5]

On,./Ot+ y,,n,. = J (R,.,.1,.2— R,.1,.,.2— R,.2,.,.1)dk1dk2
(3.2.3)

R,.,.1,.2= 2irJ V,.,.1,.2j
2(n,.

1n,,2— n,.n,.1— n,.n,.2)
6(cu,. — cu,.

1 — Cu,.2)6(k — k1— k2).

Thus it is evidentthat the kernelof the kinetic equationis simply expressedthrough the Hamiltonian
coefficients.

Estimatinga characteristicnon-lineartime from the equation(3.2.3),we have

1Jl/12f p
2

—=—j n,.dk=—
T w~ Cu

whereF is the characteristicgrowth rateof the decayinstability of a monochromaticwave.
Let n,. consist of threewave packetswith mean frequenciesandwavevectorswhich satisfy the

resonanceconditions(2.1.2), (2.1.3). Let the characteristicpacketwidths in k-spacebe i~ik.Then

—---fnkdk~ 8w~Aui~k,r

wheret~u is the groupvelocity differenceof interactingwaves.It is evidentthat thetime duringwhich
n,. changesmust be much largerthan the inversedecayinstability growth rate 1/r ~‘ I’. Now we can
obtainfinally the applicability criterion for the kineticequation

FIi~w. (3.2.4)

This criterion hasa simple physical sense. Each triple of interacting waves is in resonance during a
time of the order of r 1/~cu.For the applicabilityof thekinetic equationit is necessary thatduringthis
time the decayinstability leadingto a full correlationof phases of the generated secondary waves could
not develop.

When the wavepropagatesin a weaklydispersivemedium

w,.=ck(1+ek2); ek2Il; e>0 (3.2.5)

the resonanceconditionsare satisfiedfor waves having almost parallel wavevectors.In this casethe
groupvelocity differenceAu e Ak is small.

For the applicabilityconditionof the kineticequationthe rigid criterion is obtained:

F I w”(Ak)2 ekc(Ak)2. (3.2.6)

From (3.2.6) it follows that in a medium with a linear dispersionlaw the decaykinetic equationis
inapplicable.
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A more rigorouscriterion (3.2.4) can be derivedusing the Wyld diagramtechnique[18]; however,
the detaileddiscussionof this problemis outsidethe frameworkof thepresentpaper.

The casewhen in the mediumhigh-frequencywaveswith the dispersionlaw cu,. andlow-frequency
waveswith the dispersion11,. interactis of greatimportance.In this casethe processdescribedby the
resonancecondition

w,.w,.1+1l,,2 kk,+k2 (3.2.7)

is realized.
Such asituationtakesplace, for example,in the interactionof Langmuir and ion-soundwaves in

non-isothermalplasmas.In this casethe interactionHamiltonianis describedby the formula (1.4.12).
Introducingthe averagedvalues

(a,.a)= N,.6(k— k’); (b,.b,.*,) = n,.6(k— k’)

we obtainthe kinetic equations

ON,./Ot + y,,N,. = J(T,.2~,.,,1— T,.21,.1,.)dk1dk2

On,./Ot = Fknk = — J T,.~,.1,.2dk1 dk2 (3.2.8)

T,.21,.,.1 = 2ir V,,2,.,.11
2(N,.

1n,.2— N,.n,., — N,.1N,.2)6(k — k1 — k2)
8(wk — w~,— Ilk

2)

It shouldbe notedthat the resonanceconditions(3.2.7) do not changeif a constantvalueis addedto
the frequencyco,..

For applicability of the equations(3.2.8) the criterion (3.2.4) may turn out to be insufficient. At a
great frequency difference of interacting waves the decay instability growth rate (in this casethe
instability becomesmodified) may becomegreaterthan the low-frequency11,.. In this casethe criterion
(3.2.4)must takethe form

hr < min(F, Ilk). (3.2.9)

In conclusionit shouldbe noted that when deriving the kinetic equation,the imaginary partsof the
frequenciesin (3.2.2) may be conservedfor the third-ordercorrelator‘kkIk2~ In this casein the kinetic
equationthe broadeningof the 6-functionover frequenciesup to awidth of the orderof y,. takesplace.
When F> y,., taking into accountof this broadeninggoesbeyondthe accuracyof kinetic equations.In
an isothermalplasmawhen the characteristicgrowth rates are less than the sound damping, this
broadeningis ratheressential.

3.3. Kinetic equationin thenon-decaycase

It is known (seechapter1) that in the casewhen three-waveinteractionsareforbidden,a non-linear
medium is describedby the equation(see(1.6.21))
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i ~-~-~+ (—cv,.+ iy,.)a,.= i J T,.,.1,.2,.3a,.”~a,.2a,,38(k+ k1 — k2—k3)dk1 dk2dk3. (3.3.1)

The equation(3.3.1), evenif the dampingy,, is absent,doesnotnecessarilydescribea conservative
medium.The mediumis conservativeif the function T,.,.1,.2,.3satisfiesthe symmetryrelations

T,.k1,.2,,,= T,.,,.,.2,.3= T~’2,.3,.,.,. (3.3.2)

Multiplying (3.3.1)by a*,. andsubtractingthe complex-conjugateexpression,weobtain

2y,.n~ = Im J T,.k1,.2,.3(a~a,.~ak2a,,3)6(k + k1 — k2 — k3)dk1 dk2dk3. (3.3.3)

Making the correlationdecouplingaccordingto the formula (3.1.2), weobtain

On,./Ot+2n,.(~~—JTk~.nkdk’)—fk= 0 (3.3.4)

where

T,.,. = Im T,,,..,.,... (3.3.5)

The matrix elementsfor someimportantprocessesarepresentedin table3.1 (p. 365).
From (3.3.2) it follows that in a conservative medium T,.,..= 0. In an isothermalplasmait follows from

the Greenfunction symmetry(seesection 1.6) that

Tkk.=—Tk’,.. (3.3.6)

From (3.3.4)we have

ON/Ot+2J y,.n,,dk =0; N= Jn~dk (3.3.7)

that is a balanceconditionfor the total quasi-particlenumberdescribedby eq. (3.3.5). When Yk equals
zero,N = constant.Thus,a non-linear term in (3.3.5) conservesthe total numberof quasi-particles.
Applied to an isothermalplasma,eq. (3.3.5) describestheinducedLangmuirplasmonscatteringby ions.
It is the simplestoneof kinetic equationspossessingmanyinterestingproperties.

For many problemsit is necessaryto take into account small terms which were omitted when
deriving (3.3.4).Thereforea small thermalnoisesourcef,. inducedby thermodynamicalfluctuationsand
four-plasmonprocesseshasbeenincluded in (3.3.4). As a rule, the noisesconditionedby the second
causeare more important, the propertiesof the noisesfk being determinedself-consistentlywith the
excitedoscillation distribution. These processesmakealso a small contributionto the wavedamping
which can usuallybe ignored.

Now let usdiscussthe applicability condition (3.3.4).Exceptthe applicability conditionsof the initial
dynamicequations,it is necessarythatthe condition (3.2.4)should be valid. In the given caseit hasthe
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form

JT,.,.’n,~’dk’ < Aw. (3.3.8)

Thenfor themost interestingcaseof isotropicLangmuirturbulencewe have

W k~
cop TT <Cus.

Besides,in eq. (3.3.5) the four-plasmoncollisional term is neglected.For the validity of doing this it is
sufficient that Re T,.k1,.2,., Im T,.~1,.2,.3.It shouldbenotedthatwhenI,. = 0 in reality the equation(3.3.4)
hasa wider applicability region than ordinarykinetic equations.It canbe givena sense,whenthe wave
phasesarenot random.Let, for example,the wavefield representa setof monochromaticwaves

a,. = ~ Cmô(k— km). (3.3.9)

Substituting(3.3.9)into the initial dynamicequation,we have

Cm 2
1+ l7,,~C,,,— WkMCm = 2Cm ~ T,.m,.m,,,m,.,Jcm’1

2 for nm = CmI

1 Onm
Yrnflrn = 2,i,,, ~ Tmmflm’

i.e. eq. (3.3.4)whenf,. = 0.
The prominentproperty of (3.3.4)whenf,. = 0 is that, in spite of the presenceof dissipation, it is

Hamiltonian [19]. From the senseof the value ii,. it is evident that n,. >0. Let us introducea new
variable P,. = In ii,. determinedalongall of the real axis. Then eq. (3.3.4) can be rewritten in the form

J R,. .~-dk’+2(!,.—exp(Pk))=0

- (3.3.10)
F,, =jRkk’Y,..dk’

whereR,.,, is the kernelof the operatorinverseto the operatorwith the kernel T,.,.~.It is evident that
R,.,..=

The equation(3.3.10) is Hamiltonian,i.e. it can be written in the form

I ilP,.~J R,.,..—dk’=~ (3.3.11)
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wherethe Hamiltonian ~ takesthe form

~r=Jdk(exp(P~)_t~P,.).

With the help of (3.3.11) it is easyto makesure that ~‘ is an integral of motion. When y,. = 0, it
transformsto the well-known law of conservationof the numberof quantawhich is valid as was
mentionedin chapter1, yet within the framework of a dynamicdescription.When y,. is not equalto
zero,the Hamiltonian ~f is not calculatedconstructively,becauseof the difficulties of the inversionof
T,.,... However, its existenceallows importantconclusionsto be madewith respectto wavedynamics.
For example, it follows that (3.3.11) hasno asymptotic steady stationarysolutions.In reality, in a
stationarystatethe Hamiltonian ~?differs, generallyspeaking,from that calculatedfrom the initial
data.Thus,the relaxationprocessto a stationarystate(if it takesplace)occursonly dueto asmallnoise
term.

Thereexistsonemoregroupof physicalproblemswhenthe self-consistentfield approximation,i.e. a
direct splitting up of fourth-ordercorrelatorsdescribednon-trivial physicalphenomena.Let usconsider
the oscillatingexcitation by a homogeneousexternalfield in a mediumwith a non-decaydispersionlaw.
The Hamiltonianof the wave interactionwith pumping is as follows (seechapter1)

= ~J (Vk exp(2iwot)a,.a_,.+ c.c.) dk (3.3.12)

andleadsto the dynamicalequations

—~-+ icokak= i V,.a~,.exp(—2iwot) + J T,,,,i,.s,.sa,.*ia,.sa,.s6(k + k1 — k2 — k3) dk1 dk2dk3. (3.3.13)

As was mentionedabove,the sum of the phasesof the oscillationswith oppositewavevectorshasa
well-definedvalue. It is to be expectedthat at a non-linear instability stagean anomalouscorrelator,
(a,.a,.1)= ukö(k+ k’) will differ from zero. It shouldbe noted that in this casethe individual phasesare
random.

Now let us presentone more argumentexplainingthe introductionof an anomalouscorrelatorcr,..

The energyflux to a plasmafrom an externalfield is easilyexpressedthroughthe Hamiltonian (3.3.12).
Averagingover individual randomphases,we obtain

Q=8~/Ot=2ImfVko~dk. (3.3.14)

Thus,the energytransformto collective freedomdegreesnecessarilyleadsto the anomalouscorrelator
arising.

Multiplying (3.3.13)by a,.* andby a..,. andaveraging over phases,the equationswill beobtainedfor
o,. andn,., respectively.Splitting the fourth-ordercorrelatorsin termsof the pair ones:
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(a,.~a,.~a,.3a,.4)= nk1nk2[
6(kl — Ic

3) 8(k2— Ic4) + ô(k1 — k4) 8(k2— k3)] + ~ 5(k~+ Ic2) 6(k3+ k4)

(a,.~a,.2a,.3a,.4)=n,.1[o~,.2ô(ki—k3)8(k2+k4)+o,.38(ki—k4)6(k2+k3)+cr,.48(k1—k2)ö(k3+k4)],

(3.3.15)

we obtain

ñ,. =2n,.[—y,,+ImP,.
4o,.]

= 2cr,.[—i(~,, — coo) + y,.] + iP,,(n,, + n_,.) - (3.3.16)

These equationsdiffer from the linear onesonly by the renormalizationof the frequenciesand the
pumping interaction, i.e., theyarethe self-consistentfield equations,

ca,. = cv,, +2J T,.,,.n,, dk’

P,. = V,.o~+ J S,.,,.o,..dk’ (3.3.17)

T,,,..= T,.,,.,.,.~ S,.,,.= T,., _,.‘. ,,, ,..

The equations(3.3.16)are usually called the equationsof the S-theorydue to an essentialrole of the
coefficient S,,,.. [201.From (3.3.16)we havethe relations

(O/Ot+4y,,)(Icr,,j2— n,.n_,,)= 0

(8/ot+ 2y,.)(n,.— n_,.)= 0

which point to the fact that during the time of the order of y~the arbitraryinitial conditionsrelaxto
the state(it is not necessarily stationary) for which

n,,=n_,,; Iu,.I=n,.

is valid.
Thelastequalityshowsthat thewavephasesin pairsa,., a_,. arecompletelycorrelated.Thecomplete

phasecorrelation in pairs makesit possibleto changeto new variables,i.e. to the wave phasesum in
pair 4,. andtheir numbern,.. In thesevariablesthe energyflux to the plasmais equalto

Q=2J V,.n,,sincbkdk.

Now a physicalsenseof the effects consideredbecomesevident.At a linear instability stage,as was
shown in chapter2, the oscillationswith 4,. = ~n-possessthe maximumgrowth rate. Non-lineareffects
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lead to a deviationof q5,. from ~v-which worsensthe couplingwith the pumpingandthusstabilizesthe
instability. Below, this problemwill be consideredin moredetail.

The simplest generalization of the equations (3.3.16) is a considerationof excited oscillations
belongingto two differentspectrumbranches,e.g., Langmuirandion-soundwaves[21]. In this casean
analogoussystem of equationsfor three correlators n~,N,,e and o~,. c5(k — Ic’) exp(iwot)(a,,b_,..)is
obtained.A relation similar to (3.3.17) showsthat thewavephasesin pairs a,,, b_,. are also completely
correlated

jo~2~~n’,.N,,~’.

When two types of oscillations are excited, there exists a situation when the wave dampings

significantly differ from oneanother,andthe relation
Yi> V,. > Y2

is valid.
Just such a situation arisesfor a parametricexcitation of Langmuir and ion-sound waves in an

isothermalplasma.In this casethe wavewith dampingYi, is a forcedoscillation andcan be eliminated
from the equation.It is not difficult to be sure that in this casethe sum of the excitedwavephasesis
equal to ~IT and does not change even when taking into account non-linear effects. In this case
fl1 < o <n2 and, consequently,for a parametricwave excitation in an isothermalplasma such cor-
relationeffectsareinsignificant.

The otherimportantgeneralizationof eq. (3.3.16) is a considerationof pumpingwith a wavevector
differing from zero[22],e.g. the electromagneticwavedecayinto two plasmons.If thepumpingwave is
written in the form h exp(—2i(wo—icr)), as a result of instability the wave pairswith aK+,,, aK_k are
excited.The equationsof S-theoryaresimilar to the caseof the excitationof two different oscillation
types. They include threecorrelatorsnt 8(k — Ic’) = (aK±,.aZ±,.~);(aK+,,a,~,..exp(2iwot))= u,. 6(k — Ic’).

Also the relation Icr,.1
2 = ~ holds.

The equations(3.3.16)are written for the caseof a monochromaticpumpingexcitation.Thecriterion
of its spectrumnarrownessis analogousto (3.2.4): V,. > Aw. In the oppositelimiting casethe role of
anomalouscorrelatorsdecreases,but becauseS-model termsare quadraticin n,. andfor a non-coherent
pumping thereexistssuch a parameterregion when the collision term can be ignored.

It was proposedabovethat for exiting wavesthe decayprocessesareinsignificant. In practicesuch
situations are very rare. For instance, for Langmuir oscillations it is possible only for the long-
wavelengthpart of spectrum,krD < \/m/M. In the oppositecase,as is seenfrom (3.2.3), the phase
correlationeffectsmakethesamecontribution in the orderof magnitudeas the processesof a spectrum
cascading.Someexampleswill be consideredbelow.

If the amplitudesof the fields inducingoscillationsareso largethat V> cv,., we turnto theregion of
modified decayinstabilities. In this case,as was shown in section 3.2, there arisesomesecond-and
third-orderanomalouscorrelators,andit is impossibleto constructa self-consistentdescription.

If the interactioneffect on correlationpropertiesof oscillations is taken into account,the collision
term describingthe oscillationsscatteringoneupon anotherwill be obtainedin the nextapproximation
with respectto n,.. Now let us illustrate the derivationof the four-plasmoncollision term, countingfor
simplicity that anomalouscorrelationsareinsignificant.

Let uswrite down the equationfor the fourth-ordercorrelator,wherethe sixth-ordercorrelatorsare
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expressedin termsof the pair ones:

OIk~~~3~3

+ i(co,~+ cok3— wk — cok1)t,.,,l,.2,.,

= 2T,.,.~,.2,,3(n,.n,.2n,,3+n,,1n,.2n,.3—n,,n,.1n,.3— n,.n,.,n,.2). (3.3.18)

Herecv,. arethefrequenciesrenormalizeddueto the waveinteractionwhich arethe sameasin (3.3.16).
Besides,for simplicity, in the right-handpart non-conservativecorrectionswere not considered.Also
ignoring time derivatives(asin chapter2), weobtain

~ = n,.n,.1[8(k — Ic2) 8(k1— Ic3) + ô(k — Ic3) ô(k — Ic2)]

2i T,.,.1,.2,., ( 1 1 1 1 ~
+ n,.n,.,n,.2n,.3~—+—————~. (3.3.19)

Aco ~n,. n,.1 n,.2 fl~3/

Herethefirst term is the solutionof the uniform equation(3.3.18)correspondingto purelyGaussian
fluctuations. Substituting(3.3.19)into (3.3.3)and using the relationIm~.o(x+ is)’ = lTr5(x), the well-
known kinetic equationis obtainedfor the waves:

On,./Ot+ y,.n,. =

2IT J IT,,,.
1,.2,.31

2 8(k + Ic, — k
2 — Ic3)

X ô(co,. + cu,.1 — co,.2— w,.3)n,.n,,1n,,2n,.3(—~—-+ —~--— —~---— —~--)dk1dIc2dk3. (3.3.20)
fl~ n,, n,.2 n,,3

As seen from (3.3.20), the characteristicnon-linear growth rate Yni (~IAco)f n,. dk and the
applicability condition(3.2.4) for the caseof Langmuirturbulencegives

W/nT< (kr~)
2

which, in the caseof narrowspectra,transformsto

W/nT < (Ak TD)2.

3.4. Collisionlesswavekinetics

1. If the medium inhomogeneitiesas well as the wavedistribution inhomogeneitiesare takeninto
account,a wave interaction mechanism,which is new in principle, arises. Let us considera kinetic
equationin an inhomogeneousmedium.It is in the form

On,. Ow,, On,. Ow,. On,,
—+--j-————----=0. (3.4.1)

Herecok is the wavedispersionlaw.
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A similar equationcan be obtainedfor the medium with the interactiondescribedby (3.3.1)when
= 0 andwhenthe condition(3.3.2) is valid.
After the Fourier transformationit is not difficult to be surethat from the above-mentionedequality

(a~a,.)= n,. 6(k — Ic’) it follows that the densityof the oscillation energyis uniform in space.Therefore
the medium inhomogeneityleadsto adelta-functionbroadening,andn,.,, dependson both arguments.
However, if the inhomogeneityis quasi-classical,the dependenceon the differenceof argumentsis
sharperthanon the sum. Let us introducethe following notations:

n,.,..=n,.~,,.; k4=~(Ic+Ic’); ic=Ic—Ic’.

Let us considera Hamiltonian medium with a non-decaydispersionlaw. The equationfor a pair
correlatorwill bewritten by expressingfourth-ordercorrelationfunctionsin termsof thepair ones:

Ikkjksks 1*lkk2tZklks+ n,.,.
3n,.1,.2

+ i(w,, — wi.)] n,.,. = 2i JdIc,dk:dk:{ T,,,.~,.2,.3n,.,.2n,,~ 6(Ic + Ic1 — Ic2 — Ic3) (3.4.2)

— T,.I,.kS,.Sn,.,.2n,.I,.38(k + Ic1 — Ic2 — Ic3)}

In a homogeneousmedium the right-handsideof theequationturns to zero, which correspondsto the
casewhen the interaction in the self-consistentfield approximationonly renormalizesthe oscillation
frequencyuniformly over space.Let for (3.4.2) make integrationin Ic2 and introducenew variables

=

1(j~ + Ic
3), ñ = Ic, — Ic3. Then (3.4.2)takesthe form

— cuk+_K/2)] fl~~K= —2iJda~dñ fl~

X ~ — ~ n,.÷_I/2.K_,l}. (3.4.3)

We expandin seriesthe matrix elementsandcorrelatorsin ic, I~confining ourselvesto the ap-

proximationlowest in 1. We then introducethe oscillationdensityn(r) slowly varying in space

n(r)= ‘3/2JnkKexp(iicr)dlc.
(2ir)

After making the Fourier transform,we obtain

(3.4.4)
Ot OIc Or Or Ok

HereWk is the frequencyrenormalizeddueto the interactionc,. = cv,. +2.1T,.,,.n,. dk’. The derivatives
of the matrix elementin (3.4.4) areto be understoodin the following manner:

c9T,.,.’ 0
= -~—(T,.1.k’kk’ + T~,.’,.1,..)I,.1.,.,.
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It is not difficult to derive (3.4.4)evenwhen the mediumis non-conservative.In this casetermsare
addedto (3.4.4)which describelinear and non-lineardamping(3.3.4).

Equation (3.4.4) formally coincideswith (3.4.1), however, in (3.4.4) the self-consistentnon-linear
frequencyshift of the interactingwavesis takeninto account.

It is significant that in the mediumdescribedby (3.4.4) an inhomogeneitycan arisespontaneouslyas
a resultof the developmentof an instability analogousto the modulationalinstability of monochromatic
waves.

The equation(3.4.4) is significantly simplified whenconsideringnarrowwave packets.Expandingwk

in the vicinity of thepacketcentre

1 if 2 Vgr 2cu,. = co,.0+(icvgr)+~cuK1~+~7K1
‘j’0

in the systemmoving with a groupvelocity we canobtain, for simplicity confining ourselvesto thecase
of a positivedispersionandintroducingdimensionlessvariables[23],

Ot Or OrOic
(3.4.5)

T=T,.0,.0 N=Jn,,dk.

This equationresemblesthe Vlasov kinetic equationfor chargedparticlesmoving in a self-consistent
potential.The conditionN = 5 n,. dk is the analogueof the Poissonequation.

Whenderiving(3.4.5), (3.4.4),the four-plasmoncollisionterm is ignored.The criterion of correctness
of this actionfor the simplestcasewhen the spectrumhasa single scalein k-space,k0, is

k0L nT

Themost interestingregion of applicability of the collisionlesskinetics is Langmuirturbulence.In a
non-isothermalplasmathis applicationis difficult becauseof the soundexcitation.

In an isothermalplasmawhenion-soundmotionscanbe consideredforced,the Langmuirturbulence
is describedby theequation(1.6.21)and,consequently,theobtainedresultscan bedirectly applied.The
self-consistentfield equationsdescribinga weakly inhomogeneousLangmuir turbulencein a homo-
geneousmediumtakethe form

On,. Oii,. On,. O&,. On,. / I

—+—————-—= (—y,.+j Ta.n~.dIc)n~
Ot Ok Or Or OIc

(3.4.6)

w,.=wk+2JTfi’nkclk, i~,,.=—~--ReG.

2nT

In the homogeneouscaseeq. (3.4.6) transformsinto (3.3.4)describinginducedscatteringby ions.
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As was mentioned in chapter 1, eq. (1.6.21) is applicable to an isothermal plasma when krD <

~\/m/M. In the decaypart of spectrumwhen krD> \/m/M, eq. (1.6.21) haspoles correspondingto
decayprocesses,andtherefore(3.4.6)can be valid only for describingexotic initial conditionsfor which
decayprocessesare impossibleor for describinga small intensityturbulencesatisfyinga rigid condition:

~ 1y5=Vm/M Il~.

2. The idea that the modulational spectruminstability of Langmuir turbulencecan be described
using theVedenov—Rudakovequationsis widespread.Theseequationsobtainedin 1964areof the form
[24]

(3.4.7)
01 Ok Or Or Ok

Hereck = w~(~k
2r~,+ bn/n) is the dispersionlaw of Langmuiroscillations.A slow quasi-classic density

variation under the action of ponderomotive forces is describedby the equation

02 1
—~n_c~V26n=—_-——V2Jn,.dk. (3.4.8)
01 4irM

The physical meaningof (3.4.7), (3.4.8) is evident— Langmuir oscillations lead to a plasma density
re-distributionthat changestheir trajectories.

It shouldbe notedthat in the Vedenov—Rudakovequationsoscillationswith differentk interactonly
via a mutual semi-classicalmodulation of the plasma density. Let us show that in (3.4.7), (3.4.8) the
essentialnon-lineareffectsare omitted. Consider,for simplicity, one-dimensionalLangmuirturbulence
describedby (1.6.6), (1.6.14):

82 02 02
= —~nE, ~ (3.4.9)

01 012 Ox2 Ox2

The Vedenov—Rudakovequationsareobtainedwhen averaging(3.4.9), assuming(~nEE*) 6n(EE*).
Let Langmuiroscillationsconsistof two narrowpacketswith wavevectorsIc

1 andIc2

E = E1 + E2 E1,2—~- exp{i(k1.2r — w(k1,2) t)}. (3.4.10)

Then,besidesa slow densityvariation underthe actionof Langmuiroscillationstherearisesaquickly
oscillating density variation

— k 1
2E E*

2 1 2 2~ (3.4.11)
(wk

1—wk2) —c,(Ic1—Ic2)

Substituting(3.4.11) into (3.4.9), we see that in the equationsa non-linearfrequencyshift appears
which doesnot result in a slowdensityvariation.Within a static limit, whenin the secondequationof
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(3.4.9) the term O2n/0t2 can be neglected,the densityvariation is explicitly expressedby the plasmon
number. From (3.4.9) it follows that

cUkZWk+TJflkdIc, i’= T~. (3.4.12)

It follows from eq. (3.4.12)with the correctanswerci$,. = cv,, + 25 T,.,..nk dk’ that besidesthe error in a
factor two, the Vedenov—RudakovequationssubstituteT,.,..by its staticvalue T

0,0. Sucha substitution
is impossibleevenfor qualitativeestimates,since T,,,, is a sign-variablefunction.

The modulationalmonochromaticwave instability was first discoveredjust in such away (Vedenov
and Rudakov, 1964 [24]). However, in so doing it is possible to find only the limit of the instability
growth rateas p—+0. It is explainedby the fact that whentransformingfrom the non-linearSchrodinger
equation to the Vedenov—Rudakovequations the dispersion and diffraction effects limiting the
instability are lost. Thus,the applicabilitycriterion of the Vedenov—Rudakovequationsis theLangmuir
wave spectrumnarrowness:

(bk/k)
2< W/nT.

The collisionless kinetic equationsare applicable, on the contrary, for wide packetsin k-space,
(bk/k)2> W/nT. In the intermediate case (bk/k)2— W/nT giving an averaged description of weakly
inhomogeneousturbulence,simple equationswerenot obtained.

3. As an exampleof an application of the derivedequations,let us considerthe effect of the finite
packet width on the evolution of the modulational instability, Any uniform distribution of oscillations
satisfies the equation (3.4.5).

The modulational instability is the space turbulence modulation appearance. For perturbations
---exp(—icot + ipr) we havea dispersion equation similar to that for plasma oscillations:

- r(pOn/Oic)dic
1+2T I =0. (3.4.13)

J co—pic

When integratingover ic, the pole should be rounded along the lower semicircle. It should be noted that
only the plasmon distribution function averaged over ic±penters into (3.4.13). If the distribution width
.~iin the directionp is sufficiently small* ~ 2< TN

0 (5 n,. dk = N0) thepolecontributioncan be ignored,
andeq. (3.4.13)gives

cv = p~(2DNo)~~12; (3.4.14)

when?<0, the modulationalinstability takesplace.If cv” < 0, the instability criterion is of the form

(w~cos2ø+~sin2ø)i’<o; cosø=~—~

k0 pk

which coincideswith the monochromaticwave stability criterion.

* Phaserandomnessis providedby a largespectralwidth in thetransversedirection.
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The growth rate (3.4.14) infinitely increaseswith wavevectorp. This is connectedwith ignoring
diffraction effects.The maximum_instabilitygrowth rateis achievedon the quasi-classicapproximation
applicability boundaryp — \/2TN

0, andas to orderof magnitudeit is equalto thenon-linearfrequency
shift. -

If a packet is consideredwhich is narrow in all directions~j
2< TN

0, the numericalcoefficient of the
growth rate (3.4.14) differs from the exact expressionobtained with the help of exact dynamical
equations mentioned in chapter 2. It is connectedwith the fact that ~~

2< TN
0 is a condition inverse to

the applicabilitycriterion (2.3.4)of the self-consistentfield equations.The equation(3.4.14)is applicable
only for describingpacketswhich arewide in the direction normal to p (zi 2> TN0). Due to thisfact the
individual wavephaserandomnessis provided.

To investigatea finite width packeteffect to fix the ideasit is assumedthat the packethasa Lorentz
configuration

1 N0~iJ n~dK~=_2+~2.

Thenafter integrationof (3.4.13) we obtain

w= pJ{(2tNo)h1~2_i~i}.

It is evident that the finite packetwidth, as was firstly mentionedin [24], stabilizes the modulational
instability; for an isotropic distribution the stability criterion coincides with the wavephaserandomness
condition.

To explain the stabilizationmechanismit is appropriateto rememberthat the equations(3.4.5) are
similar to the kinetic equationdescribinga gas of attractiveparticles;in thesetermsthe finite packet
width is equivalentto a thermalspread.Thereforethe instability is stabilizedsimilarly to the processof
thegravitatinggas instability stabilizationby a finite temperature.

4. Now let us consider the effect of a wide turbulent backgroundon the monochromaticwave
stability. Let us considera,. asa sum of coherentandstochasticparts

a,. = A,. + 0,,.

Writing out the equation for the coherent part and transforming to the r-representation, due to the
turbulent backgroundwe obtain a parabolicequationfor the complex envelopeA of the coherent
packet

OA OA w”O
2A yr -

~ (TIAJ2+2j TkOkn~dk)A.

For the stochasticpart we obtain

On,,Oô,,On,. 0th,. On,.
0

0t Ok Or Or Ok



362 VE. ZakharovetaL, Hamiltonianapproachto the descriptionofnon-linearplasmaphenomena

Here ci$,, is the frequency renormalized due to the turbulent background and the coherent wave

= cv,. +2J T,.,..n,..dk’+T,.,.,lA~2.

If the turbulentbackgroundis also a narrow packetpositionedin the vicinity of k
0, the systemof

equationsmaybe simplified, and after transformingto dimensionlessvariablesin the referencesystem
moving with the groupvelocity the following expressionis obtained

i OA/Ot+ ~ AA = i~AI2+ 2N0)A

(3.4.15)

~+ic ~-~-2i’-~-(N0+ IAI2)~= 0.
01 Or Or Oic

The obtainedsystem of equationshas solutions in the form of a monochromaticwaveon a homo-
geneousturbulentbackground.Linearizing (3.4.15) and ignoring diffraction effects in the parabolic
equation,the following equationis obtained:

w2 = p2~fA2(1— 4l’N0/~i
2). (3.4.16)

It is evidentthat the turbulentbackgroundweakly affectsthe monochromaticwave instability.

3.5. Quasi-dynamicdescriptionofsingularspectra

The collisionlesswavekinetic equationsderivedin the previoussectiondo not describesomeof the
importanteffectsarisingout of theframeworkof a quasi-classicaldescription.Thus,for example,using
theseequationsit is impossibleto obtain a correctstructureof the modulationalinstability growth rate,
and,consequently,to describeadequatelyits non-linearstage.Thus,theseequationsarenot suitablefor
describing packetsnarrow in any direction. In the meantime,for plasma turbulencethe casewith
singularspectrawhen excitedoscillationsareconcentratedon lines or surfaceswithin Ic-space,is typical.
The vicinity of wavevectorsto this surfaceor line allows us to obtainsimplified equations,on the one
hand, using the interactionweaknessand the phaserandomnessappearingdue to the wavepacket
prolongationin one(or two) directions,and, on the otherhand, changingto wavepacketenvelopesin
the third direction.

For simplicity, let us consider the casewhen the spatial inhomogeneityis one-dimensional[25]
(z-axisin the inhomogeneitydirection).Thenn,.,. is a 8-function in transverse directions

n,.,. = ~ k~)ô(Ic.L — k~).

Taking into accountthat for fixed Ic~the packet n,.
1(k~,k~)is concentrated within a narrow layer

Ak~I k~, in eq. (3.4.1) it is possible to expand cv,. in a series in k~— k~(k~ is the coordinate of the packet
centre,k~= f(Ic1)) andto ignore the T dependence on k~— k~.

The derived equationsare essentially simplified by passing to the r-representationalong the
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z-coordinate

8 0 8 w”O2 02

{—+ i(th,.(z)—th,.(z’))+ v~(_+—)+ i—i- (~-i_~--~)Jn,.(z,z’) = 0. (3.5.1)

Here

~ Ow,./Ok~.; w” 02cv,./Ok~

th,.(z)= cv,.+2JT,.,.n,..(z,z’)dIc
1 (3.5.2)

n,.(z, z’) = —~-—~ Jn,.1(k5,k~)exp(i[k~z— k~z’ — k~(z— z’)]) dk~dk~.
(2ii-)

Like the equations derived above, (3.5.1) is an equation with a self-consistent field. The neglect of the
collision term is also significant. In a non-conservative medium there appear in (3.5.1) terms describing
linear and non-linear dampings (3.3.5). In a homogeneous medium n,, (z,z’) dependsonly on the
difference (z— z’). If the spaceinhomogeneityis slow, i.e. n,.(z,z’) dependson z+ z’ moreweakly than
on z — z’, in eq. (3.5.1) it is possible to expand

- - ,
w,,(z)—co,,(z)—(z—z)

Oz

and change to the z-coordinate in the k-representation. Then we can again operate with the
collisionlesskinetic equations.

However, thereexists anothermethodof simplification of (3.5.1) which is not connectedwith the
assumptionon a quasi-classicalmedium parameterchange[25]. It is evident that it has a partial
solution:

n,.(z, z’) = A(z) A(z’). (3.5.3)

In this case A,,~,k~(Z)satisfies the equation

(3.5.4)

where

th,, = cv,. +2J T,.,..jA,..j
2dk

1.

Evidently it represents the generalized equation (1.5.8) for envelopesof a monochromatic wave for
the case of an extended packet. A,.~,.0is a function of k.L. If ~ — 6

1”2(Ic~— II) is substitutedinto
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(3.5.4), for A,,0(z) an equationis obtaineddiffering from (1.5.8) only by the coefficient 2 before T,.0,.0.
The origin of the factor2, as in (3.5.4), is explainedby the phaserandomness.

It is worth noting that for the validity of (3.5.4)it is alsonecessarythat the relation(3.5.3) would be
satisfiedon the boundaryof the medium,which is, generallyspeaking,not necessary.For example,it is
not fulfilled for the caseswhenthe turbulenceis excitedwithin alayeron the boundarieson which the
oscillation dissipationtakesplace.

However, for the most interestingphysical problemsof the modulationalinstability of turbulent
spectraof localized turbulentbunchesevolutioneq. (3.5.4) gives an adequatedescription.

It is not difficult to makesomesimplifications of (3.5.1). If the non-homogeneityis not assumed
one-dimensional,eqs. (3.5.1)keeptheir form; however,the expressionfor the renormalizedfrequency
doesnot havea local structure(3.5.2).But if the wavespectrumis almostone-dimensional(an arbitrary
line), andthe non-homogeneityis two-dimensional,for the quantity

n,.1,,.~(r,r’) = ~ J dIc1 dId flk,,k~.~ exp{i(k~r±— Icdrd — Ic~(r— r’))}
(2i7~)

a simpleequationcan be derived:

~ rI)=0

(3.5.5)

cv,, +2J T,.,..n,,.(r1,rfldk’.

For the sakeof concisenessherethediffraction term cccv’~. is not written down. Theexpressionfor th,.
can be obtained for an arbitrary inhomogeneity if T,,,..= constant,and also in some other particular
cases. In the most interesting case in the study of the transverse modulation of Langmuir oscillations
propagating in one direction the analogue of (3.5.4) takes the form

i~(r±)+~r~V2~,.+J~,.,.p~.I2dIcdc~,.+iJT,.,,I~.j
2dIc’~0. (3.5.6)

If a mediumis slowly inhomogeneousevenwhen oscillationsareabsent,it can be takeninto account
for only aquadraticHamiltonian

= Jcv,.,.~a ~,.a,.. dl dk’.

Becausecv,.,.. in a quasi-classicalcasedependson the differenceof argumentmorestrongly than on
the sum, repeatingall the above-mentionedconsiderations,we againcome to the equations(3.5.4),
wherethe cv,, now dependon r,

w,. —~ w,.(r)= — cv,,~exp(iacr)dic.
V2

1r-’
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Table 3.1
Inducedscatteringon ions matrix elementsø

1(k)—*w2(k’)+ k — k’Ivi-,. Inducedscatteringon
ions matrix elementshavetheform

/wj(k) w2(k)
Tu=f(k,k’)ImG~

k—k v7-

Process f2(k, k)

e ~ w~(kk’)
2

we-*w*+Ik—k~vr
2noT~k2k’2

± ± a4 w~a4’J(kk’)2— w~ikzk/wto4+ i(wH[kk’]j(~4e,~.)’~)I2Wk4Wk+Ik—kPVT~
2noT~ (~~2_w~2)(w~_w;~)

w~(k’S~
Wk~Wk+Pk—kJVT

2noT~ k’2

In particular, ignoring the interaction we obtain dynamic equations (see chapter 2) which describe the
wave propagation through a non-homogeneous medium.

Now let us use the obtainedequationsin order to investigatethe above-consideredproblem of the
singular spectrumstability. Consideringa narrow packet and assuming T,.k’ = T for perturbations
—exp(—iIlt + icr) from (3.5.4)we obtain the dispersionrelation

,, 2 ,, 2

Ii = (Kvgr)±~ (~f+4i’JlA0,.I2dIc).

When KW” I 41’f jA,.°J dl it transformsto therelation(3.4.6). But, by virtueof thefact that the initial
equationscontain diffraction effects, it gives a full structureof the growth rate which is qualitatively
similar to thegrowth rate behaviourof the modulationalinstability (chapter2).
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