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growth rates and matrix elements is demonstrated.

The standard form of the equations enables us to introduce a statistical description in a very simple way. We discuss the usual kinetic wave
equations and their generalization for inhomogeneous turbulence and turbulence excited by a coherent pump.
We pay special attention to the problem of Langmuir turbulence. The average dynamical equations are deduced in a consistent way and we

present a detailed discussion of the limits of this description.
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Introduction

The efficiency of solving some problem in theoretical physics depends on how far in a proper manner
the descriptive formalism is chosen in the framework in which this problem is solved. Usually there are
several calculation schemes available, which by a consistent application will lead to the same result.
Theoreticians biased in favour of one of them, intuitively, resists all attempts aiming to explore another
scheme claiming that they do not contribute anything new. Nevertheless, not all possible schemes can
be treated equally. In medieval times in the universities of Europe there coexisted numerous algorithms
for arithmetic division but all of them except a single one are nowadays of historical interest only.

And the reason is not only because of the maximum convenience of the “best” calculation scheme.
The chosen scheme being adequate for the problem under solution after a period of implementation
and adaptation begins to affect itself the style of physical thinking and enriches essentially the scientific
language. Finally, it has effects on the way new physical problems are stated. This happened, for
instance, with the Feynman diagram technique which originally seemed to be merely a simplification
method in perturbation theory. Besides, a calculation scheme adequate for a particular problem usually
possesses an important universality, which helps to find similarities between various physical problems.
In a number of cases such a scheme is of independent interest from the viewpoint of mathematics.

The present review deals with methods for the description of non-linear phenomena in plasma.
Non-linear phenomena such as the processes of modulational and decay instabilities, self-focusing,
collapse, and various turbulent processes play a crucial role in contemporary plasma physics. Therefore
the problem of their adequate description is of great importance.

According to our opinion a Hamiltonian formalism is the best method of description. The majority of
non-linear phenomena in plasmas such as wave coupling, self-focusing, or collapse occur with con-
servation of the total energy and allow a Hamiltonian description. Dissipative effects can be taken into
account as small corrections. This approach is being developed systematically since the late sixties by a
group of Soviet physicists formed and originally working in the Novosibirsk Institute of Nuclear Physics.

The Hamiltonian approach is based upon the fundamental fact that the equations describing a
collisionless plasma possess a hidden Hamiltonian structure. At the present time this fact is proved even
for the Maxwell-Vlasov equations [12]. The Hamiltonian property of the Maxwell equations and the
equations of two-fluid hydrodynamics has been proved by one of us in 1971 [6]. It permits simple and
effective calculations of matrix elements of different mode interactions by means of which we can obtain
the equations in which only the necessary degrees of freedom occur. These equations can be simplified
to a few standard forms within very general assumptions. As a result, we have a set of standard
equations with a high degree of universality. It is easy to understand the domain of validity of these
equations and to take into account the necessary dissipative effects. (We then lose the Hamiltonian
structure of the equations, but they are still relatively simple enough.) The program, formulated above,
constitutes the contents of the first chapter of this review.

The second chapter deals with wave instabilities in plasmas. We hope to demonstrate here the
efficiency and convenience of the Hamiltonian approach. Due to the standard form of the equations it is
possible to consider from the common point of view the decay and modulational plasma wave
instabilities. The transition to canonical variables is not trivial. But we need to overcome these
difficulties only once. Then application of these results decreases drastically the number of calculations
and the problem becomes much clearer. For example, all characteristics of processes under con-
sideration in this article (instability growth rates, their structure, etc.) are determined by the matrix
elements, calculated in the first chapter. -
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The transition to a statistical description of plasma turbulence is the subject of chapter 3. We
demonstrate that this transition is simple and natural in canonical variables. It is possible to obtain not
only the usual kinetic equations. The non-trivial generalizations for inhomogeneous turbulence and for
turbulence excited by intensive coherent radiation are presented.

We demonstrate the usefulness of the Hamiltonian approach mainly by the example of isotropic
Langmuir turbulence. As a result, magnetized plasmas are discussed without any details in our review.
This does not imply the existence of any difficulties for wide applications of this tecnhique to the
problems of drift or whistler turbulence. A solution of these problems is a matter for future research.

Our group has been using the Hamiltonian approach to plasma physics problems since the late
sixties. We developed this approach mainly for pragmatic goals, as a2 method of solving some concrete
physical problems. The crucial point of our theory is the introduction of canonical variables and an
investigation of standard equations. However, the Hamiltonian structure of the hydrodynamical types of
equations is of a strong independent interest. A flood of papers on this subject has been published in
recent years (see, e.g., refs. [26 to 29] and references therein). The main purpose of these papers is the
calculation of Poisson brackets for various physical quantities. The Poisson brackets for components of
velocities, electrical and magnetic fields, distribution functions at different points and velocities were
calculated. It was proved that the Poisson brackets have, practically in every case, a group theoretical
origin. They are the Lie—Kostant—Kirillov type brackets on skew-adjoint representations of certain Lie
groups. This outstanding mathematical fact is not very useful for physics. After calculating the Poisson
brackets the introduction of the canonical variables, which are necessary for effective exploring of
perturbation theory, is a non-trivial problem. On the other hand, it is not difficult to calculate Poisson
brackets for any quantities with the help of the canonical variables. Details can be found in ref. [29).

1. Methods of describing non-linear phenomena in plasmas

In the physically most important situations a plasma is described by a system of kinetic equations for
all kinds of particles and by Maxwell’s equations. Within the framework of this description it is possible
to find the plasma equilibrium in the fields of a given configuration and to study small oscillations about
that equilibrium [1, 2]. However, this problem has never been trivial. Even in a homogeneous plasma
placed in a constant magnetic field there are seven oscillation branches (not counting higher Bernstein
modes) whose dispersion laws depend in a complicated way on the magnetic field, density, temperature,
direction of propagation, and dissipation or growth rate, and also in the structure of the distribution
functions.

The problem of non-linear interactions of these waves is further complicated, even if this interaction
is assumed to be weak. Successive use of a kinetic description leads to cumbersome formulae which get
even further complicated by attempts to describe strongly non-linear phenomena. It is some improve-
ment to use a two-fluid hydrodynamical approach. A change to a hydrodynamical description, however,
does not result in significant simplifications, although in so doing information concerning some
important physical effects is lost.

The cause of these difficulties is that both kinetic and hydrodynamical approaches are universal and
automatically describe all degrees of freedom of a plasma. However, in the given examples only waves
of one or two types are generally excited. Therefore it is necessary to construct methods of describing a
plasma which allow the needed degrees of freedom to be explicitly separated in a specific instance and
their interaction to be determined in the simplest way. Certainly, the plasma models constructed in such
a manner are not universal; however, this is compensated for by their adaptability and simplicity.
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The first attempt to separate explicitly the plasma degrees of freedom was made at the beginning of
the sixties, when the kinetic equations for the waves describing a weak plasma turbulence first appeared
[3, 4, 5). However, these equations are averaged and have a statistical character; the derivation contains
the random phase approximation for interacting waves. In many cases this hypothesis is groundless. As
will be shown in this review, the applicability of the weak-turbulence approach should be carefully
checked in all cases; a variety of very important phenomena, such as collapse and self-focusing,
generally are not described by a weak-turbulence theory.

Therefore the separation of degrees of freedom should be made before averaging at the level of a
dynamical plasma description. A separation of this kind is widely used in theoretical physics. In solid
state physics or in the theory of elementary particles it is common to start from an effective Hamiltonian
system when only the needed degrees of freedom are taken into account. However, in plasma physics
the Hamiltonian approach has still not gained wide popularity. Specialists in solid state physics have to
deal with a Hamiltonian from the very beginning. In the same way, a plasma physicist begins with a
system of kinetic or hydrodynamical equations, and the possibility of writing this as a system of
Hamiltonian equations is not evident.

Hamiltonian variables have recently been found for a number of plasma physics problems. We hope
to demonstrate this in the present review. It is convenient to choose for a description of Hamiltonian
systems canonical variables, the classical analogue of quantum-mechanical Bose operators. The linear
problem is trivial in these variables. Thus, for non-linear problems it is not necessary to solve the linear
problem, which is often very complicated, many times. As a result, we avoid many technical difficulties,
which are not inherent to our problem.

The selection of standard variables for all kinds of wave motion results in a uniformity of non-linear
equations. The information about a concrete physical system is contained in the dispersion law and in
the form of the interaction matrix elements.

The separation of the only important type of motion can lead to reasonable simplifications of the
dynamical equations. As a result of their uniformity the simplified equations have a large physical
generality. As an example, we can mention the non-linear parabolic equation, describing quasi-
monochromatic wave propagation in isotropic media. Some other not so well known examples will be
discussed below.

The development of a description of Langmuir turbulence takes a significant part of this chapter. The
fastest processes in a plasma appear to be the Langmuir oscillations. As a result it is possible to simplify
the dynamical equations to average them over a fast time period w,'. For a description of the
turbulence it is necessary to take into account kinetic effects (interaction waves with ions and electrons).

It breaks the Hamiltonian structure of the averaged equations. But they are still very effective and
powerful tools for investigating the turbulence. The Langmuir collapse analysis is the brightest example
of it.

1.1. Hamiltonian formalism in non-linear media

The Hamiltonian formalism for continuous media, including plasmas, represents a natural general-
ization of a standard Hamiltonian formalism in classical mechanics. Some peculiarities arise due to the
existence of a translation symmetry in homogeneous media. Let the medium be described by a single
pair of field variables, i.e. the canonical coordinate g(r, ¢) and the canonical momentum p(r, t) obeying
the canonical equations

ap/ot = —dK/dq ; agqlot=3K/dp. (1.1.1)
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Here # is the Hamiltonian of the system, a real functional of p and ¢. Expand # in the variables p and
q

%=%0+%1+"'.

The first expansion term #, can always be made quadratic in p and ¢ and is of the form
Ho= f drdr'GA(r—r')p(r)p(r') + B(r- ) p(r) q(r)+3C(r— r') q(r) q(r')} . (1.12)

The fact that the functions A, B and C in formula (1.1.2) depend on r— r' reflects the translational
invariance of the medium. The structure functions A(x)= A(-x); C(x)= C(-x) and B(x)= B(~x)
describe the properties of this medium. Now let us make the Fourier transform

1 .

(1.1.3)
q(r)= (2—73)5/;] g e dk.
Due to the reality of p, ¢ we have
p(-k)=p*(k);  q(-k)=q*(k). (1.14)

Substituting (1.1.3) into #,, we obtain

X = j {3Awpept + Biputi + 3Cquqs} dik

where A, = [ A(x)exp(ikx)dx; By and C, are determined in a similar manner. It is not difficult to
confirm that the Fourier transform (1.1.3) is canonical;, and p, ¢i are the new pair of canonical
variables, so that

opu/ 0t = —3K/dq%;  Oqi/ot=3dHK/dp5 . (1.1.5)
When # = #,, we have
ﬁqk/ﬁt = Akpk + Biqk
(1.1.6)
opilot = —=Byp — Gy .
From the evenness of A(£), C(¢) there follows the reality of A, G

A= A= AL, Ci=G=Ck.
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Splitting B, into its real and imaginary parts,

B, = B,(k)+1 By(k)

Bi(—k)= Bi(k) (1.1.7)

By(—k) = Bi(k)
and assuming that p,, g« « exp(—iwt), we get

o = By(k) £ VAG, - Bi(k). (1.1.8)
The medium is stable with respect to small perturbations, if

ACG, — Bi(k)>0. (1.1.9)
It is necessary that in this case the functions A, and G, have the same sign.

For w, we have two expressions, w, »(k), differing in the sign in (1.1.8). Now let us show that only
one of them has a physical sense. For this purpose the following substitution is made

* *k
P =ouay ta’iay

. (1.1.10)
g = Brar + BIral,

and it is required that this represents a canonical transformation, or, strictly speaking, it is required that
the variable a, obeys the equation

a,=—-13#/da% . (1.1.11)
Substituting (1.1.10) into (1.1.5) and using (1.1.11), we will find the condition for «; and B,:

lowl = laal’s Bl =1B-P

a,‘ﬂ’i—af,‘ﬂk = '—i .

(1.1.12)

Now let us demand that g, be a normal variable, i.e., that its time variation is according to the law
a, « exp(—iw,t) (Where w, is one of the w,, ,,, it being unknown which of them). Substituting (1.1.10)
into (1.1.6), we get

—A,

= - *a
lwk+B,‘

Bs . (1.1.13)

Substituting now (1.1.13) into (1.1.12) we will find that in a steady medium

G

lauf? =

(1.1.14)
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Thus, the sign in front of the radical in (1.1.8) must coincide with the sign of G, (or A, since for the
steady medium A, C; >0). Finally we obtain that

wx = Ba(k) + sign GV A G — B3(k) . (1.1.15)

In this case for the Hamiltonian #, we have
Hy = j wxasal dk. (1.1.16)

In the majority of cases the Hamiltonian coincides in its physical sense with the wave energy in the
medium; thus the formula (1.1.15) actually defines the energy wave sign. When o, >0, the waves have
positive energy, and when w, <0 they have negative energy.

If the medium is invariant with respect to coordinate reflections, the condition

Wy = W_g (1.1.17)

should be fulfilled. This is possible only in the case when B,(k)=0. The condition (1.1.17) is true for a
plasma, including the case when it is contained in a magnetic field, if its distribution function is an even
velocity function,

flo)=f(-0)

but it is not true in a plasma with a current or in the presence of ion or electron beams.

When B, # 0 in a stable medium the coexistence of waves with both positive and negative energy is
possible. When B, = 0 this is possible, as a rule, if there is an instability region A,C, — B3(k)<0 in the
medium. The only exception is the case when the surfaces where the functions A;, By and G
vanish coincide with those where the frequency w; is equal to zero. It is evident that such a function is
unstable with respect to a small perturbation of the properties of the medium. With the exception of
this degenerate situation, it can be stated that in a stable medium which is invariant with respect to
coordinate reflection the wave energy has the same sign in the whole of k-space.

The formula (1.1.14) defines the modulus of @, only. It means that the phase of a, can be chosen
arbitrarily; in this case the canonical variables a, will be determined apart from a trivial transformation.
Without restricting the generality, we can put

Ck 12
= | ——— . (1.1.18)
' [2\/A,,Ck - Bi]

The next term in the expansion of the Hamiltonian # in powers of the a, is cubic in the a, and takes
the form

%(l) = %J' {thkzataklakz + V:‘hkzaka:latz} 8(k - kl - k2) dk dkl dk2

+3 f (Ui @01, 01,+ U iio @ a iy ax,) 8(k + ky + k) dk dky dk, . (1.1.19)
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The coefficients Vi, and U g, €xhibit an obvious symmetry

vklz 1k2 = kazkl

(1.1.20)
Uik = U kisiy = U gions -
H® contains terms of fourth order in the a,. As a rule, only one of them is significant:
=} [ Tunwwsaiabianas, 8(k-+ ki~ ke~ ko) dk dk, dk dks. (1.1.21)
The coefficient T y;,4,4, €xhibits the symmetry
Tinsioks = Tiewnians = Tirrrsiy = T gkt - (1.1.22)

If the medium is described by N pairs of canonical variables, several types of waves (not more than
N) can propagate within it. Instead of the coefficients A,, B, G, there arise the matrices A, By, C;; in
this case the problem of the diagonalization of the quadratic Hamiltonian becomes more complicated.
As will be shown below, it is easily solved for a plasma.

1.2. Hamiltonian formalism in hydrodynamics
Hydrodynamics of an ideal barotropic fluid is a simple, but non-trivial example of a model of a
continuous medium admitting a Hamiltonian description. We will consider even a more general model,

assuming that the pressure non-locally depends on the density and requiring the following condition to
be met: '

“Vp=V— (1.2.1)

where & is some functional of the density. For a barotropic fluid, when p = p(p), &€ = [ &(p) dr, so that

7€ _1ap

= . 122
ap* pap 122
The quantity & has the meaning of the internal energy density of the fluid.
The hydrodynamical equations take the form
dp/ot + div(pv) =0 _ (1.2.3)
av/at+ (vV)v = -V5&/3p. (1.2.4)

The equation of motion for the vorticity follows from (1.2.4):

a
Ecurl v —curl[v curl v] = 0. (1.2.5)
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The vorticity is transported along with the fluid. Now let us consider the function u(r, t) satisfying
the equation

(Vu-curlv)=0. (1.2.6)

In this case the curl of the velocity is tangential to the u = constant surface; hence the u = constant

surface is woven of vorticity threads. This suggests that the u = constant surface is transported together
with the fluid. Thus, the function u satisfies the equation

ulot+ (V)u =0. (1.2.7)

For constructing canonical variables, let us take an advantageous formal approach suggested by B.1.

Davydov in 1949 [7]. Consider the continuity equation (1.2.3) and the equation of curl v transfer (1.2.7)

as additional conditions imposed on the dynamics of a particle system with potential energy &. Then the
action for the hydrodynamical equations can be written down as follows:

9’3=Hp%2+ ¢(p,+divpv)—A(#:+(vV)#)} dfdf—J gdr. (12.8)

Here ¢ and A are Lagrange multipliers corresponding to the conditions (1.2.3) and (1.2.7). Assuming
that 8%,/8v = 0, we find

A
v=2Vu + Vg, (1.2.9)
p

where A and u are the well-known Clebsch variables (see, e.g., ref. [30]). From the conditions
8F,/8p = 0 and 8%, /8p = 0, it follows that

oA
= +div(av)=0 (1.2.10)
F A 5%
% a2 A v+ =0, (L.2.11)
ot p dp

It is not difficult to check that the equations (1.2.3), (1.2.7), (1.2.10) and (1.2.11) are the Hamiltonian
equations

Aot =dH/du ; u/dt=—dKIdA ;  dplot=3K/d¢ ; ad ot = —dHK/dp (1.2.12)
where ¥ = [3pv>dr + € is the total fluid energy, and where v is given by (1.2.9). In the particular case

of potential flow u = A =0, only one pair of variables p, ¢ is left. In this case (1.2.11) becomes the
Bernoulli equation. For an incompressible fluid div v = 0 and ¢ is determined from the condition

A
V2 = —div;V,u.. (1.2.13)
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Now only one pair of variables A and u is left. The curl of the fluid velocity is determined from the
formula

A
curl p = [V 2y Vﬂ] . (1.2.14)
p

The described procedure of constructing canonical variables can be readily transferred to the case of
the equations of relativistic hydrodynamics:

dp/ot+divpo =0
aplat+ (vV)p+ mV §&/8p =0 (1.2.15)
p=mo/V1-v¥c.

Conversion to the canonical variables is expressed by the formula

Vu+Ve.

3 |
| >

The equations for them keep the form (1.2.12), where
o9 = g+f pcdr : (1.2.16)
V1-v%c?

the equations for p, A, u keep their previous form; the equation for ¢ takes the form

d A 8%
LA L)
o m p dp

w=mc*V1-v?c?. (1.2.17)

The Hamiltonian formalism can be used also for a non-barotropic (e.g., a non-uniformly heated)
fluid, under the condition that the flow in it is isentropic, i.e., there is no dissipation of any form. In this
case an additional pair of variables ¢, S is introduced, where S is the fluid entropy, so that

v=ll)()t Vi + ¢ VS)+ V. (1.2.18)

The internal energy must be a functional of p, S. The Hamiltonian formalism for a non-uniform
incompressible fluid or free-boundary fluid can be obtained using the passage to the limit (1.2.18),
however the discussion of these problems is beyond the scope of this review.

The simplest models of a plasma lie directly within the framework of the above-mentioned equations
of generalized hydrodynamics. Now let us consider an electron plasma (ions are assumed fixed) having a
not too high relativistic temperature. The kinetic calculations show that Langmuir waves with a



296 V.E. Zakharov et al., Hamiltonian approach to the description of non-linear plasma phenomena

dispersion law w, can propagate in such a plasma, where (non-relativistically)
o, = w,(1+3k%r}

T.
dmne?’

(1.2.19)

rg =
Long-wave non-linear oscillations of this plasma are described by the system of equations [1-5]:

p
—+divpr =0
at p

v e 3T
—+@VWw=V{—¢p——3 122
2 e ) (mso o p) (1.2.20)
4
V2¢=Le§p.
m

Here 3p = p — pq, po Is the electron density. It is not difficult to check that the system (1.2.20) is a special
case of the system (1.2.4), so that

e (dp(r)dp(r) 3T
g--| drar+>— [ 85%ar. 122
2m? lr—r'| T 2 mp ) P T (1.221)

Now let us consider the hydrodynamics of slow motions of a non-isothermal plasma [1-5]
dp
—+di =0
o T diver

v e
—+(@wVw=-—V 1.2.22
V)=V (1222)

4e
Ao = ———(p — ew/TY
¢ M (p—poe )

Here p, v are the density and velocity of ions, M is the ion mass, T the electron temperature (the ion
temperature T; < T does not enter into this problem); ¢ the electrostatic potential.
One can show that the system (1.2.22) belongs to the type (1.2.4), and

17'r i 3 j { : : }
[/ i . L.

Calculating the variational derivative 8&/3p, we have

é%__ __L , o0 (r') e? ol T de(r') ,
- j p(r){ o e e (1.2.24)
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On the other hand, calculating 3¢ (r')/8p(r) from the Poisson equation, we obtain

1 _,8¢(r) , poe® dp(r) e
_~_V2 + ep/T _— — 1.2.25
) o) TS i) MO (1223

Comparison of (1.2.24) and (1.2.25) shows that

3% e
55() M e(r). (1.2.26)

Finally, let us consider a relativistic electron plasma interacting with an arbitrary electromagnetic
field, which is not necessarily potential (the ions are assumed fixed, as before). The equations for such a
plasma are of the form

ap ..
—4+divpr =0
o VPP

d S
(—+ (vV)) p=—eE-S[ox H)-3TVZ (1.2.27)
ot C Po
1oH 47re
curl E=———; divE=‘——W—(p—p0)
c ot m
10E 4=
culH=————epv.
cadt mc

Now we introduce scalar and vector potentials ¢ and A, and take for A the Coulomb gauge:

divA=0. (1.2.28)

Then the Poisson equation takes the form

47e
V=" (p~pu).
m

It is known (see e.g. [8]), that in the Coulomb gauge the vector potential A is a canonical variable.
Canonically conjugated to it is the vector

1 /104 E
B=— (24 vp)=-—
dmc (c ot ‘P> dme (1.2.29)
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Substitution into Maxwell’s equation gives

oB 1
OB_1 .o, ecp

2

ot 4w mw
" ) (1.2.30)
17
== dmc? (B-—Vp)
ot e 41rc ¢
We rewrite Euler’s equation in the form
J, 3
—I—,+Vw—[v curl p] = - E——[v X B]|-3TV— p
at Po
and change to the generalized momentum
P-p-Sa.
c
The vector P obeys the equation
oP 3
Z Vw—[vcurl P]- eVo +3TV 2 =0,
ot Po
The canonical variables are introduced by the formula
Pim=AVulp+Vg. (1.2.31)

A check shows that u, A, ¢ in formula (1.2.31) obey the equations (1.2.7), (1.2.10), (1.2.17). The
equations for A, u, p, ¢ are of the form (1.2.12), where the Hamiltonian ¥ takes the form

1 1
x = J{ K+————8p2+—— curl AV +27c*B*+-— (Vo) — c(B ch)} dr. (1.2.32)
m 2 mpo 8 4

For B and A we have
B/t = -dH/DA; dA/ot = d3H/BB . (1.2.33)

Taking into account Poisson’s equation,

1
divB=—-V% (1.2.34)
47rc

it is not difficult to verify that the Hamiltonian 7 coincides with the plasma energy. As seen from the
equations for A and u, there exists a special type of plasma motion for which A = u =0. Thus, even in
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the presence of a non-potential electromagnetic field the analogue of the theorem of conservation of
vorticity is kept {curl P = curl(p — (¢/c)A) is the conserved quantity}, and it is possible to find analogues
of the potential oscillations.

1.3. Change to normal variables

After constructing the Hamiltonian formalism a separation of different degrees of freedom can be
achieved by a change to normal variables. This procedure is here described using the hydrodynamics of
an electron plasma without a magnetic field as an example. Let the Hamiltonian (1.2.23) be written in
the form '

H=Ho+H,+ - (1.3.1)

where ¥, is the quadratic part of the Hamiltonian

1 T 1
Ho= %f {Pov2 +-—(curl AP + 4nc* B>+ ——8p° — —— ¢ V2o — 2¢(B V¢)} dr
47 mpo 2m

(1.3.2)
b=Vp-—A.
mc
We change to a Fourier transform in k and make a substitution of variables
i fan\'"?
h = _;(‘ (2_;0) (ax—aZly)
Po 1/2
Spx = k(—) (@ +a*) (1.3.3)
2(01‘
2 1/2
Ac=c(F) SIsiki+bh)]
0nJs 3
nk lk(pk

B, = =i )2 [S3(6% - D))+

8mc? 4dmc’

Here £, = Vw2 + k*c? is the dispersion law for electromagnetic waves. After the substitution (1.3.3) the
Hamiltonian ¥, takes the form

%, = j {wnana’ + Qu(bib* + byby*)} dk. (13.4)

In (1.3.3) S% is a unit polarization vector satisfying the conditions

(kS2)=0;  (SiSi*)=6um;  Si=S%i.
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As is seen from (1.3.4), the variable a; is the complex amplitude of Langmuir waves, and b} are the

complex amplitudes of electromagnetic waves of different polarization.
The cubic part of the Hamiltonian,

2
%lz%J-Spvzdr:%JSp (V¢—iA> dr, (13‘5)
mc
after the substitution (1.3.3) can be divided into the sum of three terms of a different physical nature
Hy=HP+HP+ XD .

Here

1 e k(kok
%(11)_ J (wk wk2> ( ! 2) 3(k+k1+k2)(a, +afk)(ah—afh)(ah_asz) dk dkl dkz,

22w ) \Bwpo ! kiks
(1.3.6)
1 12 k
#0= - [ () skt kit k)@t ) (an - %) S (kSE) L+ b4
477' m wkﬂkz kl A
(1.3.7)
1 e2 pO 1/2
T S R
U T A miat? 0ellul2, (a+aZy)
X 8(k + ky + ky) {2 Sh(b2,+ b2 )X Sh(bY+ b2 1, } dk dk, dk; . (13.8)
A
HP, HP, ¥ are the first terms in the Hamiltonian of the wave interaction in a plasma
= Kot Kt (1.3.9)

In constructing a perturbation theory, when #i, < #,, these terms will describe different elementary
processes of a non-linear wave-interaction. The Hamiltonians ¥, #{ give non-trivial answers even in
first order of perturbation theory. #{ describes the fusion process of two Langmuir waves into one
electromagnetic wave, and the inverse process of the decay of an electromagnetic wave into two
Langmuir waves. The Hamiltonian #{ describes the decay of an electromagnetic wave into another
electromagnetic wave (of the same or with a different polarization) and a Langmuir wave and the
reverse process. The Hamiltonian #{" corresponds to the fusion process of two plasma waves into a
third one. This process is forbidden by the conservation laws, and it makes a contribution only in the
second order of perturbation theory.

The Hamiltonian #, is a single term in #;,, which exists when neglecting relativistic effects. All other
terms _have a relativistic origin and arise from the expansion of the expression ¢?[(po+
8p)(V1-v%c®) ' dr. Thus

=P j vtdr. (13.10)
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Substituting (1.3.3) into (1.3.10), it is not difficult to find all fourth order terms in the interaction
Hamiltonian, which, together with the third order terms, are responsible for the four-wave interactions.

Let there now be a uniform magnetic field H, in the plasma. In this case the procedure transforming
to normal variables becomes more complicated, by virtue of the fact that the corresponding potential is
a linear function of the coordinates. Let us choose it in the form

Ao=3(-iy+jx)Ho;  Ho= Hok (1.3.11)

and make the canonical transformation to new variables in two stages. In the first stage let us change to
the symmetric variables &', A’, '

Vp 1 A%—u
ad /\I+ ’ : — I_AI : — I+ .
V3 (Atu)  ou )" (w'=A%  ¢=¢ -

A= (13.12)

In the second stage let us eliminate the constant potential component. Change to the variables A", n”,

¢H

A= A"+ (oup) Py ' =p"— (wap)Px

(1.3.13)
¢'= ¢"~ (wn/p)P(xA"+ yp").

In this case

A=A"=A-A,.

Here wy = eHy/mc is the Larmor electron frequency. In the new variables, which will be written below
without primes like initial ones, we obtain

172 ’ - 1
Lo () @+ju)+Vo-— A+ —(ATu-pVA). (13.14)
m p mc 2p

It is not difficult to check that both substitutions of variables are canonical; and the equations for them
are prescribed by formulae (1.2.12), (1.2.33) with the same Hamiltonian (1.3.32). The difference lies only
in expressing the velocity v through the canonical variables. We expand the velocity in powers of the
canonical variables

v=0pt v
1/2
Do = - (@) (A +ju)+Vo-—A4
Po me (1.3.15)

1

1 & ) 1
vl=—<2§> (i/\+j,u)—p-+——(/\V,u—p.V)t).
2\ po Po 2po

The Hamiltonian # expanded in powers of the canonical variables is an infinite series even for a
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non-relativistic plasma. The cubic term #, is of the form
H, = %J dpv3dr+ J po(vovy) dr. (1.3.16)

For further calculations only the linearized equations for the new canonical variables are needed.
We will write down these equations in k-space assuming that all variables vary as exp(—iw? + ikr). It is
not difficult to check that they have the following form:

) kA e
iwB = ——+ 2 Vo
4T  mc

- ik
—iwA = 47TC2<B B qo)
4

—l(x)A = _((UHPQ)I/ZUO),, _la)/.b = (pro)llzvox
) e )
—iwp =2 372 (1.3.17)
m mpo

—iw Sp = _ipo(kvo)

4
Ko =—8p,  (kA)=0
m

i e -
v0=— v/ BIiA + ju)+ ik - —A.
pol me

0

The characteristic equation of the system (1.3.17) is of fourth order in w? and describes four types of
waves in the electron plasma with the dispersion laws w; (k) (i = 1,2, 3,4). It is clear that w;(k)>0. To
each of the oscillation branches there corresponds a set of quantities A;(k), B;(k), Ai(k), wi(k),...,
which are determined apart from multiplication by an arbitrary function f;(k). Now let us introduce the
complex wave amplitudes a;(k) making the substitution

Ak) = Z filk) {xi(k) ai(k)+ AT (—k) a’i(=k)}
7 (1.3.18)
pik)= ;fi(k) {mi(k) a;(k)+ ui(-k)ai(-k)},

and so on, into the quadratic Hamiltonian #, (1.3.2).v The functions f;(k) are defined now from the
condition that ¥, takes the form

Ho=3 j (k) ai(k) a* (k) dk. (13.19)

Further the substitution of (1.3.18) into (1.3.15)-(1.3.16) makes it possible to express the Hamiltonian
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, in the form

.= [ {S (Va1 ak)ath) +c.c) Ss-srcn

ijl
+ (U (k) aj(ke) arlky) + c.c.) 5.+,,+,2]} dk dk, dk, . (1.3.20)

The quantities Viji,, Ui, represent the matrix elements of different types of wave interactions. The
above-mentioned method of calculating them is much simpler than the use of kinetic equations.

It is of principal importance that when using the Hamiltonian approach, there is no necessity to
check the symmetry of the matrix elements.

In reality different oscillation branches are those which significantly differ in frequencies, this
appreciably alleviates the calculations. For example, let us consider short-wave oscillations k¢ > w, in
the magneto-active plasma. In this case the oscillations can be separated into potential and electromag-
netic ones. The electromagnetic oscillation frequency is large, as compared with the plasma one, and
they propagate practically in the same manner as in vacuum. To calculate normal variables for potential
oscillations in accordance with the above-mentioned scheme, it should be noted that in the equations
(1.3.17) we have

- 1
A=0, B=—1Vp.
4mc

The quadratic Hamiltonian ¥, is a sum of the kinetic energy of the particles, an electrostatic energy
and the thermal energy of the electrons

ey §IM> _ (1.321)

v2
Ho= j dr( —+
° po 2 87 2m p
The solvability condition for the system (1.3.17) leads to a dispersion equation describing two
branches of high-frequency potential oscillations:

0*— 0} (wik)+ o)+ 0ik) whcos?O =0, (1.3.22)

Here @ is the angle between the wave vector and the magnetic field, wi(k) = w2+ 3> rp w}.

The dependence of the wave frequency on the propagation angle is illustrated in fig. 1.1. In a weak
magnetic field the upper branch corresponds to Langmuir oscillations; in a strong field the lower branch
corresponds to magnetized Langmuir oscillations = w,|cos @ . It should be noted also that (1.3.22) is
valid for describing the lower branch only when cos ® >V m/M; in the opposite case the ion motion
should be taken into account.

Introducing the frequencies of the upper and the lower branches w®, we obtain from (1.3.17) a
relation connecting vo and 8p/po, v5 = ui 3pi /po

2

2
ui ——‘—""——{wz(k)— [wt(k—w—;{k,h)—iwﬂhk]}, (13.23)
(%

- k(0% - of)
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Fig. 1.1. The angular dependence of the frequencies of the potential oscillations in a magnetized plasma.

where h is a unit vector directed along the magnetic field. The relation (1.3.23) becomes evident if it is
remembered that 8p/po = —(mk?*/4mep,)e, and, hence, u, is the well-known expression for the particle
velocity in a constant magnetic field under the action of the electric field E = ikg [1, 3, 4]. Introducing
normal variables a,

dpilpo= ai(ai +aZ} (1.3.24)

and substituting into (1.3.24), we determine the multiplying factor:

1/2 2 _ 212
aie ko w:~ 0h (1.3.25)
wp(200)"? | 0% - w2
The connection between the hydrodynamical potential ¢ and 8p is readily determined:
2 5 +
iy = 2L (1.3.26)

k2a)z Po ’

The connection between 8p and A and u can be found projecting the last of the equations (1.3.17) on
the x- and y-axes

. . kewiy/po\'"?dpi
(- 52D)(2) "

k2 W WH Po
(1.3.27)
+ + k}’ w%- pO 2 apf
(i) (2) "
k* w. WH Po

Expressing the interaction Hamiltonian %, (1.3.16) through the normal variable, using (1.3.24)-(1.3.27),

we calculate the specific form of the matrix elements Vi, describing the interaction between

potential high-frequency oscillations of a magneto-active plasma. They are listed in tables 1.1-1.3.
Above we considered only an electron plasma. It is not difficult to take into account the ion motion,
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Table 1.1
Connection between the density variation 8#; and the
normal variables for the basic potential plasma modes
3 = ay (ay +aZy)

Oscillation ak
wf kVno2mo,
2 2
. k w' |wi—on
w . 2_ 2
wp ¥ 2mngl w7} - w?
= 2
k ® wf.. -w-
@ - 2_ 2
wp ¥ 2mngl 0l - @?
w5 Vkno/2MC,
wn 0 nowLy
WLH ——

wp wiy 2m(wp+ w})

0, V@ = nognol T

0 (Qing 0~ o
: 2T, | —*

w’, Langmuir waves; w.,w-, high-frequency

potential oscillations of magnetized plasma; ws, ion-
sound waves; wppn, Oscillations with frequencies close
to the lower-hybrid one; £2,, ion-cyclotron waves with
frequencies close to nwy;; 2., low-frequency oscil-
lations of a magnetized plasma. 8n; is the Fourier
transform of the electron density variation for the first
three modes, for others 3n; is the ion density varia-
tion. The electromagnetic wave field is connected with
the canonical variables by the relation (1.3.3)

1,2
E = (87w )2 Y, SA (A~ b%%).
A

The S} are unit polarization vectors defined by the
conditions

(k52)=0§ (SA’st')zsu,;

($)81)=1;, 8§, =8%.
For obtaining the matrix elements of the interaction
with sound it is necessary to substitute instead of the

fluctuation 3p in (1.3.7), (1.3.8) the ion density varia-
tion expressed in terms of the canonical variables.

introducing additional canonical variables (p, ¢, A and u). Thereby the number of inherent oscillations
and possible non-linear processes increases. They can be considered in a similar manner, and a series of
the most important examples will be presented below.

1.4. Various simplifications

We have obtained a sufficient set of Hamiltonians for the interactions between different types of
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Table 1.2
Matrix elements of the three-waves coupling in isotropic plasma

"
Process Vikk

1 €0 ki8St , St

t t ¢
(‘)k—>(ukl+0)k2

W2r mYwf, o} - 0]
t N e (k kl—kz)(l‘n'kzysz‘)
YT LT Ok 16mma” kik
2
1 ,,,,,O_Q 1”2
Wk~ 0k, O, (Sk ‘s
2\/217-m2 ‘”k“’k
e [DwN\"? [m (h,Si)
wi*wiﬁﬂskz m(w‘p) \/;_k_
1

wp Vi (k)
@aPP2V2(Mngc,)'? ks
cs kky)kY? (kkz_) A (mz) k

(k)= (k) + Ds(k2) - Vkkik;
l ? 16(17'3Mn0)”2 \/kkl \/kk2 \/k|k2 : 2}

' £
wi > ot Dy,

plasma waves. Now let us consider the possibilities for a simplification of these Hamiltonians. Assume
that we have a cubic Hamiltonian for coupling the same type of waves with amplitude a, and dispersion
law wy, such that for the waves under consideration the resonance equations for the three wave
processes

a),,=a)kl+w,,2, cu,+wh+a)h=0

k=k1+k2, k+k1+k2=0

(1.4.1)

have no solutions. A general form of such a Hamiltonian is expressed by (1.1.19). The absence of
solutions of (1.4.2) means that the quadratic non-linearities result in the existence of induced non-
resonance oscillations and may be eliminated. For this purpose, it is convenient to make a trans-
formation from the variable a, to a new variable ¢, according to the formula

Vi,
ay = Ck_j—l‘fh—a(k“kl_kz)chckzdk] dk2

Wy~ Wiy

Vi, U kisCriCh,
£ [ MR 5,k k) d, dk - [ —RCh

Wi, — =Wy, Wy F &, T Dx,

S(k+ ki + ky)dk dky.  (14.2)

The transformation (1.4.2) is canonical, accurate up to third-order terms in ¢, and, after substitution
into the Hamiltonian (1.1.19), it gets rid of the cubic terms. In so doing, there appear fourth-order terms
in the ¢ ; among them only the term

¥~ [ Tuwnciehicncund(k+ b~ k- k) dk dky dks dk | (14.3)
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Table 1.3
Matrix elements of the three-wave coupling in a magnetized plasma

Process V‘u,h

+ + -
T TR TH

1 5;5;,8;2 kiky (wt,wL)m
QrYP 2w @mm)? k Ok

k?
{k(uk.+uk2)+ [(“kukl)(kluk2)+("k"l:z)(kzukl)]}

2
wi=—ot {w,(k —fﬂk,h) +imH[hk]}
(2

k(0 - w})

+2_ (I)H

ﬁ—, 2 2

Wi~ w

12

1 8i8ubr, kiks (wilwiz)‘”

wi - 0Ktk -
@2mYR dw,2nom)'? k

w}
k2

x {k("2.+ i)+ = [(ui™ ui, ) (ki) + ("I'uiz)(kzui.)]}
@p

* ) 1 D, B:Stﬁﬁ:
wi > 0+ i, " VSngT, kdk (kui,)

1 8ibibi, kik (,,,k,,,h)l/z

QaY? 4w,2mng)”? ka
k2
{kz("k +";1‘)+ [(" ";*)(kukx*)+(";2*“'_“*)("";2*)]}

Wi Wkt Wk,

Wk,

If the ions are magnetized and two low frequency modes exist

=

+ * + 1 'QI .
Wi~ okt i, Qmpn A *(ky) Sk,ﬁkz (kui,)
. Oiz— Wk
s EEE

should be left. In an endeavour to eliminate this term using a canonical transformation of the type
(1.4.2) containing cubic terms there arise expressions having denominators which vanish on the surface
determined by the equations

w,,+a)h—wk2—w,,3=0, ':k+k1_k2—k3=0.

The denominators in the other fourth-order terms have singularities on the surfaces determined by the
equations

a),,+wh+a)k2——wk3=0, k+k1+k2—k£;=0 (144)

a)k+wh+w,,2+a),,3=0, k+k1+k2+k3=0. (145)
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As a rule, these equations cannot have solutions if the equations (1.4.1) have no solutions. Therefore
the above-mentioned fourth-order terms are unimportant. The matrix element T g4, is given by the
formula

*
_ U—(k2+k3)k2k3 U—(k+h)kkl U—(k+k1)kk1 U—(k2+ ka)kok3
Tkklkzkg == -
wk2+k3+wk2+wk3 wk+k|+w"+wk1

* *® *
_ Vk2+k3, kok3 Vk+k1, Kk Vk"'kl, kk1 Vk2+k3, kak3 2 kaz. k—k3 ngh, k3—k

Opigy @™ @, Opp, Wk @y a),[s_,q'l-a)kl—wk3
£ *
thg, k1—k3 szk, ko—k Vk]kz, k1—k2 Vksk, k3—k kas, k—k3 szkl, k2—ky
-2
n -2 N -2 (1.4.6)
Wy TW~ Wy, Wppp T WO~ Wy, Wty T @y~ @y,

and possesses obviously the symmetry properties (1.1.22).
The equations of motion for ¢, are of the form

ac
'—67k+ iwka =—i J T,k,kmcf,c,,zcha(k + k1 - kz - k3) dk] dk2 dk3 . (147)

It follows from (1.4.7) and (1.1.22) that (1.4.7) possesses the integral of motion

1=jmﬁu. (1.4.8)

The integral I is, strictly speaking, an adiabatic invariant with respect to the full initial system. It will be
called the number of quasi-particles or the wave action integral.

The above-described case takes place for the interaction between Langmuir oscillations in an
electron plasma. In this case (see (1.3.6)) we have

1 [(whw,,z>1/2 k(klkz) + (w,‘wh)l/z k2(kk1)+ (wkwhj/z kl(kkz)]
42wy d? 20 k.k, 2an, kk, 2wy kky, J°

kalkz =U kkiky =

(1.4.9)

Up to k?rh(<1) order terms in (1.4.6), it can be assumed in (1.4.9) that w, = w,. The obtained
expression for T g, has a unique property. Namely,

T sy =0 if K|k ||k |k . (1.4.10)

The validity of this equation can be confirmed by direct calculations. The property (1.4.10) results in the
fact that the interaction of Langmuir waves in an electron plasma (electron non-linearities) is
anomalously weak for spectrally narrow wave packets.

If Langmuir waves with a characteristic value of the electric field E,, a wavevector k and an angular
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width A® are prescribed in the plasma, the characteristic times of electron non-linearities are of the
order

1/7~ w, max(A®? k*r%, E5/87nT, (krp)* E§/8mnT) (1.4.11)

and are so large that they usually can be neglected.
There is another possibility to simplify Hamiltonians when we consider the problem of coupling
high-frequency waves with amplitude a, and dispersion law w, with low-frequency waves with

amplitude b, and dispersion law (2. In this case, among the terms in the cubic Hamiltonian describing
such an interaction, one needs only retain the following one:

Hone = j (Visibrana s+ ¢.C.) 8(k + ky — ky) dk dky dks, (14.12)

as the other terms of the three-wave coupling in the Hamiltonian are fast oscillating terms.
The corresponding equations of motion are of the form

aa; . |
7:‘1‘ lwgdy — —1 j {V,,,,,Z.b,,,a kzﬁ(k - k1 - kz) + V;kluzb:la kzﬁ(k + k1 - kz)} dkl dk2 (1413)
Oby/ 0t +ibe = —i f Vinalandk + ki — k) dk, dk, . (1.4.14)

1.5. Equations for envelopes

If the system of interacting waves consists of narrow packets, a further simplification of the wave
interaction description takes place. Let us consider the interaction of three spectrally narrow packets
with typical wave vectors ki, k», k3 lying on the surface

w,‘,—wkz—w,,3=0, k]"kz—k;;:O. (151)

Imagine ay as ai(kq+ #1) + ax(k, + x2) + as(k; + k3); k& <k. The substitution of this expression into the
Hamiltonian (1.1.19), using the smallness of ¥ and neglecting unimportant terms, gives

Kt = V[ [a7(s1) ax(k2) as(xs) + c.c.)8(r; — k2~ K3) diey diez dies

(152)
V= thzh .

Then, using the narrowness of the envelopes, we expand the dispersion law in the quadratic Hamil-
tonian in powers of &:

a
9?0=J’wkakai dkzz [w(k,)+5% Ki] ai(Ki)at(Ki)dK'
i k=kj
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We change to the variables ¢; = a; exp{i w;(k) t}, which corresponds to a variation of the zero of the
frequencies. In this variable we have

H=%- 2 f w(k) cc* dk = Z j (re0:) ci(i;) c%(x;) de;

+ Vj {c1(x1) ca(rs) ca(rs) + c.c.} 8k, — 12— K3) di; die; dies (1.5.3)

_6w

v, = ——
ok

k=k;

Now let us perform the inverse Fourier transform ¢; = 1/27)*? [ ¢; exp(is;r) di;. We obtain

5 = E%l’i [('MV!//’? —-cc)dr+ Vj (Wivas+c.c.) dr]
i (15.4)

V=vQmrP?.

Varying the Hamiltonian (1.5.4), we obtain the well-known equations describing the resonance
three-wave interaction

3¢1/8t - (01V)¢1 = _i lezl//:;
Aol 0t = (0,V Y, = ~i Vi3t (1.5.5)
s/ 8t = (03V ) = —i Vi34 .

It should be underlined that the Hamiltonian # of (1.5.4) immediately gives a non-trivial integral of

the system (1.5.5). ; '
Besides the Hamiltonian #, the well-known Manley—Rowe relations

mo= [QP ) drs  ma= [ QP +lgaf) dr

are integrals of motion of (1.5.5), as well as the momentum of the wave system

. ' i .
P=Sp; p=;|Wi-ce)drs  #=%+3Spm.
i

In the propagation of a single narrow envelope the three-wave interaction is unimportant (it must be
taken into account in higher-order perturbation theory), and the interaction is described by the
Hamiltonian (1.4.6).

Now let us analyse how the dynamical equations describing monochromatic wave propagation are
simplified.
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If the carrier wavevector is denoted by k,, it can be assumed that

()= (ko) + (e0) + 5= (156)
w =w KV 3 D
° ? Ok kg | s
Tkklkzkg Tkokokoko T(27r)_
Introducing, as before, the envelope of the quasi-monochromatic wave ¢
¥ = expi=i (ko) 1 + ikor) f alko + x) explixr) dic/Q2m )"
and making the inverse Fourier transform in (1.4.7) we obtain
1 dw oy .
i, + (v, V) + = ~-T|lyP¢y=0. 1.5.
lw l(vg )w 2 3k 8k,3 k=ko 5’('0, 8K,3 le (/l ( > 7)

In an isotropic medium, when the frequency depends only on the modulus of the wavevector

Fo

ok, ok,

v
Kakg = — K2 + w"kf; Ky = (scko)/ ko
k=ko kO

and (1.5.7) is appreciately simplified:

—=Vig+ R TP y=0. (1.5.8)

aw> lvgr
2 322

(¢'+ Y az) " 2 ko
The z-axis is chosen in the direction of the wave propagation.

It should be noted that, in contrast to the case of three-wave interaction, we should expand w(k)
accurate to the x? terms, since the second term in (1.5.8) can be eliminated changing to a reference
system moving with the group velocity.

Let in (1.5.8) ¢, = 0. Then (1.5.8) describes a stationary wavepacket with characteristic longitudinal
and transverse sizes, /; and /., respectively. Assuming that

W Ve

V2
9z 2ko ¥

Ugr

we find lj~ I%ko, that is §;>/,. Since "~ vg/ko, the term w” 3*¢/dz* can be neglected as compared
with other terms in (1.5.8). In this case there arises the known equation of stationary self-focusing

ad’ T2, - 2
az+2kov*‘/’ |¢| ¥=0. (15.9)

Of course, it takes place only if 7' <0.
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In deriving (1.5.8) it was assumed that the matrix element Ty, is a continuous function when all
the argument tends to k,. It is not always so; in some cases this limit depends on the direction of the
vector k relative to the direction of ko. In these cases (1.5.8) should be changed by a more complicated
equation.

As for the three-wave interaction, the fact that (1.5.8) is Hamiltonian immediately gives an integral of
motion, i.e, the Hamiltonian

H=Poy+L; L=} j { (V.0) 4 T|¢,|4} dr. (15.10)

Here P =3i [ (¢ d¢*/dz — c.c.)dr is a conserved quantity, too, i.e. the momentum of the wave system.
It should be noted that from the symmetry of relations (1.1.22) it follows that the value T is real.
Now let us consider, within the framework of the system (1.4.13)-(1.4.14), the problems of the

interaction of a narrow packet of high-frequency waves with low-frequency waves [11]. Let ko be a

mean value of the high-frequency wave number. Then in (1.4.9) one can make the substitution

Vinke = f(k) = Viggao; k<ko

simultaneously expanding the high-frequency dispersion law according to the formula (1.5.6). In (1.4.13)
k - ko + & should be substituted in the arguments of the high-frequency waves a,, which corresponds to
a change to envelopes, as in the previous example, The form of the function f(k) depends on the
low-frequency wave nature. This function can be simply calculated, if the low-frequency waves are
sound waves {2 = c.k.

The sound is characterized by a variation in the density of the medium 3p and the velocity ». By
virtue of the fact that k <k, their values are significantly changed on a scale much greater than the
high-frequency wave period. Therefore it is possible to write for the local dispersion law for the
high-frequency waves w(po + 8p, v, k)

ow ow
= e —0». 15.11
w(po+dp, v, k)= w(k)+ P op + P v ( )

In the majority of cases the oscillation frequency depends on the velocity of the medium only
through the Doppler shift 8w = (kv), and the last term in (1.5.11) describes the change in wave energy
through the medium entrainment by high-frequency oscillations.

The local high-frequency wave energy density

8= wik) | aat dk
also varies when there is propagation of sound in the medium

5% = J {— 5p+ 22 v} I (r)P dr | (1.5.12)
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which is clearly the same as the interaction Hamiltonian. Here y(r) is the envelope of the high-
frequency wave.

As shown above, for sound motions the variables 8p and a hydrodynamical potential are canonical.
Introducing normal variables

k i )
pk=,/2€jb,(b,‘+b’,':); 0 = =ik |5 (b= b7) (1.5.13)

and substituting (1.5.13) into (1.5.12) it is found that

flk, ko) = —— (a—“’ @+(kk°—)\/cf). (1.5.14)

V2@nP \ep V¢ Vkpo

As to order of magnitude we have dw/dp ~ w/po, and the ratio of the second order to the first one in
(1.5.14) is about ~c¢,/v,n. When ¢, < v, the effects of the wave entrainment by the medium can be
neglected. So in some cases, for an example for potential oscillations in a magnetic field, the oscillation
frequency does not in general depend on the density, and the wave entrainment by the medium is the
main interaction mechanism.

Besides the interaction with sound, the intrinsic high-frequency wave non-linearity should be taken
into account. Adding (1.5.12) to the interaction Hamiltonian (1.5.10) and varying, we will obtain the
interaction with sound, which results in (1.5.8) in the appearance of the additional terms

. W Ve, 0" dw o
Yo — )+ Viy+ ——-TlyPy=(— — ). S.
(u/j' Vet az> 2k, v 2 47 TPy (ap %+ ko az) v (1.3.15)

Adding (1.5.12) to the quadratic Hamiltonian and varying in 3p and ¢, we will obtain

7] 7}
—8p+ peVep = —ko— |y
o o+ poVo oazl‘ﬁl

(1.5.16)
d ,0p dw

—¢+c2—=-—[ypP.
atte o, aplt/fl

The equations (1.5.15) and (1.5.16) represent a universal system describing the interaction of a
high-frequency wave with sound in an isotropic medium.

The physics of the interaction of high-frequency waves with sound depends on the ratio of the sound
velocity and the group velocity of high-frequency waves c,/v,,. If v, < ¢, in (1.1.15) one can change to a
static approximation, assuming that

I ap=L0
P~ o '
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In this case

Po dw 2 2 9 2
8p=-2 |y, V2 = —ko— |Yf2.
P 2 PR I‘/’| poVid 0 Py |¢|

If the entrainment effect can be neglected, the substitution in (1.5.8) will be the only result of the
interaction:

Tof-22 ("—“’) . (1.5.17)

It is remarkable that the correction sign for T due to the interaction with sound is always negative and
favours self-focusing. Taking into account the entrainment effect the change to (1.5.8) is possible, if all
the quantities depend only on the variable ¢ = z — nix — n,y. Due to the above-mentioned effect, there
arises a correction for T,

. k2
8T =-=2(1+n2+nd)" (1.5.18)
Po

depending on n,; and n,. In this case (1.5.9) is replaced by an equation of the type (1.4.7), the matrix
element T 4,4, being a discontinuous function as k; - k.

It should be noted further that the above-mentioned procedure is also convenient for the interaction
of narrow high-frequency packets with other low-frequency waves whose presence changes any of the
parameters (e.g., 2 magnetic field, temperature, etc.) entering into the dispersion law for the high-
frequency waves.

1.6. Averaged dynamical equations [9)

As shown in the previous section, the description of interacting waves is markedly simplified if they
have close wavevectors. It stands to reason that in this case they have close frequencies. The inverse is
not true, generally speaking. Thus, all Langmuir waves with the dispersion law

Wy = wp(l + %kzr%))

when k’rp <1 have close frequencies although their wavevectors can differ by several orders. This
narrowness of the frequency spectrum of Langmuir waves can be used as a small parameter significantly
simplifying the description of non-linear interactions. In this case the interaction with ions should be
taken into account.

As mentioned above, in a hydrodynamical description the ions may be obviously included into the
Hamiltonian approach scheme. In so doing, however, some important kinetic effects are lost which are
connected with the Landau damping on the ions of forced harmonics of Langmuir waves.

Therefore, in the scheme, described below, of averaging over a fast Langmuir frequency it is
expedient to retain the kinetic ion description. In the cases when the ions can be described hydro-
dynamically, we will automatically change to simplified Hamiltonians of the type (1.4.10) or (1.4.3).
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The averaging method is based on the fact that in a plasma with a weak magnetic field wy < w, the
harmonic oscillations with frequency w, are the quickest type of motion.

The plasma motions can be divided into two types: high-frequency electron oscillations and
low-frequency ones involving ions. Below we will confine ourselves to the consideration of long-wave
oscillations, krp < 1. This makes it possible to consider low-frequency motions as quasi-neutral and to
describe in the terms of hydrodynamics high-frequency motions whose phase velocities considerably
exceed thermal ones. The interaction of high-frequency oscillations will be neglected, which allows us to
describe them using the linearized hydrodynamical equations for an electron gas

17
= dn. + div(ng+dn)v. =0

3 5 (1.6.1)
—v.+ 303V "__%E.
ot No m
These equations can be complemented by Maxwell’s equations from which the magnetic field
O°E|dr* + ¢? curlcurl E — 4me(no + 8n) dv./dt =0 (1.6.2)

is eliminated.
In (1.6.1), (1.6.2) the electron density is imagined in the form

n=ny+dn.+dn, on.,dn <€ng.

Here dn and dn. are the density variations connected with low-frequency and high-frequency motions,
respectively. In (1.6.1) and (1.6.2) the terms of the order (dn./dn)v/v. are eliminated. From the
continuity equation it is seen that as to order of magnitude this is the ratio of the phase velocities of the
low- and high-frequency motions c.k/w,~ kroV m/M <1. Before making further considerations, it
should be noted that in the non-linear terms and the terms describing the thermal dispersion, the linear
relations can be used for connecting dx., v.. Taking this into account, it is not difficult to reduce (1.6.1)
and (1.6.2) to the equation

2 2
301‘e wp8

n
VdivE+——E=0. (1.6.3)
ho

1/,9*,
— (—+ w,,) E + curlcurl E ~

2 \or? c?

C2

In the linear approximation, when 8n = 0, it describes Langmuir and electromagnetic waves with the
dispersion laws

wi=wi+3k*T,; wi=eitki.
Now let us consider oscillations with a frequency close to the plasma one (for the Langmuir
oscillations this means krp <1, and for electromagnetic ones k¢ < w,) and imagine the electric field in

the form

E = (E exp(-iwt)+c.c.). (1.6.4)
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Here E is a slowly varying quantity aE/at<w,,I§. Substituting (1.6.4) into (1.6.3) and neglecting the
second derivative, finally the following expression is obtained [31]:

2

oE - . .
~2iw, =+ c curleurl B~ 303,V div E+ e snE=0. (1.6.5)
| e

Equation (1.6.5) is convenient for describing oscillations with a frequency close to the plasma
frequency. Taking into account the intrinsic electron non-linearity in (1.6.1), (1.6.2) could lead to the
excitation of oscillations at double plasma and zero frequencies which could lead, in turn, to the
appearance of terms of the type rj VZEE/nT in (1.6.5). They are negligibly small if the characteristic
time of the non-linear processes following from (1.6.5) satisfies a rather soft condition

L E? E?
S>w ~ @ ——
r "mnvd, " 8mnT

(krD)2

(vpn is a characteristic phase velocity).

Besides, it should be noted that in (1.6.5) the quantity (vr,/c)? is a small parameter allowing the
separation of potential and non-potential oscillations. Assuming that E = Vi and taking the divergence
of both parts of (1.6.5) we obtain

a 3v dn
VZ __V 1
(i% zwp )*” wp div o VY. (1.6.6)

Equation (1.6.6) conserves the integral I = [ |Vi|> dr coinciding, apart from a multiplying factor, with
the number of Langmuir plasmons (see section 1.4). Equation (1.6.5) conserves the analogous integral
J |E[? dr having the meaning of the total number of Langmuir and electromagnetic plasmons.

To close (1.6.5) it is necessary to find another connection between dn and E. For this purpose it
should be noted that the phase velocities of the electrons taking part in low-frequency motions are
considerably less than the thermal velocities, and they can be described in hydrodynamical terms and
considered stationary:

_ T.V
V). = v% =-£ [v ToxHj+ =2 (1.6.7)
m ng

Here the bar means averaging over time, and ¢, is the electrostatic potential of the low-frequency
motions. Using the identity (vV)v = 3Vov? - [v X curl »] and Maxwell’s equation (1/c)3H/dt = —curl E, we
obtain

_ 1
(0)0. + — [pe X H]= V02 = VIER=—V¢. (1.6.8)
mc m

2,2
dmw,

Thus, it is evident that high-frequency oscillations lead to the appearance of force having a potential ¢
(Miller’s force), and pushing out the electrons from the region of the electric field localization. It should
be underlined that this force acts on electrons only (the corresponding force acting on ions is m/M
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times smaller). As regards (1.6.7), it described the Boltzmann distribution of electrons,

] 1
n—: =T (epei— @) (169)

for which a thermodynamical equilibrium has time to be established due to the slowness of low-
frequency motions. The ion distribution function obeys Vlasov’s equation in the potential @;:

%’;@ (vV)fi—% (V(pe, Z—{)) = 0. (1.6.10)

The quasi-neutrality conditions

Sni=ffidr—no=8n=;?(e¢el_¢)

allow @, to be determined and thus the system of equations (1.6.5), (1.6.10) to be closed.

The equation (1.6.10) takes into account a non-linear interaction of low-frequency waves which in the
majority of cases can be neglected. After linearization of (1.6.10) the variation of the density 8n can be
expressed linearly by the high-frequency force potential ¢(r, ¢). This connection can be expressed in
terms of the dielectric tensor; however, it is more convenient to introduce a plasma Green function
G.q, defining it by the relations between Fourier images

n n £
o = ?(: GenPua = ?Z Drnr (—8‘— 1) . (1.6.11)

Here ¢ is the longitudinal part of a dielectric tensor, and &, is the electron contribution to it. For G,
from (1.6.9), (1.6.10) it follows that '

T. L K 9fi/ o
Gea = . Lep= %ﬁ”—d : 1.6.12
" Mno1-(T./Mno)Lo 27 ) wko-0 " (1612

The Green function possesses obvious symmetry properties analogous to those of &:

Gua = G:—n =G _nq.

What is more, since it is expressed through &, G, it is also analytical in the upper half-space of the
variable 2.

In some cases the system of equations (1.6.5)-(1.6.11) can be considerably simplified. If the
characteristic times of all the processes are rather great 77'< kv, the ion distribution in the
low-frequency electric field can be considered as a Boltzmann distribution:

dnino=—epa/Ti<1.
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With the help of a quasi-neutrality condition from (1.6.8) it follows

n_ ¢ |EP

no T+ T, 16mno(T.+T)

In the potential case the equation (1.6.6), within the framework of the above-mentioned ‘static”
approximation, is of the form

V2 + 30, rV2) + —— P VIV Vg =0. 1.6.13
iy, 2Wp!'D l//) 327rno(Te+Ti) IV' ¢| 1/ ( )

From this equation the following estimate follows:
Yt~ w,WinT ~ w,k?rh; W~ E*87.

From this the applicability conditions for (1.6.13) follow:

In the opposite limiting case 7~'> kv, for low-frequency motions the following hydrodynamical
description is valid:

(92
(55~ civ?)on =

1
167M

VIEPR, %= (1.6.14)

In a non-isothermal plasma T, > T; (1.6.14) is applicable at all amplitudes of the field; in the long-wave
limit k%% <(m/M)T,/T. for small intensive oscillations W/nT < (m/M)T;/T, the statistic equation
(1.6.13) follows from (1.6.14). In an isothermal plasma T;~ T, equation (1.6.14) is valid for describing
turbulence with a high noise level W/nT > (m/M, k*r})max, When the plasma motion becomes super-
sonic under the pressure of a high-frequency field. In this case the term ¢2V?3n in (1.6.14) can be
neglected. The simple asymptotics G, correspond to the simplified equations (1.6.13), (1.6.14). First of
all, it should be noted that G, is a function of the parameter ¢ = 2/kv .. In the limit § <1 or 2 <kvp,
we have

Gxﬂ == Te/(Te + 7:) . (16.15)

In the hydrodynamical limit ¢é>1 or 2> kv, G.o has a pole corresponding to ion-sonic waves.
Expanding (1.6.12), we obtain

P
0% - k%c2+ 2y, '

Guo = (1.6.16)
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When compared with (1.6.14), the Green function accounts for the sonic wave damping

172

nera(32) | (16.17)

In (1.6.16) only the Landau ion damping is directly taken into account; however, within the framework
of the above-mentioned scheme it is not difficult to account for the Landau electron damping. Presented
in fig. 1.2 is the plot of the real and imaginary parts of G, at arbitrary ¢ The plots are presented for

ReG
®)
£
Xy
{. Ti=Te
2 Ti=05Te
3  Ti=03Te
ImG
1 Ti =Te
2. Ti=05Te
3 Ti=037e @
' 4 Ty =025Te
3
{ o
%L,

Fig. 1.2. A plot of the Green function of the real and imaginary parts for different T./T;. (a) Green function (imaginary part) Im G(x) = ~Im G(-x);
x = ko 7,. (b) Green function (real part) Re G(x) = Re G(—x).
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different ratios of the electron and ion temperatures, which, as can be seen, influence significantly the
form of the Green function when £ ~ 1,

Finally, in the last variant of the simplifications of the dynamical equations valid for a sufficiently
strong damping of ion-sonic oscillations we can consider low-frequency motions as forced.

The relation (1.6.12) can be rewritten in the form

_ noez(Z'n')_z

M = ———=— | Griotr, 2By, i Bry, ) 8(k1 — K — k2) 8(w1— w2~ 2) dk; dk, dw; dw, .
—4mo2F--

(1.6.18)

It is obvious that at a low level of non-linearity we have E, .~ Ed(w — @), @ is the law of wave
dispersion reckoned from the plasma frequency. With this accuracy the inverse Fourier time transform
can be made in (1.6.18):

(277)—3/2
167nT,

S () = J' Grito.ora(BriEL) 8(ki - 1 — k) dky dk; . (1.6.19)

Considering the oscillations to be potential, let us introduce the variable
ay = i(87rwp);1’2l/1,,, Ek = ’_ik(//k (1.6.20)

determined in such a manner that the value

j wla dk

would coincide with the total energy of Langmuir oscillations. Substituting (1.6.19) into (1.6.6), we
obtain finally

. 0a . . . ,,,
l—a-t'k"*' (o +ive) a =1 j T ke @ ki@ xy 8(k + ki = ko — k3) dky dk, dks
(1.6.21)
T - w; [(kkz)(klka) G((w1— w3)] k1 — k3) + G((@1— w2)/|ks — kzl)(kks)(klkz)]
Mk T QmyanT. ki 1kk '

The plasma oscillation damping which can be considered to be collisional 7y, = v,; is included into
(1.6.21). The matrix element T e, in (1.6.21) possesses the symmetry properties following from the
symmetry relations for the Green function:

— %
Tkhkzkg - Tkzkgth
when

Wy +a)h = w,2+a),,,.
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It should be noted that in the above-considered static approximation

w3 {(kkz)(k 1k3) + (kks)(k 1k2)}

1.6.22
@mpPan(T.+ T) Kkrkeoks (1.6:22)

Tkk]kzk:; =

satisfies the symmetry relations (1.1.22). Thus, (1.6.13) is a Hamiltonian of the type (1.4.7). Certainly,
this can easily be checked. If, simultaneously with the substitution (1.6.20), we change to the normal
variables (1.5.13) for the sound oscillations, the system of equations (1.6.16), (1.6.14) is reduced to the
form (1.4.13), (1.4.14), where the matrix interaction element is

1 wp \/E (k 1k2)
QAYT2IN2Mne,  ikz

(1.6.23)

kkiky —

As mentioned above, the real and imaginary parts of the Green function G,, quickly decreases if
0> kvy,. Therefore, when krp>Vm/M (1.6.21) shows that only the oscillations with close wave-
vectors _interact with one another. The condition (@i, ~ @s)/ki—ks|~1 gives [ky|~|ks|~
r5'V mT,/MT,.= k. Here the quantity kye= rp'V mT,/MT, is introduced which has the meaning of a
characteristic size of the matrix interaction element.

For the validity of (1.6.21) it is necessary that the non-linear corrections in the arguments of the
Green function would be negligibly small. In the region of the spectrum k*r%,<m/M when the
Langmuir oscillations cannot excite sound, this condition is of the form

1/~ @, WInT ~ (krp) w, < kv, .

That is, in this case (1.6.21) makes the static approximation equations more precise. When
k?rg, > m/M, for the validity of (1.6.21) it is necessary that all the sonic oscillations would be forced, that
is, all characteristic times 7 would exceed the sound damping time y,7 > 1.

Using the expression (1.6.16) for the Green function in a hydrodynamical approximation, from
(1.6.21) we obtain for a characteristic time of a non-linear process

L W,
T ~Wp .
*nT v,

Here W is the energy density within the interval of wavevectors of the order of the Green function

size. If the noise density is uniformly distributed over the scale k, then W = Wkg/k, the applicability
condition takes the form '

W ke Y6\ |
W Rae oo [T (s 1.6.24
T k ko M<ws) (1.6.24)

In particular, in the isothermal plasma, where y, ~ w;, the condition (1.6.24) is in the form

WinT < k*r%.
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Listed in the table are the values of the ratio y,/w, for different ratios of electron and ion temperatures:

T/ T; 21 14 0.9 0.8 0.64 0.5 0.36 0.25 0.16 0.1

Yslws 0.65 0.52 0.39 0.36 0.3 0.24 0.17 0.1 51072 42x107?

Above, when deriving (1.6.21), the electric field was considered to be potential. In actual fact, the
plasma inhomogeneity, arising from high-frequency pressure, mixes polarizations, that results in
converting plasma oscillations into electromagnetic ones with close frequency w, — 0, <w, and vice
versa. To obtain the equations describing the above-mentioned process, the electric field can be
represented as

E,, = i(Sﬂwp)llz 2 Shah (1625)
A

where §,, are the unit polarization vectors, for the Langmuir waves S,, = k/k, and for the electromag-
netic waves 8§, satisfy the conditions

r=8%% S.,AS,’;,=6M,; (kS4,)=0.
Then, substituting (1.6.25) into (1.6.5), we obtain

da ka
ot

Fiuan = j (SASEX) B agey 8k — ks — ) Ay dic.
2

In these equations the fundamental frequencies are expressed as:
= ~ 17227 _ 3
0,,,= 0 =3k*c’|w,; 04,= o = 30,k?rb .

Eliminating 8n,, it is possible to obtain an equation generalizing (1.6.21). The conditions of its
applicability are analogous to the conditions of applicability of (1.6.21).

1.7. Averaged description of the oscillations of magnetized plasma

Now let us consider a magneto-active plasma. The magnetic field leads to the appearance of new
oscillation branches, changes the wave dispersion law and makes the description of the interactions
more complicated. Nevertheless, here too the separation of a definite high-frequency oscillation branch
significantly simplifies the description of non-linear effects and allows changing to the averaged
description.

It is not difficult to take into account the effect of a weak magnetic field on Langmuir and
electromagnetic oscillations with a frequency close to the plasma frequency, and to elucidate how the
equations obtained in the previous section are modified. For this purpose, it is enough to take into
account the Lorentz force F = (e/c)[vH] in the electron equation of motion (1.6.1). In virtue of the
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smallness of the magnetic field it is possible to assume, with an accuracy up to the quadratic terms in
wy/w,, that

ie?

F= —S[vH]z -~ _[EH). 1.7.1)

mcwy

As a result, (1.6.5) is obtained with an addition conditioned by the magnetic field

2

i S
iE, - %g)—ﬂ [hE] + < curlcurl E- Jwprb grad divE + w,, 2_n E=0,
“p “p o (1.7.2)
h=H/H.

Equation (1.7.2) is suitable for the description of long-wave kc < w, oscillations. To describe the
influence of the magnetic field on the short-wave kc > w, Langmuir oscillations, it is necessary to take
into account the terms quadratic in wy (in eq. (1.7.1)). Assuming the electric field to be almost potential
E = Vi, we obtain a generalization of (1.6.6) taking into account a weak magnetic field

divdn V¢

0. 1.7.3
e (1.7.3)

2
VA, + 20,k 2ra V) - ;"—“ V2y-
Wp

Since the magnetic field does not influence the ion motion, the equations describing the low-
frequency motions are unchanged. Therefore, it is evident that the structure of (1.6.12), (1.6.19) in which
the magnetic field leads only to a change in the dispersion law of the oscillations, remains unchanged. It
should be noted also, that (1.7.2), (1.7.3) conserve the total number of waves.

In a strong magnetic field wy = w, an essential reconstruction of the oscillation spectrum takes place.

We shall restrict ourselves to the consideration of two branches of potential oscillations k¢ > w,
being described by the dispersion equation (1.3.22). In this case also we shall consider a transverse
propagation of oscillations when the frequency of a lower oscillation branch becomes closer to the
lower-hybrid one, w n = whw,/(wh+ w?2), and the ion motion affects the dispersion law in an essential
way.

As seen from (1.3.22), the oscillation frequencies change within wide limits with a change in the
wavevector direction. Therefore, as a rule, there is no necessity to take into account the corrections to
the law of wave dispersion connected with the thermal motion of particles.

High-frequency oscillations are described by the linearized hydrodynamical equations

d
= dne+ div(ng + dn.)v. =0

f € e

—v.=——E——[v.H 1.74
(9tv m c[v ] ( )
E=_V¢el

as in the case of an isotropic plasma. Here the electron non-linearities are omitted which have growth
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rates, as in the case of an isotropic plasma, which have an additional small factor «k?r%. However,
other processes, for example the decay processes inside the lower oscillation branch, can certamly not
always be neglected. Besides, in (1.7.4) we neglect the high-frequency wave plasma entrainment, i.e.
non-linear terms which incorporate the velocity of the slow motions. In accordance with the general
results of chapter 1, they make an essential contribution, when the law of wave dispersion does not
depend on the density (e.g., for a weak magnetic field w, > wu, @ = wy|cos @)). In these cases the
equations become more complicated although the general scheme remains the same. Appropriate
calculations were carried out in a paper by B.I. Sturman [10].

Dynamical equations describing the interaction between oscillations and low-frequency motions have
the simplest form in the k-representation. We will confine ourselves to the investigation of the
analogues of (1.6.21), since in the coordinate representation the complicated description is not justified
by some interesting physical applications. The region of frequencies close to lower-hybrid one wy is an
exception. It will be analysed separately.

Now let us change to the canonical variables a, introduced in section 1.3. Then it is possible to obtain
the analogue of (1.6.6) from the system (1.7.5):

d . Wil — wi
( +1w,, ‘=——J" kl =

" 5| (kuk,) dn,c a,,l ~8(k — ky — &) dk; dre . (1.7.5)

It should be noted that the superscripts + belong to the upper and lower oscillation branches,
respectively, and the notation introduced in section 1.3 is used. When deriving (1.7.5), we omitted the
terms containing the small frequency change during the interaction wy — wy < wy.

Derivation of the equation describing the plasma density variation affected by ponderomotive forces
is more complicated, as compared to the previous section, due to the necessity to take into account the
scattering by electrons.

_Let us divide the electron distribution function f. into quickly oscillating and slowly oscillating parts
(f and f respectively). Analogously, for an electric potential ¢ = .+ ¢; E = —V¢ we have

i L @0)f - wnlenlf+ = Loy =0 176)

—Z+(vV)f wH[vh]f+—V' "’:"’:—%wg. (1.7.7)

A line above the terms on the right-hand side of (1.7.7) denotes the averaging over time, and the term
itself describes the action of ponderomotive forces.
The ion distribution function f; is described by an analogous equation

o O

—+(vV)f+(wH,[vh]——V )av =0, (1.7.8)

The linear equations (1.7.6)—(1.7.8) are easily integrated (see [1, 2]). Assuming kry <1 (ry is the Larmor
radius), it is possible to obtain, as a result of some cumbersome though simple, calculations

Snm = Gm(ﬁm"o/T (1.79)
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Here the Green function G,y is prescribed, as previously, by the formula (1.6.11), Gyg = €./¢ — 1 where
by £ is meant the longitudinal part of the dielectric constant, and the high-frequency potential has a
more complicated structure than in an isotropic plasma,

Te (klukz)
¢ =_faza:* 6 _ _ * x
ke " alaq: kfrf)wl (g q1 42) dg, dq, ag g
(1.7.10
kol? |wi- o0l !
= (k, w); K= 2
Y o P R

If the ions are not magnetized, kv, > wy;, the Green function coincides with (1.6.12). In the opposite
limiting case and in a non-isothermal plasma Gy, has two poles corresponding to the two low-frequency
eigen oscillations:

0. = %[wfﬁ + kel {(wp + 2P - dwik*c?) )

(1.7.11)

Gxﬂ -----------

If T.~ T, we may use again (1.6.12) assuming the ion motion to be one-dimensional.

At very nearly transverse propagation of oscillations, the interaction between oscillations and
ion-cyclotron waves can be significant. It is not difficult to write the appropriate expression for G,,,,
because the expression for a dielectric constant in this case is presented in many books (see, for
example, [1,2]). It should be only noted that for ion-cyclotron waves we can also introduce canonical
variables [10] and describe their interaction within the framework of the above-mentioned formalism.

For nearly transverse propagation, the induced scattering by electrons becomes significant, too. In
this case, for non-magnetized ions the expression generalizing (1.6.12) is obtained:

T.L.L;
Gro = —
. TeLi + ELe

(1.7.12)
L= J’ kv, fdv, I (kv) fo do .

*v=w’ Y ke

When the oscillation frequency approaches the lower hybrid one, it is important to take into account
the ion motion, and the system (1.7.4) must be supplemented by the equations

d
_=_'E=__V(pe, b_tsni""divngvi:o
(1.7.13)
Ap. = 4dme(dn. - dn;).
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In the linear approximation the equations (1.7.13), (1.7.4) describe oscillations with a dispersion law

whw?, M M
@i = (14005 0 —) = ot (1+c0 6 —) (17.14)
w,t oy m m

which pass to the branch w™, when cos @ >Vm/M.
It is not difficult to establish that in this case the connection between the canonical variables a, and
the density variation dn; takes the form

L 3{—————2""'"("’% Fon)dn (1.7.15)
Wy W Ry

The equation (1.7.5) retains its form, but, using the condition cos @ <Vm/M, it can be greatly
simplified:

J . i wzuk, on,
_+ [ pp—— —_— -— — —_
( uu,) Ay 2J 7 ,2,)k (kuy,) ay, 8(k — k;— x)dk, dx

ot
o2 (17.16)
U =1 kza‘),H [kh]

and the connection 3n, and a, is given by the expression

SNk w3 ko kyuy,

= G @ Y A - ol
no * wit oh’ ki2nT G404, 8(q1+ 42~ q) dg1 dgo. (1.7.17)

In this case G,, is determined by the expression (1.7.12).

The relations (1.7.15)-(1.7.17) involve a full description of plasma turbulence with a frequency close
to w.n; however, they are rather complicated. On the other hand, when cos @ <V m/M, the dispersion
law of the oscillations contains a high constant frequency wyy, that allows the analogue of (1.6.6) to be
obtained by averaging over the high frequency. However, it will be more illustrative to obtain it directly
from the hydrodynamics equation, and not by the simplification of (1.7.16). Let us introduce a positive
frequency part of the electric potential

E =3(V¢ exp(—iw ut) +c.c.)

and, taking into account that for such small frequencies the electron velocity is determined by their drift
in the electric field

v = c[VyH|/H?
we obtain

. oy M 32¢ .
v? (u//, - T;;;;) =4medivdnv. (1.7.18)



V.E. Zakharov et al., Hamiltonian approach to the description of non-linear plasma phenomena 327

For the angles cos @ <V m/M, when the angular dispersion becomes small, it is necessary to account
for thermal dispersion. Then the dispersion equation takes the form (see, for example, [1, 2])

w?> = win(l+3cos? @ M/m + 3k’R?)

k2R2= {3/{2712) Te/Tiy wH>wp (1719)
KraG+3TIT.), ou<o,.

Taking into account the thermal dispersion in (1.7.18) is carried out in the same manner as for Langmuir

oscillations, we obtain as a result,

M &
V2(iy, + 1R V2y) - %; a—z‘f = dmedivony. (1.7.20)

Slow motions of electrons along a magnetic field are caused by the ponderomotive force

—_ ie d d
f=@V)o,=———[VWYVy*.=—¢.
Mwiiw y 0z 0z
It is evident that, as in an isotropic plasma, it is potential.
Now let us consider a static approximation (see section 1.6), when the distribution of electrons and
ions can be considered as Boltzmannian. Then 8n is simply connected with ¢

on=-ed/(T.+T).
Finally we obtain

R2 WLH M e2w2
2 {: —V2 )"_—Az - :
v ("!" TowmTy v 2 m v 2moy(T. + T) (0} + oh)

div([Vy Vy*].[A Vy]) =0.
(1.7.21)

. The properties of this equation, the conditions of its applicability and physical situations described by it
are discussed in detail in [10], for example.

2. Decay and modulational instabilities
2.0. Introduction

The non-linear equations describing wave interactions which were obtained in chapter 1 are very
complicated. The simplest problem which can be solved using them is the problem of a monochromatic
wave instability. Its solution allows the characteristic values of non-linear interaction times and scales of
exciting oscillations to be obtained. On the one hand, the description of this instability within the
framework of the equations for the normal amplitudes substantially simplifies calculations, because the
solution of a linear problem in these variables is trivial. On the other hand, by virtue of the fact that all
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physical information is contained only in specific expressions for the matrix elements and dispersion
laws, it is sufficient to find only once the connection between them and the instability parameters. For
instance, the instability growth rates happen to be proportional to the value of matrix elements, and,
therefore, tables 1.2 and 1.3 presented in chapter 1 can serve, in addition, as a table of the growth rates
of various decay processes.

As far as we know, the decay processes are developed in the regions near the surfaces in k-space, on
which the decay conditions, i.e. the laws of conservation of energy-momentum for waves, are fulfilled.
The width of these regions is defined by the wave amplitude. It is evident that the concept of waves as
interacting quasi-particles, i.e. the concept of decay processes as well are valid only until the instability
growth rate exceeds the minimum frequency of the interacting waves. In the opposite case there arises
the intersection of decay regions, and complex modified instabilities occur.

The type of these instabilities essentially depends on the structure of the matrix elements. In this
chapter they are investigated on the basis of the interaction of high-frequency waves with sound. A very
important problem of the instability of a high-amplitude Langmuir wave is also investigated in detail.
Instabilities arising under the action of a homogeneous high-frequency external field on a plasma, or the
so-called parametric instabilities, are considered in a separate section.

In a homogeneous plasma the threshold for the decay instabilities is defined by a linear damping of
the excited oscillations, i.e., the energy flux generated by pumping must be compensated by its
dissipation.

In an inhomogeneous plasma the oscillations change their wavevector and get out of resonance with
the pumping. Due to the narrowness of the resonance region, it is the energy carrying-out from this
region, that defines the thresholds of the decay instabilities in a lot of experiments. Therefore in
concluding this chapter the authors analyse the effect of inhomogeneities on decay instabilities. It
should be noted that there are many questions of importance still unclarified, therefore we tried to
describe a physical picture of the phenomenon in the simplest manner and have obtained an expression
for the threshold via simple estimates.

2.1. Decay instabilities

Let us consider the problem of the stability of monochromatic waves with a small amplitude in the
medium described by a three-wave interaction Hamiltonian (1.1.19) where only those terms are
appreciable which do not contain fast time oscillations. If we restrict ourselves to the case of waves with
a positive energy, the interaction Hamiltonian is of the form

#O = j (Vi@ nan+c.c} (k - ki — k) dk dk, dk, @.1.1)

and the interacting oscillations are observed near the surface
Wy = Wy, + Wy, (2.12)

k=ki+ks. 2.1.3)
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The equations of motion corresponding to the Hamiltonian (2.1.1) are of the form
3a,,/3t+ Yilx = - 8(%0 + %‘3))/8a:

= =ifonth + [ [ Vi an, 00,505 = ki~ ko) + 2V Eana 05800~ k = k)] iy ).
2.1.4)

A damping of the oscillations with a rate 7, is phenomenologically introduced. In (2.1.4) the
monochromatic wave

a = aod(k — ko) exp{—iw(ko) 1},  ao= (2m)?,

is an approximate solution of (2.1.4). The coefficient (277)*? is chosen so that the energy density would
be in the form w,a3d. Since Va, enters all the results, interesting from a physical point of view, in what
follows the coefficients (277)** will be omitted as in the expression for matrix elements and for
monochromatic waves. It is seen from (2.1.4) that a monochromatic wave can interact with a small
amplitude wave occurring very close to the surfaces

Wiy = Wp + W go—p (215)
Why= Wy~ Wgy—kg « (2.1.6)
If these surfaces are far from one another, both these processes can be considered separately.
Conserving the terms corresponding to the process (2.1.5) in the equation for small amplitude waves, we

obtain

. . * * M

Cr + 7,,C,‘ =-1 Vhok, ko—k aocko_k exp(—l All) t)

. R 74 ] .

Cio-x T Y-k Chp~x — 1 Vkok, ko—k aoCt exp(—l Aw t)

Aw =Wy~ 0 — Org-x, G = ax expliant).
These equations have solutions of the form
G =coexp(-iAw2t—iwet), Crix~explidw2t—iwt).
In order to avoid complicated formulae, let us consider firstly the case y; = y4-x = 0. Then
o= ViA0P-73;  ¥3=|Viek ro-r o 2.1.7)
Thus, the instability with the maximum growth rate yma.x = yo proportional to the oscillation amplitude
develops near the surface (2.1.5). The condition Aw = 0 can be considered as a law of conservation of

energy for interacting waves, and the instability as a process of the decay of the wave a,, into a, and
ax,-x- Therefore the instability (2.1.7) received the name “decay instability”. The waves with frequen-



330 V.E. Zakharov et al., Hamiltonian approach 1o the description of non-linear plasma phenomena

cies wy,, @y and wg-, may belong to different parts of a spectrum, and, nevertheless, the way of
considering the instabilities and the resulting formulae do not alter.

The domain of the interaction near the decay surface Aw =2y, can be estimated from the
uncertainty relation. The wave frequency which increases with the growth rate y, is determined
accurately to within y,.

The decay instability was first obtained as early as 1962 by V.N. Oraevsky and R.Z. Sagdeev [13] on
the example of the decay of a Langmur oscillation into Langmuir and ion-sound oscillations. From
(2.1.7) it is seen that the maximum growth rate of the decay instability is universally connected with the
value of the matrix interaction element and the decaying wave energy & (|aof> = &/w; ). Therefore, the
table of matrix elements for different type interactions which is presented in chapter 1 can also serve as
a table of growth rates of different decay instabilities.

The decay instability has a threshold associated with wave damping. Assuming for simplicity that
Aw =0, we obtain

W = i[_%(% = Vi)t \/%(‘Yk + Yio-1)? — ¥d) (2.1.8)

and for the threshold value yo = | Vi, ko-x|* |@0/* We have

7% = Y&Y ko-k -

In a plasma with a sufficiently high ion temperature for decay processes involving high-frequency waves
and sound the situation is typical when y, <y,<',, where vy, and vy, are the damping rates of the
high-frequency and the sound wave, respectively. In this case it follows from (2.1.8) that for the
instability growth rate we have

Y~ 7807 (2.1.9)

The condition vy, > y, is the condition of the applicability of the dynamical equations which are valid in
an isothermal plasma also. It will readily be seen that (1.6.21) has a solution in the form of a
monochromatic wave

Qi = 4o exp(—ia’),‘ot); (6*0 = Wy + Tkokokokolaolz .

After examining the latter for stability, we find that unsteady oscillations increase with a growth rate

Wy — Wi,
¥ = Tulao* = T_(;I*L;k_‘i) o
0

T ixo = Im T spquny (2.1.10)

2

w Wy — Wy
Tuao=~Tias = 7 Im G ().
Mo = T ko = T Nk~ &

As seen from the plot Im G(¢) presented in fig. 1.2, as a result of the instability only oscillations with
|k| < |ko| are excited. In a non-isothermal plasma T 4, has a sharp maximum when w,—« = |k — ko|c, (see
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the expression for Im G(¢) in the hydrodynamical limit). It is evident that this relation is identical to the
decay conditions (2.1.5). In an isothermal plasma the maximum of the instability growth rate is achieved
when w,,— w, = 3|k — kolc,. This relation is the analogue of the decay conditions for an isothermal
plasma. Here the factor 3 shows that together with the induced ion scattering, the decay involving
strongly damped ion-sound oscillations makes a great contribution.

Now let us consider a similar problem of a spatial increase of oscillations as a result of a decay
instability. We use the equations of the envelope derived in chapter 1. Assume for simplicity that
damping does not take place and the decay conditions for frequencies are valid. Linearizing the
equation (1.5.5) against the background of a uniform pumping wave we obtain

0a 4,/ 0t + uy day,/dx = iyeay, exp(i Ak x)
004,/ 3t + Uy 8as,/ 9x = iyeay, exp(i Ak x) (2.1.11)
Ak = ko—kl—kz; 7(2)= lvkoklkzakt)Iz'

Now let us consider a stationary problem of a spatial distribution of oscillations. The solution of (2.1.11)
is of the form

Ak * Ak
a,,l~exp<17x+u<x); a,‘2~exp(—17x+mx>.

For k we obtain an equation similar to (2.1.7),
k%= (AkY/4 =y uru, . (2.1.12)

It is seen that for waves propagating in one direction, u;u, >0, there exists a spatial instability: fixing
the oscillation amplitudes at some point, we see that they exponentially increase as we move along x.
The instability fails if

AkY >4dy§/uu, . (2.1.13)

If three-wave processes are not permissible by conservation laws, four-wave processes become basic.
As a result of monochromatic-wave instabilities, those oscillations are excited whose wavevectors are
near the surface

2ko=k1+k2, 2(u,,0=w,,1+wk2. (2114)

As mentioned above, a non-linear wave medium is described by (1.4.8) in the absence of three-wave
processes. This equation has the exact solution,

a(k) = Qg exp{i(l‘;(ko) t} 6(k - ko)

where

@ xy= (ko) t T iguororoldol” -
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Linearizing (1.4.8) against the background of this solution and further doing as in the case of decays, we
find the instability growth rate. If damping is neglected, it is equal to

72 = [Tltokokolrolag’]2 - %(Aw)z
(2.1.15)

Aw = 2(6"0_ (l‘;kl - (5*2 .

Here all the terms are renormalized, taking into account non-linearities
~ — 2
@y ;= Wiy, T 2Tk1,zkok1,z|a0| .

The maximum growth rate is obtained when Aw =0 and proportional to |ao*: Ymax = T kokokiks @o]>-
Therefore the process (2.1.14) is called an ordinary second-order decay instability.

For satisfying the decay conditions (2.1.4), it is necessary that the dispersion law should be convex
0y <0. However, when k,, k,—> k;, we have Aw—0, as the maximum growth rate remains finite.
Therefore, the process (2.1.4) occurring with a small change in k: 2w, = @rgre T ©ro-ucs & < ko is Of
great interest.

In the simplest case when the Hamiltonian coefficients are continuous as k - k, (2.1.15) gives

w = (kv) =V T|alA +54%. (2.1.16)

Here T = T yoropores 4 = (8%w/ ko kg )iatcs. For an isotropic medium A = L(@) k2, where @ is the angle
between x and k

L= w}cos’ @+ (wi/ke)sin® O .
Then the instability criterion takes the form
L(®)T<0.

This condition is often called the Lighthill criterion [14].

As seen from (2.1.16), increasing perturbations propagate with a group velocity close to the primary
wave velocity; therefore they are absolute perturbations in that reference system where the wave rests.
As distinguished from the first-order decay instability, it results in a group of modulations fixed with
respect to the primary wave. The group velocity of the perturbations, is dw/dk ~ v, + sk* 3*w/ k>, and,
consequently, an absolute instability character is retained

klko~ (vlw)'>.

When "<0, the function (@) is alternating and therefore instability exists for any sign of T.
Along each direction the instability region is bounded by the values x*< 4|Ta3/L(@)|, the maximum
growth rate equal to Ta3 being achieved when «®=[2Ta%/L(8)|. For the angle tan’ @ = w"k/v,,,
L(@) =0, and along this direction the instability region is bounded, and with increasing « it transforms
to a second-order decay instability.

The above-considered instability shows itself as an increase of long-wave modulations of an initial
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monochromatic wave, and therefore it is very often called modulational. It should be noted that as a
result of the development of the modulational instability wave self-focusing takes place, and therefore
this instability also is called self-focused. A non-linear stage of this instability will be analysed in
following sections.

In conclusion it should be noted that in the cases when the matrix elements are not continuous if
x>0, it can be shown that the above-mentioned formula (2.1.11) holds, however the coefficient T
becomes dependent on the angle 6.

Thus, the canonical equations allow the decay instabilities to be systemized and described, their
growth rates readily being expressed through matrix interaction elements.

2.2. Modified decay instabilities

As mentioned above, an independent consideration of different decay processes is true only at not
too great initial wave amplitudes y < w,. In the opposite case the resonance zones intersect, and there
appear different combined instabilities the properties of which depend on an interaction type.

Now let us consider as an example of this effect the interaction of a narrow high- frequency oscillation
packet with sound [11]. In this case two types of processes take place: the decay of a high-frequency
wave into a high-frequency wave and a sound one

ko = wko—x + .Q,, (2.21)
and a scattering of high-frequency waves on one another,
2w,,0 = W ko+a + @ go—se - (222)

It is evident that the distance between the decay surfaces is £2,L«?. In view of the smallness of the
sound frequency, even if « ~ ko, the condition y > (), is fulfilled in the majority of experimental cases.
Besides, even at not too great oscillation intensities the growth rate becomes larger than the sound
frequency for the processes running with a small variation in a high-frequency wave number.

Interaction between high-frequency waves and sound are described by (1.5.15), (1.5.16) derived in
chapter 1. Consider them in the simplified variant neglecting the intrinsic non-linearity of the
high-frequency waves (assuming T = 0) and the entrainment effect ko, < (dw/dp) dp. In this case we
have

, ay | e " azw o o
+ O vig+ 2L
Vg = 0/ ok = o' kolky 2.2.3)

2

J ow
—38p—c24 8p=po— APl
R oP e e o |l

The system (2.2.3) has a trivial exact solution ¢ = ay.
Linearizing (1.5.15)-(1.5.16) against the background of a monochromatic wave and assuming the
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perturbations to be proportional to exp(—i{2¢ + ipr) we obtain the dispersion equation
{(2— pu cos O —3L%6) p*} (2* - 2 p®) = L(O) p*aiB’po
(22.4)
B = dw/dp.
Here a, is the initial wave amplitude, cos @ = pko/pk,
L(B)= 0" cos® O + (ulko)sin® @;  u= dw/dk.

Assuming the wave amplitude sufficiently small, let us first consider the first-order decay instability.
As far as p is small when compared with ko, the equation of the decay surface can be re-written in the
form

—pucos @ +3L(0)p*+ pc,=0.

Near this surface the equation (2.2.4) can be simplified as:

Baippo

(02— pu cos @ +3L(0) p>) (2 — pc,) = —r—

Now the dispersion relation for the decay instability can be obtained,

*a} — s_lL 2, 2
2 =3(pu cos O + pc,—3Lp*) = \/:3 aCoPPo+(ﬁtcos@ pe.—3Lp

coinciding with the expressions (2.1.7) with taken into account the matrix element (1.5.14). The
maximum instability growth rate is achieved on the surface (2.2.1) and equals

Ya = Bao vV Poo
c

s

which also coincides with (2.1.7).
In order to obtain the second-order decay instability, it is assumed that {2 = pu cos 6. Then (2.2.4) is
reduced to the form

(02 - pucos @Y - 1L%p* = - T.ga3Lp?
(2.2.5)
2
Ten= 2 ﬁzpo 20"
c:—u“cos* @

This expression is equivalent to (2.1.16) but the difference is that the non-linearity resulting from the
interaction with sound is anisotropic. It is obvious that as the high-frequency wave interacts with sound
there arise spontaneous modulations in a transverse direction. The maximum instability growth rate
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y = T.ga} is achieved at the angles determined by the condition
%LPZ = Teﬁa(2) .
When deriving (2.2.5), (2.2.4) the following conditions are assumed to be fulfilled:
Lp*>y; y < pcs . (2.2.6)
In the opposite case the separation of decay instabilities of the second order becomes impossible.
Combined instabilities will be considered in the most interesting case u > ¢, when the effect of
low-frequency waves is significant only for almost transverse pertubations. Thus it can be assumed that
L = ufko. Now let us introduce the notation: g = B°p,/cZ. Then the following cases become possible:
1. qailo,<cilu*.
In this case for p/ko> ((c,/u)q ad/wa,)"? first-order decay instability takes place. For smaller p the first
of the conditions (2.2.6) is broken, and for p/k,<((c,/u)q ad/ws,)"” the term Lp? of (2.2.4) can be
neglected, and this equation can be simplified:
(02— pu cos®* O (2 - pc,) = —(ulko) p*c.qaj . 2.2.7)
The strongest instability takes place on the cone cos @ = ¢,/u where
Im £2 = 3V3 p((u/ko) c.qad)” . (2.2.8)

2. clu*<qgaj<cu.

Now for p/ko > (u/c.)q ad/w4, the decay instability is again realized. For smaller p the second of the
conditions (2.2.6) fails, and then (2.2.4) is of the form

0% — pu cos B + (u/2ko) p*) = p*ciqa}. 2.2.9)
The instability has a maximum on the surface cos & = —3p/k, where
Im 2 = $V3(p*c2qad)'”. (22.10)

The instability (2.2.10) is called the modified decay instability. When p/ko ~ ((c2/u?)qad/w )" its
growth rate is comparable with Lp® For smaller p (2.2.9) should be replaced by

%02 — pu cos O = (u/ko) p*c2qaj. (2.2.11)
The maximum growth rate

Im 2 = p((u/ko)cZqad)" (2.2.12)
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is attained when @ = /2.
3. qablwg>clu.

This case differs from the preceding one in that there is no domain of first-order decay instability, and
the modified instability extends to p ~ ko. The maximum growth rate of the modified instability is
expressed by

y ~ (k3c2qad)"”. (2.2.13)

It should be noted that all the instabilities, except for the modulational ones are convective in the
reference frame of the HF wave. Their group velocities of the perturbations df2/dp substantially differ
from those of the primary waves. For the modulational instability the group velocity of the pertur-
bations coincides with the group velocity of the primary waves with an accuracy of non-linear terms.
Thus, modulational instabilities are not so sensitive to plasma inhomogeneities or to the coherence of
the primary wave.

Also it should be noted that for the instabilities (2.2.12), (2.2.8) and (2.2.5) for small wave numbers
the growth rate is proportional to p. With the help of the initial dispersion relation (2.2.3) it is not
difficult to see that this corresponds to the neglect of the term Lp®.

The neglect of the diffraction term is the transition to the non-linear geometric optics approximation,
and therefore the instabilities can be obtained within the framework of the Vedenov—Rudakov equation
(see chapter 3). The modified decay instability as well as the maximum modulational instability growth
rate can be obtained taking into account diffraction effects.

2.3. Instability of Langmuir waves

The first section of this chapter deals with the first- and second-order decay instabilities of waves
which can be described within the framework of a unified formalism. To describe modified decay
instabilities, in the case when decay zones begin to intersect, a specific form of matrix elements is
significant. In the previous section we investigated these instabilities on the basis of HF wave interaction
with a long-wave sound. In this section we will consider a very important problem of the stability of
Langmuir waves with finite amplitudes. On the one hand, in specific cases it is reduced to the problems
considered above. On the other hand, within the framework of specific equations, we can study the
problem in more detail, and then the role of the above-mentioned approximations becomes more
evident.

Consider a stationary Langmuir wave,

l,bo = (A/ko) exp(—iw ol + lkor), on=0.

Let us linearize the basic system of dynamical equations (1.6.6)—(1.6.11) on the basis of this solution and
assume that

3 ~ exp(—1wy,t + ikor + ikr —i(2t)

Su* ~ exp(—ifdt +ir + iwot — ikor) .
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For {2 the following dispersion relation is obtained:

2 2
L . cJuL./ AV Y N K X)
4T k lk0+’?l '(I(l)ko+,‘ - wko) kolko K ‘a)ko— F12 - wko)

It should be noted that here w, is counted from the plasma frequency w, = 3w,krb, W = A%87 is the
oscillation density, and G, is the Green function introduced in the first chapter.

The instability character significantly depends on the wave amplitude and the wavevector as well as
on the temperature relation between ions and electrons. The situations under consideration are tightly
connected with the simplifications of G,, analysed in the first chapter.

Let us consider the case of an isothermal plasma and not too high amplitudes. In this case the wave
instability results from its induced scattering by ions. In the dispersion equation (2.3.1) the second term
in square brackets plays the main role, and in the argument of the Green function {2 can be changed to
Wk — Wi . Since the width of the Green function is of the order of the sound damping rate y;, such a
procedure is valid as long as the instability growth rate y <1y,

The equation (2.3.1) takes the form

&K (ko, ko— K')2
4T n2 k3ko— ]

N+ Wiy — Wiy *, WL wr— K 0.

For the growth rate value the following expression is correct:

wg!kO) kO T Wio—n 2.3.2
Y = WI G W) . ( )

4noT7€ Iko— K'z

Apart from the notation, this expression coincides with that considered in section 2.1 and is obtained
directly from eq. (1.6.21).
A hydrodynamical approximation for the Green function (1.6.16) can be used in a non-isothermal

plasma.
In this case eq. (2.3.1) takes the form
149 W % ﬂ[ (Ko, ko + K )? N (kog, kg— )’ ]—O
4 noT{)z'-KzCZM k%'k0+ K,2(_-Q+a)ko+,‘—wko) kg,ko"' KI2(0+wko_K-wko) )
(2.3.3)

When the wave amplitudes are small and krp>3Vm/M, omitting the second term in the square
brackets and assuming that 2 = {2,, (2.3.3) can be simplified to the form

a)px rDm w

- + Wi
@-0)@+ ©rme~ @)+ 8 «c, MnoT

=0. 2.3.4)

This is a partial case of eq. (2.2.4) describing the first-order decay instability. Its maximum growth
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\/_ (2.3.5)

It is achieved for backscattering that k = 2x,. When « < ko, eq. (2.3.1) in the hydrodynamic limit passes
to (2.2.4) which in the notation of the present section is as follows:

rate is expressed by

Y=

2\/2

[(2 = 3vrrp(iko))? — 9wl (krp )| (2% — k%c?) = 3w? nW; K

0

202 (krp)? . (2.3.6)

In accordance with the results of the previous section, when the values of « are rather great, but x < ko,
we have from (2.3.6) the decay instability (2.3.5) and the modulational instability with maximum growth
rate

y=w,Wn,T 237

which is achieved when (krp)* ~ W/n,T.
When

< k WM 1
K< K™ Y
Onon kofo

we have the modified instabilities considered above. When W > n0T>(korD)\/m/M the modified
decay region extends up to k ~ ko, and for its growth rate we have, analogously to (2.2.13),
W k3"
~ AMA I 2.3.8
It should be noted that the plasma temperature does not figure in this formula. It is also valid when
T~ T..

The growth rate (2.3.8) is achieved when k ~ 2k,. The instability retains its character up to the
intensities W/noT ~ (M/m)(krp)*. With great intensities the instability is developed with a growth rate
of the order (2.3.8), but non-localized in the vicinity of the surface w, = wy,. The growth rate of this
instability is almost constant within the region « = k,. It is important that for such great amplitudes the
instability resulting in the excitation of scales small compared with the initial wavelength possesses the
greatest growth rate (as will be shown below).

The long Langmuir wave instability krp < <Wm/M depends qualitatively slightly on the temperature
ratio of electrons and ions. For small-amplitude waves W/n,T < (krp)* a static approximation for the
Green function (1.6.15) may be used. In this case a modulational-type instability takes place

y = V3gwik®ri WineT — Sw,(xkrp)
2.39)
q=(Ti+T.)/T.
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the maximum of which, Ypax ~ 2gw, W/noT is achieved when (krp)* = § W/n,T. With increasing W/n,T,
the wavevector of growing perturbances becomes greater than ko, and for intensities W/noT > k§r, it
can be assumed that k, = 0. Within a hydrodynamical limit the equation (2.3.1) is simplified to the form

m
(2% - 2P (-2 + 02k rh) + o i(krp)* Y T

cos’@ =0. (2.3.10)

Here 6 is the angle between the wavevector and the electric field of the initial Langmuir wave. It is
obvious that when the condition

w
T cos® @ > (krp)? (2.3.11)

ho

is satisfied, the instability takes place.

For waves of not too great amplitude W/n,T <m/M, {2 may be neglected when compared with the
sound frequency. In fact, in this case a static limit of G, may be used.

As is seen, there is the instability with the growth rate

y = w,V3(krp)(WineT) cos® @ — J(xrp)* . (2.3.12)

The maximum growth rate y=j3w,W/n,T is achieved when (xrp)* =§W/noT, cos’ @ = 1. For large
amplitudes the phase velocity of the perturbations becomes more than the sound velocity, and (2.3.10) is
simplified to the form

D27 - S03(krp)*) = o i(krp)* m W cos’ . (2.3.13)
M noT

When « are small, we have

1/4

3 W
¥ = w(Krp) (Zn_f% cos? @) . (2.3.14)
0

When krp ~ ((m/M)(W/n,T) cos® @)', the growth rate achieves the value

W 1/2
Y=wy (——T cos® 0) (2.3.15)

Ro

which is not practically varied up to («krp)’~ (W/neT)cos* @ and then, on the stability boundary
(2.3.11), drops to zero. "

In the literature devoted to Langmuir turbulence, there exists a great terminological muddle. For
example, the instability (2.3.7), (2.3.9) as well as (2.3.12) and (2.3.14) are called modulational. By this is
meant that the instability (2.3.7), (2.3.9) results in an initial monochromatic wave amplitude modulation,
and (2.3.12) and (2.3.14) result in the appearance of the plasma density modulation. To distinguish them
(2.3.12) will be called a subsonic modulational instability (SMI-I), and (2.3.14) a supersonic modulational
instability (SMI-II).
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In conclusion, it is appropriate to present schematically the basic results of this section (fig. 2.1).
Illustrated in this figure are the maximum growth rate of the Langmuir wave instability dependent on its
amplitude and the wavevector, as well as the wavevector corresponding to this value of the growth rate.

When the amplitudes WinoT < kroVm/M are sufficiently small in the decay spectrum region
korn >3V m/M, the first-order decay instability (2.3.5) (region I) possesses the maximum growth rate.
With increasing intensity the region I turns into the modified decay (2.3.8) (region III). Within the
non-decay spectrum region at small intensities the modulational instability x <k, (2.3.9) (region II)
possesses the maximum growth rate. With increasing W/n,T it turns to the subsonic modulational
instability (2.3.12) of the Langmuir wave condensate with ko =0 (region IV). And, finally, at great
intensities a supersonic instability of the Langmuir condensate (2.3.14) (region V) is of great importance.

2.4. Parametric instabilities

Among various decay instabilities a special class stands out: the instabilities of a homogeneous
external field which are often called parametric instabilities. As a rule, the problems of exciting
potential plasma oscillations by electromagnetic waves belong to this class. It has been known that when
a homogeneous high-frequency field is superimposed on an electronic plasma, the oscillations are not
excited {15]. Only a uniform electron motion in an external field arises. Therefore, the electromagnetic
wave decay into two high-frequency potential oscillations is possible only with taking into account the
finiteness of the electromagnetic wave number (see table 1.2).

Parametric instabilities of a homogeneous field in a plasma arise when one of the excited oscillations
is a low-frequency one, e.g., a sound oscillation involving ions. Thus, a parametric instability is an
example of the interaction of low- and high-frequency waves mentioned above.
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Fig. 2.1. Location of different instability types for the monochromatic Langmuir wave in an isotropic plasma. k is the wavevector corresponding to
maximum growth rate. I, first-order decay instability; II, modulational instability; III, modified decay; IV, subsonic modulational instability, V,
supersonic modulational instability.
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The linear theory of parametric instabilities is described in detail in the book by V.P. Silin [15];
therefore the principal object of this section is to demonstrate that parametric instabilities may be
investigated within the framework of a Hamiltonian formalism in a rather general form. Let a pair of
waves in the medium be excited —a high-frequency wave with the amplitude a, and a low-frequency
wave with the amplitude b,. Hamiltonian of the interaction with an external field (pumping) H, can be
obtained assuming in (1.4.12) one of the high-frequency amplitudes to be A exp(—iwp?):

X = Kot X, = f (nanat + Oubib?) dk + j {hViaa(b_y + b3) e~ +c.c.} dk. 2.4.1)

Here Vi = V_, o.x, h is the amplitude of the external field of frequency wo.

The term a,b; in the Hamiltonian should be retained only in the case when the instability growth
rates are comparable with the sound frequency. By virtue of the fact that (b_, + b}) ~ 8n,, it is shown in
(2.4.1) that the high-frequency wave interaction takes place via density fluctuation scattering. In the case
of the interaction with an electric field 2V, linearly depends on an electric field and therefore depends
on kE only, i.e. Vi = V_,. For example, for the decay into an electromagnetic wave and sound (see
table 1.2) we have

(@) [ E3 kE

Vi

The equations of motion, corresponding to (2.4.1) are:

day/ ot + iway = —ih Vi (b + b*) e i

(24.2)
obi/ 3t +i(hb, = —ih[Vie“"a, — V_aX, e 7],
A zeroth-order solution of (2.4.2) can be unsteady with respect to the oscillation growth,
b, by ~e7; g ~eTi@re0t g~ gilwome)
For the complex frequency w the following dispersion equation is obtained:
(- 82)(w?— 123) = —45h*VE, &= wo— ws. (24.3)

It should be noted that (2.3.6) is a partial case of (2.4.3) with & =3w,k?r}, therefore the above-
mentioned Langmuir wave instability with k,=0 is a partial, very special case of a parametric
instability.

If the external field is not too large 7V, < {2, (2.3.4) must describe two types of instabilities: first- and
second-order decay instabilities. The first-order decay instability possesses the maximum growth rate.
Its growth rate is maximal on the sphere

w0=w,‘+.(),‘ or "8k=(l)k_0)0=_-(2k
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and (2.4.3) in the vicinity of this surface is simplified to the form

w=0+iVh*Vi-1(6— ). (2.4.4)

As is seen from (2.4.2), the sum of the phases of the exciting waves has a well-defined magnitude (it is
equal to 7/2 on the decay surface). This phase correlation is conserved at some non-linear stage of the
instability development also, and is of importance when studying a super-threshold system behaviour
(see chapter 3). Within the other region of k-space there appears a second-order decay instability near
the surface

2(!)0 =t w- or 5,, =0,
In this case the equation (2.4.3) takes the form

2
+hV‘2*

= §2 .
0, %

(2.4.5)

The instability takes place when &, <0. The maximum growth rate y = 2h*V3/), is achieved when
& = —2h*V3%/0,. It is evident that these results are perfectly similar to those obtained in section 2.1,
and therefore parametric instabilities are a special case of decay ones. The instabilities (2.4.4) and (2.4.5)
were obtained independent of the works devoted to decay processes. Therefore (2.4.4) is often called a
periodic instability, and (2.4.5) an aperiodic, or two-stream one.

Due to the simplicity of the dispersion equation (2.4.3), the investigation of combined instabilities
when hV; > () is simplified. We have

0? =382+ 03) = V22 - 82 - A5, h2 V3 .

It is evident that, when hV, is great, aperiodic and periodic oscillation branches are observed as well.
It should be noted that if the external field frequency is less than the plasma one, only an aperiodic
instability can be developed.
Now let us consider the problem of Langmuir and ion-sound wave excitation. In this case the
dispersion equation takes the form

;- 83 Ej
w*=300%+63)* \ﬁ ) ~ 40380 05> O
4 8mne T

cos @ = kEo/kEy; & = wo(4 —3k%r%); A = (wo— wp)w, .
Firstly let us consider the periodic instability & >0. When E3/8wn,T <kr,Vm/M, we have an
ordinary decay instability of an electromagnetic wave with maximum growth rate

2 1/2

E} )
87moTcos @)

y= (wpﬂs

In the opposite limiting case we have E3/8mnoT > kroV m/M. When &, is not so great, we have for the
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instability growth rate

O E?
=02 et 24.6
Y % 2 @p 8mn, T ( )

It achieves its maximum value

2 1/4

cos? @) 2.4.7)

m 0
‘max =~ —A4 2
Ymax = @ (M 167mT

when
krp=34; S =3w,4; cos’O=1.
This expression holds true if the following conditions are fulfilled:

E? E3
S, ——2—> 03, 0
" Y6mnT X * 16T

>63. (2.4.8)

The first condition is valid for not too small densities of the external field E3/16mn,T > m/M. The
second condition is valid for not too great mismatches 4 only: 4% <(E}/167n,T)m/M. With increasing
mismatch the expression (2.4.6) for the growth rate holds true, and its maximum is determined from the
condition w,22E3/87n,T ~ 8;. For the maximum growth rate the following expression is valid:

1/3

m ., E3\" (m E
e = 0 (= K272 ) = (—— A) . 249
Ymax = @p (M "oemmaT)  "\M8mnoT (2.4.9)

This expression holds as long as the exciting oscillations do not fall within the strong Landau damping
region. This takes place for a Maxwell distribution function when 4 = 0.3. In this case the characteristic
growth rate width is about &k/ko~ y/w«,, Where k, is the characteristic wavevector of the exciting
oscillations defined by the condition 4 = 3(kerp)’. Figure 2.2 shows the maximum growth rate of a
periodic instability as a function of mismatch under the condition that we are within the modified decay
ins:ability region

2/87noT > koro Vm/M .

Now let an aperiodic instability be considered. When the external field intensities are small, (2.4.6) is
reduced to (2.4.5) and describes the second-order decay instability with growth rate

y = w,(E}/8mn,T). (2.4.10)
For large E3/8mn,T an aperiodic instability is investigated similar to a periodic one, and its maximum

growth rate coincides with (2.4.9) as to order of magnitude. Presented in fig. 2.3 is the wavevector
dependence of the parametric instability growth rate in the most interesting case of great intensities and
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Fig. 2.2. Maximum growth rate of periodical instability as a function Fig. 2.3. Growth rate of parametric instability for great intensities and
of mismatch 4 = (@ — wp )/ w,. mismatches as a function of the excitation wavenumber.

mismatches. It is evident that numerically the aperiodic instability growth rate occurs to be greater than
the periodic one.

It should be noted that (2.4.9) does not depend on temperature, and when vosc ~ Vpn (Vosc = €Eo/may) it
transforms to the well-known result by V.P. Silin [15] for a cold plasma. The maximum possible growth
rate of a parametric instability is expressed by

Ymax = “’pe(m/M)u3 .

In the present section the oscillation damping which defines the instability thresholds is ignored, but
in some cases it influences the growth rate structure. The detailed analysis of the dispersion equation
(2.4.3), taking into account dissipations, is presented in the book by V.P. Silin [15].

2.5. The effect of inhomogeneity on decay instabilities

In a real plasma the decay instability threshold is often determined not by the wave damping, but by
the plasma inhomogeneity or that of the initial wave. In these cases the wave interaction region is
restricted by the pump wave localization region or the scales on which the wave propagating in an
inhomogeneous plasma change their wavevector and go out of resonance.

The departure of waves from the interaction region is just the factor defining the instability
thresholds.

In the description of such effects the inhomogeneity scale is assumed large compared to the
wavelength. The interaction of three waves aq, a1, a, will be described using the envelope equation
generalizing the equations obtained in chapter 1: ‘

dao/dt + uy dae/dx +iwe(x) ap =iVaiai
30,/ dt + Uy 0az/0x +1 wax) a; = 1Vaeat 2.5.1)

da,/9t + u, da,/dx +1 wy(x) a, = iVaeas .
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Here V is the interaction matrix element V., in which the inhomogeneity effect can be neglected.
The frequencies w; in (2.5.1) correspond to the wavevectors k;(xo), w;(x, k;(xo)) taken at a point x,
where the decay conditions are fulfilled:

2 ki(x0)=0.

It is convenient to write down eq. (2.5.1) as follows. Let at a point x, the decay conditions for the
wave frequencies X; w;(ki(xo), xo) = 0 be valid. Then, since when propagating in an inhomogeneous
medium the wave frequency does not change, the decay conditions for the frequencies will be fulfilled
over the whole space.

Let us expand the frequencies in (2.5.1) in a series and choose the origin at x = xo. Then we have

o K(0) = w0, k(O)+ 2 5,

From the condition w(k, x) = constant it follows that
dw;/dx = —u; dk;/dx .

Substituting variables and assuming the pump wave amplitude prescribed, eq. (2.5.1) takes a more
conventional form:

da/dt+ u, da/dx = i yo(x) b* €'®

b/ ot + uz db/dx = i yo(x) a* e 25.2)

x2 !

- d _k 2
¢=7 5 kohi—k)=—x"

Here yo(x) = Vao(x) is the instability growth rate in a homogeneous medium. Now let us consider the
case when secondary waves propagate in one direction. Oscillations begin to increase on the instability
region boundary, and during the time of their prolongation they reach their final level. It can be
determined using a simple estimate. Let us consider the case of inhomogeneous pumping. Let the
instability be localized within a region of size L. Then, according to (2.1.12) the oscillations, after
passing the interaction region, will achieve the value

A=AoeXp{ }=Aoe'<.

(1 142)1/2

When the condition K> A (A is the Coulomb logarithm) is valid, the oscillation level is determined by
non-linear effects. Therefore the growth rate value o=V u,u,A/L is naturally called the threshold.

In the case when the threshold is defined by the inhomogeneity, the instability zone size can be
determined from the following considerations. Propagating in an inhomogeneous medium, the oscil-
lations change their wavevector, and the decay conditions are broken. The interaction region boundary
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is determined from (2.1.13)

2 d k'
P Ak =x—— (ko= ki = kg) =~
\/uluz dx 2
i.e., the instability region size is L ~ 4yo/V usu2k’, and for the amplification coefficient we have
4 2
K=—2-
Utk

which is in good agreement with the result K = my§/u,u-k’ obtained by an exact calculation.

Let us consider waves propagating in opposite directions and discuss first the uniform pumping wave
excitation in the linear inhomogeneity medium. In this case the solution (2.5.2) is expressed by parabolic
cylinder functions and has been investigated in [16, 17]. The instability is of a convective character, i.e.
the wave after passing the interaction region amplifies up to the finite value

A= Agexp(myd/uuk’) .

If the density profile is smooth, the instability becomes absolute (for a quadratic profile see [15,17]), i.e.
when the critical value is increased by pumping, there are no stationary solutions, and the oscillation
level is determined by non-linear effects. To understand the characteristic peculiarities of absolute
instabilities, let us consider the wave excitation within the layer. Let us consider the stationary solutions
of (2.5.2)

Uy daldx = iyeb*, Yo, O<x<l!

Yolx) = {0 _

2.5.
—Uy 0b/0x = i‘yoa*, ( 3)

Natural boundary conditions are that the amplitudes of entering into the layer are small, on the level
of thermal noises, and it can be assumed that a(0) =0, b(/) = 0. Then the solution (2.5.3) is

a(x)=sinkx;  b(x)=coskx.

This solution exists only when k2= y3/uju, = I"*(3m + m#)>. For such stationary solutions the energy
flow to the system from the pumping wave is compensated by the departure from the region of its
localization. The basic solution m =0 corresponds to the threshold pumping value, when y5>
suux(m?/1?) the noise level is restricted by non-linear effects. m =1,2,... correspond to stationary
solutions quickly oscillating in space, and therefore leading to a great energy departure from a layer.
Probably they have no particular physical sense, because they are unstable with respect to small
parameter changes.

An estimate of the inhomogeneity effect on the induced scattering by particles is of particular
interest. For correctness let us confine ourselves to the consideration of the electromagnetic wave
conversion to the Langmuir one by ions. In a homogeneous plasma the growth rate of this process is

¥ ~ Im G(wo; w') Yo




V.E. Zakharov et al., Hamiltonian approach to the description of non-linear plasma phenomena 347

where 7y, is the maximum growth rate. Propagating through the inhomogeneity, the oscillation changes
its wavevector, and Im G decreases. As was mentioned above, the width of Im G ~ kv 4,; therefore, in
order for the growth rate to be markedly changed, it is necessary to change the wavevector by the
magnitude of it itself. For Langmuir oscillations it takes place over the scale [~ L(krp)’; L™'=
dIn n(x)/dx. In so doing the oscillations increase by a factor exp(yL/vg,), as a result of instability (the
instability is convective), and the condition yL/u > A can be written down as a threshold.

So far we have ignored the wave damping. Taking this into account and transforming from
dissipationless thresholds to instability thresholds is not trivial. The point is that the dissipation changes
the interaction zone width, therefore the calculations become complicated (see review [15]), and it is not
expedient to do it in a general form.

It follows from the results described above that the instability thresholds are minimum for those
waves which group velocities tend to zero. In this case dk/dx transforms to infinity. If group velocities
do not vanish simultaneously, an anomalous instability threshold decrease does not take place, since
(dw/0k)dk/dx = — dw/dx. So, when an electromagnetic wave decays into a Langmuir wave and an ion
sound one, in a plasma there appears just such a situation. If the turning points coincide, the instability
thresholds really decrease. In this case the instabilities become absolute also for a non-linear density
profile. However, our quasi-classic description has not already been applicable. A detailed investigation
of the problems belonging to the class under consideration may be found in the review [15]. It should be
noted only that the situation with the coincidence of two turning points is not exceptional. This often
can be achieved by selecting a transverse value of the wavevector. Because a minimum threshold value
is of greatest interest, the consideration of such a situation is very important.

3. Statistical description of wave interactions
3.1. Introduction

In many physical situations the interaction of such a great number of monochromatic waves takes
place that it is necessary to describe these phenomena statistically. In this description the information on
interacting wave phases is lost and the wave field is described using the language of mean quadratic
amplitudes. These values can be determined as follows. Let the wave field characterized by the complex
amplitude a, be statically uniform. Then for the correlation function (a,a}) we have*

(akai'> = (277)3nk6k_k' . (31.1)

The value n, enters an infinite set of equations for correlation functions following from dynamical
equations for a,. The statistical description problem is a problem of obtaining a closed equation for ny.
Such an equation, if it can be obtained, is called a kinetic equation.

To derive a kinetic equation it is necessary to make some assumptions about the properties of higher
correlation functions. If the wave field is a Gaussian stochastic process, for the fourth correlation
function we have [3 to 5]

<a:a:1a k24 k3> = en k:(ﬁk—kzah—ka + 6k—k35k1—k2) . (312)

* The factor (27)® will be omitted together with (27)~>? in matrix elements of three-wave interaction and with 27y 2 in those of four-wave
interaction; the final results are the same.
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A similar property is fulfilled for even correlation functions of a higher order. Odd correlation
functions turn to zero. For the applicability of a kinetic equation it is necessary that the wave field be
close to Gaussian.

The Gaussian stochastic process (3.1.2) is compatible only with linear equations for a,(¢). Therefore
for the applicability of a kinetic equation the requirement of a small level of interacting wave
non-linearity is necessary that will be assumed below. Sufficient applicability conditions for kinetic
equations are more detailed and depend on a detailed structure of the function n, and the interaction
character as well.

In a conservative medium where first-order decays (three-wave processes) can take place, a kinetic
equation contains terms quadratic in n,. If three-wave processes are forbidden, the terms quadratic in n,
describe only the self-consistent field type effects, a relative frequency shift of various waves. In a
statistically uniform situation these effects do not lead to energy transfer between waves. In a
non-conservative medium the self-consistent field effects also lead to a mutual renormalizing of the
wave damping, that already mean interaction.

Such an interaction takes place, for example, for the induced scattering of Langmuir waves by plasma
ions. In a conservative inhomogeneous plasma (or in a homogeneous medium with the function n,
dependent on the coordinates) the self-consistent field effects lead to an interaction, since non-linear
frequency shifts change the interacting wave packet trajectories. The corresponding theory will be
called below the collisionless wave kinetics.

In the cases when for a statistical description of a wave field a kinetic equation is applicable, we will
say that we have a weak wave turbulence. Below the kinetic equations of a weak turbulence for basic
physical situations will be derived. A more rigorous derivation as well as a calculation of the next
approximations requires the usage of a diagram technique described in [18].

3.2. Kinetic equation for decay processes

Let in a medium admitting the wave propagation of a single type with amplitude a,(f) and the
dispersion law w, which permit the three-wave interaction (2.1.3). Such a medium is described by an
interaction Hamiltonian (2.1.1). The equations for a, are of the form (2.1.4). Let us multiply this
equation by a}, add to it the complex-conjugated one and average the equation using formula (3.1.1).
Now we have the equation

an,
—:9t—k+ Vahy — 2Im j dkl dk2{ thkzIkk]kz 6(k - kl - k2) +2 thkkzl;klkkz 6(k1 -k- kz)} =0. (3-21)

Here I, = {aia.ax) is the third-order correlation function. For a Gaussian stochastic process
Iiax, = 0. In our case I g, though small, differs from zero. For it the equation must be written which
can be obtained by the same method as used for (3.2.1). In so doing I, is then expressed in terms of
fourth-order correlation functions. Considering the wave field to be close to a Gaussian one let us
assume the hypothesis (3.1.2) for fourth-order correlators. The equation for the fourth-order correlator
* takes the form

aI kk1k2
at

- l(wk T Wg T wkz)Ikklkz = —21{ thkznhnkz - szkhnknkl - th,n,n k2} . (322)
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Let us neglect (9/0t)] wx, as compared with the characteristic frequency difference in the packets.
Assuming that the waves have a small damping y,, let us use the well-known formula Im,_o(x +ie) ' =
7 8(x). Then the finally known kinetic equation for waves is obtained [3 to 5]

8n,‘/¢?t + Yillx = j (R kkiky Rk:kkz - szkh) dkl dkz
(3.2.3)

Rkhkz = 277'] thkzlz (nnn ko~ Mgy — nknkz) 5(0)1: T Wy wkz) 5(" ~ k- kz) .

Thus it is evident that the kernel of the kinetic equation is simply expressed through the Hamiltonian
coefficients.
Estimating a characteristic non-linear time from the equation (3.2.3), we have

where I’ is the characteristic growth rate of the decay instability of a monochromatic wave.
Let n, consist of three wave packets with mean frequencies and wavevectors which satisfy the
resonance conditions (2.1.2), (2.1.3). Let the characteristic packet widths in k-space be Ak. Then

1 2
—~an,dk, Aw=~Au Ak,

T Aw

where Au is the group velocity difference of interacting waves. It is evident that the time during which
n, changes must be much larger than the inverse decay instability growth rate 1/7>I. Now we can
obtain finally the applicability criterion for the kinetic equation

I<Ao. (3.2.4)

This criterion has a simple physical sense. Each triple of interacting waves is in resonance during a
time of the order of 7 = 1/Aw. For the applicability of the kinetic equation it is necessary that during this
time the decay instability leading to a full correlation of phases of the generated secondary waves could
not develop.

When the wave propagates in a weakly dispersive medium

o = ck(1+ek?);  ek*<1l; >0 (3.25)
the resonance conditions are satisfied for waves having almost parallel wavevectors. In this case the
group velocity difference Au = ¢ Ak is small.

For the applicability condition of the kinetic equation the rigid criterion is obtained:

I'<w"(AkY = eke(Ak)Y . (3.2.6)

From (3.2.6) it follows that in 2 medium with a linear dispersion law the decay kinetic equation is
inapplicable.
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A more rigorous criterion (3.2.4) can be derived using the Wyld diagram technique [18]; however,
the detailed discussion of this problem is outside the framework of the present paper.

The case when in the medium high-frequency waves with the dispersion law w, and low-frequency
waves with the dispersion (% interact is of great importance. In this case the process described by the
resonance condition

Wy = wk,+ 0*2; k= k1+ k2 (32.7)

is realized.

Such a situation takes place, for example, in the interaction of Langmuir and ion-sound waves in
non-isothermal plasmas. In this case the interaction Hamiltonian is described by the formula (1.4.12).
Introducing the averaged values

(aeal)= NSk —k);,  (bbl)= md(k—k)

we obtain the kinetic equations
3Nk/6t + 'yka = j (Tkzlkkl - Tkz|k1k) dkl dk2
Bn,,/t?t = Fknk = j Tklklkz dk1 dkz (32.8)

T ippa, = 2 'szkh|2 (Nini,— Ningy— NiyN o) 8(k — ki — k) 80 — 0y — {D;) .

It should be noted that the resonance conditions (3.2.7) do not change if a constant value is added to
the frequency w,.

For applicability of the equations (3.2.8) the criterion (3.2.4) may turn out to be insufficient. At a
great frequency difference of interacting waves the decay instability growth rate (in this case the
instability becomes modified) may become greater than the low-frequency (2. In this case the criterion
(3.2.4) must take the form

/7 <min(T, ). (3.2.9)

In conclusion it should be noted that when deriving the kinetic equation, the imaginary parts of the
frequencies in (3.2.2) may be conserved for the third-order correlator I, In this case in the kinetic
equation the broadening of the §-function over frequencies up to a width of the order of v, takes place.
When I' > v,, taking into account of this broadening goes beyond the accuracy of kinetic equations. In
an isothermal plasma when the characteristic growth rates are less than the sound damping, this
broadening is rather essential.

3.3. Kinetic equation in the non-decay case

It is known (see chapter 1) that in the case when three-wave interactions are forbidden, a non-linear
medium is described by the equation (see (1.6.21))
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da . .
17:"' ('_(Uk + ly&)ak =1 J Tkk!kzksatlakz ak36(k + k1 - kz" k3) dk, dkz dk;. (331)

The equation (3.3.1), even if the damping 7y, is absent, does not necessarily describe a conservative
medium. The medium is conservative if the function T i, satisfies the symmetry relations

Tkklkzks = Tk]kkzks = T:zbkkl . (332)
Multiplying (3.3.1) by a} and subtracting the complex-conjugate expression, we obtain

3nk

74‘ 2'}’*”& =Im j Tu,km(atafla K k3> 5(’( + k1 - k2 - k3) dkl dkz dk3 . (333)

Making the correlation decoupling according to the formula (3.1.2), we obtain

3n,/0t + 2”1‘ (')’k - J. Tu»'nkf dk’) — = 0 (3,34)
where
T =Im T e - (3.3.5)

The matrix elements for some important processes are presented in table 3.1 (p. 365).
From (3.3.2) it follows that in a conservative medium 7, = 0. In an isothermal plasma it follows from
the Green function symmetry (see section 1.6) that

nk’ = - T‘k'k . (33.6)

From (3.3.4) we have

aNJot+2 f wmdk=0; N= f n dk (33.7)

that is a balance condition for the total quasi-particle number described by eq. (3.3.5). When v, equals
zero, N = constant. Thus, a non-linear term in (3.3.5) conserves the total number of quasi-particies.
Applied to an isothermal plasma, eq. (3.3.5) describes the induced Langmuir plasmon scattering by ions.
It is the simplest one of kinetic equations possessing many interesting properties.

For many problems it is necessary to take into account small terms which were omitted when
deriving (3.3.4). Therefore a small thermal noise source f; induced by thermodynamical fluctuations and
four-plasmon processes has been included in (3.3.4). As a rule, the noises conditioned by the second
cause are more important, the properties of the noises f; being determined self-consistently with the
excited oscillation distribution. These processes make also a small contribution to the wave damping
which can usually be ignored.

Now let us discuss the applicability condition (3.3.4). Except the applicability conditions of the initial
dynamic equations, it is necessary that the condition (3.2.4) should be valid. In the given case it has the
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form
f Towny dk' < Ao (338)

Then for the most interesting case of isotropic Langmuir turbulence we have

W b
YT k

Ws .

Besides, in eq. (3.3.5) the four-plasmon collisional term is neglected. For the validity of doing this it is
sufficient that Re T 44,0, = Im T yx4,. It should be noted that when £, = 0 in reality the equation (3.3.4)
has a wider applicability region than ordinary kinetic equations. It can be given a sense, when the wave
phases are not random. Let, for example, the wave field represent a set of monochromatic waves

a=" cnb(k—kn). (3.39)

Substituting (3.3.9) into the initial dynamic equation, we have

. OCm |,

i =+ 1YmCm — Ok Cm = 26m 2 Thntminn|Col> TOT B = [Cua?
ot <

1dn,,

———t Vol = 2 7

2t I = 2 2 T

i.e. eq. (3.3.4) when f; =0

The prominent property of (3.3.4) when f; =0 is that, in spite of the presence of dissipation, it is
Hamiltonian [19]. From the sense of the value n, it is evident that m, >0. Let us introduce a new
variable P, = In n, determined along all of the real axis. Then eq. (3.3.4) can be rewritten in the form

j R,‘, el dk’ +2(F, ~ exp(Py)) = 0

(3.3.10)
I =JRkk' Yo Ak’

where Ry is the kernel of the operator inverse to the operator with the kernel T,,. It is evident that
Ru' = _Rk’k-
The equation (3.3.10) is Hamiltonian, i.e. it can be written in the form

P B
J'R,,, 9P gy = 3%
8P}

(3.3.11)
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where the Hamiltonian & takes the form
%= f dk (exp(Pe) — I4Py) .

With the help of (3.3.11) it is easy to make sure that # is an integral of motion. When v, =0, it
transforms to the well-known law of conservation of the number of quanta which is valid as was
mentioned in chapter 1, yet within the framework of a dynamic description. When ¥, is not equal to
zero, the Hamiltonian # is not calculated constructively, because of the difficulties of the inversion of
T.. However, its existence allows important conclusions to be made with respect to wave dynamics.
For example, it follows that (3.3.11) has no asymptotic steady stationary solutions. In reality, in a
stationary state the Hamiltonian # differs, generally speaking, from that calculated from the initial
data. Thus, the relaxation process to a stationary state (if it takes place) occurs only due to a small noise
term.

There exists one more group of physical problems when the self-consistent field approximation, i.e. a
direct splitting up of fourth-order correlators described non-trivial physical phenomena. Let us consider
the oscillating excitation by a homogeneous external field in a medium with a non-decay dispersion law.
The Hamiltonian of the wave interaction with pumping is as follows (see chapter 1)

%, =1 f (Vi exp(ioof)asay +c.c.) dk (33.12)

and leads to the dynamical equations

a
%-f- ima, = 1Via®y exp(-2iwot) + j T kkioors@ 2,8 iy xy O(k + ky — ko~ k) dk, dk, dks . (3.3.13)

As was mentioned above, the sum of the phases of the oscillations with opposite wavevectors has a
well-defined value. It is to be expected that at a non-linear instability stage an anomalous correlator,
(maw) = ond(k + k') will differ from zero. It should be noted that in this case the individual phases are
random.

Now let us present one more argument explaining the introduction of an anomalous correlator o.
The energy flux to a plasma from an external field is easily expressed through the Hamiltonian (3.3.12).
Averaging over individual random phases, we obtain

Q=93¥/at=2 Imf Vios dk. (3.3.14)

Thus, the energy transform to collective freedom degrees necessarily leads to the anomalous correlator
arising.

Multiplying (3.3.13) by a} and by a_, and averaging over phases, the equations will be obtained for
oy and ny, respectively. Splitting the fourth-order correlators in terms of the pair ones:
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(a;’;atzakgah> = nhnkz[a(kl - k3) 5("2_ k4) + 6(k1 - k4) 6(k2"“ k3)] + 0':‘10]3 5(k1 + k2) 6(k3+ k4)

<a:1akzak3ak4> = nk1[0k2 5(k1 - ka) 5("2 + k4) + O 5(k1 - k4) 5("2 + k3)+ Ok, 5("1 - kz) 5("3 + k4)] ,

(3.3.15)
we obtain
i = 2m[— i + Im Pioy )
Oy = 200 [—1(0 — wo) + Y] TP (e + n_y). (3.3.16)

These equations differ from the linear ones only by the renormalization of the frequencies and the
pumping interaction, i.e., they are the self-consistent field equations,

a'),, =ay t+ 2J' Tkkrn," dk,

P, = Vioi+ j Sewow dk’ (3.3.17)
T = Tiwins S =T —x k, -k -

The equations (3.3.16) are usually called the equations of the S-theory due to an essential role of the
coefficient Sy, [20]. From (3.3.16) we have the relations

(8/8[ + 4‘)’*) (IO',, lz - n,n_k) =0
(010t + 29, ) (M —n4)=0

which point to the fact that during the time of the order of y;' the arbitrary initial conditions relax to
the state (it is not necessarily stationary) for which

m=n-; |owl=m
is valid.
The last equality shows that the wave phases in pairs ay, a_, are completely correlated. The complete

phase correlation in pairs makes it possible to change to new variables, i.e. to the wave phase sum in
pair ¢, and their number n,. In these variables the energy flux to the plasma is equal to

Q=2J Vi sin ¢y dk .

Now a physical sense of the effects considered becomes evident. At a linear instability stage, as was
shown in chapter 2, the oscillations with ¢, = 37 possess the maximum growth rate. Non-linear effects
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lead to a deviation of ¢, from 37 which worsens the coupling with the pumping and thus stabilizes the -
instability. Below, this problem will be considered in more detail.

The simplest generalization of the equations (3.3.16) is a consideration of excited oscillations
belonging to two different spectrum branches, e.g., Langmuir and ion-sound waves [21]. In this case an
analogous system of equations for three correlators n}, N{ and o, 8(k — k') = expliwot){ab_) is
obtained. A relation similar to (3.3.17) shows that the wave phases in pairs a,, b_, are also completely
correlated

lowf = niN§.

When two types of oscillations are excited, there exists a situation when the wave dampings
significantly differ from one another, and the relation

'yl> Vk>’)’2

is valid.

Just such a situation arises for a parametric excitation of Langmuir and ion-sound waves in an
isothermal plasma. In this case the wave with damping 7y, is a forced oscillation and can be eliminated
from the equation. It is not difficult to be sure that in this case the sum of the excited wave phases is
equal to 37 and does not change even when taking into account non-linear effects. In this case
n; <o <n, and, consequently, for a parametric wave excitation in an isothermal plasma such cor-
relation effects are insignificant.

The other important generalization of eq. (3.3.16) is a consideration of pumping with a wavevector
differing from zero [22], e.g. the electromagnetic wave decay into two plasmons. If the pumping wave is
written in the form h exp(—2i(wo— #r)), as a result of instability the wave pairs with a,.+x, @, are
excited. The equations of S-theory are similar to the case of the excitation of two different oscillation
types. They include three correlators ny 8(k — k') = (Q,eex iter); (Queri Quer €XPRiwot)) = o 8(k — k').

Also the relation |o|* = ny ni holds.

The equations (3.3.16) are written for the case of a monochromatic pumping excitation. The criterion
of its spectrum narrowness is analogous to (3.2.4): V, > Aw. In the opposite limiting case the role of
anomalous correlators decreases, but because S-model terms are quadratic in n, and for a non-coherent
pumping there exists such a parameter region when the collision term can be ignored.

It was proposed above that for exiting waves the decay processes are insignificant. In practice such
situations are very rare. For instance, for Langmuir oscillations it is possible only for the long-
wavelength part of spectrum, krp <Vm/M. In the opposite case, as is seen from (3.2.3), the phase
correlation effects make the same contribution in the order of magnitude as the processes of a spectrum
cascading. Some examples will be considered below.

If the amplitudes of the fields inducing oscillations are so large that V > w,, we turn to the region of
modified decay instabilities. In this case, as was shown in section 3.2, there arise some second- and
third-order anomalous correlators, and it is impossible to construct a self-consistent description.

If the interaction effect on correlation properties of oscillations is taken into account, the collision
term describing the oscillations scattering one upon another will be obtained in the next approximation
with respect to n,. Now let us illustrate the derivation of the four-plasmon collision term, counting for
simplicity that anomalous correlations are insignificant.

Let us write down the equation for the fourth-order correlator, where the sixth-order correlators are
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expressed in terms of the pair ones:

aIkklka:;

FTUDpy T D iy~ i — wkl)IkklkZh

= 2T siyars (Ml i ks T Mig Mgy — MR Mgy — Mg Ny, . (3.3.18)

Here w; are the frequencies renormalized due to the wave interaction which are the same as in (3.3.16).
Besides, for simplicity, in the right-hand part non-conservative corrections were not considered. Also
ignoring time derivatives (as in chapter 2), we obtain

Ikknkzks = nknh[é(k - kz) a(kl - k3) + 5(k - k3) 5(k - kz)]

2 T kot 1 1 1 1
+— Nl gy 1 o1 iy ('—+—"——_ -'_) .
Aw Ny nk] nkz nk3

(3.3.19)

Here the first term is the solution of the uniform equation (3.3.18) corresponding to purely Gaussian
fluctuations. Substituting (3.3.19) into (3.3.3) and using the relation Im,_o(x +ie)™" = #8(x), the well-
known kinetic equation is obtained for the waves:

6n,,/z9t+ Yl = 27 J |Tkk1kzk3|2 8(k + k1 e kz_ k3)

1 1 1 1
X S(wk + Wiy — Wiy — wb)n,,n kB kM ks ('_ +——- _—') dk1 dkz dk:; . (33.20)
By M Riy Ny

As seen from (3.3.20), the characteristic non-linear growth rate y,~ (T?/Aw)f m dk and the
applicability condition (3.2.4) for the case of Langmuir turbulence gives

W/nT < (krp)?
which, in the case of narrow spectra, transforms to
WinT <Ak rp)*.
3.4. Collisionless wave kinetics
1. If the medium inhomogeneities as well as the wave distribution inhomogeneities are taken into

account, a wave interaction mechanism, which is new in principle, arises. Let us consider a kinetic
equation in an inhomogeneous medium. It is in the form

ot TR g,
o ok or or ok (34.1)

Here w, is the wave dispersion law.
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A similar equation can be obtained for the medium with the interaction described by (3.3.1) when
¥ = 0 and when the condition (3.3.2) is valid.

After the Fourier transformation it is not difficult to be sure that from the above-mentioned equality
(a%kay)= ny 8(k — k') it follows that the density of the oscillation energy is uniform in space. Therefore
the medium inhomogeneity leads to a delta-function broadening, and ny depends on both arguments.
However, if the inhomogeneity is quasi-classical, the dependence on the difference of arguments is
sharper than on the sum. Let us introduce the following notations:

Mg = Mg, ks k+=%(k+k')§ k=k-k'.

Let us consider a Hamiltonian medium with a non-decay dispersion law. The equation for a pair
correlator will be written by expressing fourth-order correlation functions in terms of the pair ones:

Iu.m; = R Migks T MaksM iy

d .
[E'f' 1(w,, - w;,r)] Nek' = 2i f dk1 dk2 dk3 {T“,,,,mnuzn kiks 5(k + k1 - k2 - k3) (342)

i T;",,,kmn:,znf,k, 5(’( + k1 - k2 - k3)} .

In a2 homogeneous medium the right-hand side of the equation turns to zero, which corresponds to the
case when the interaction in the self-consistent field approximation only renormalizes the oscillation
frequency uniformly over space. Let for (3.4.2) make integration in k, and introduce new variables
k* =3(k,+ k3), & = k; - k3. Then (3.4.2) takes the form

1) .
[5"‘ i(w,,u,,,z - wp_,,,z)] Ryt = -2i f dk de Rz

XAT ke, Ernerz, k=2, -2 Mkt sz, =i = Tk sresa—ie, o2, komrz, -2 Mkt -2, mmic} - (34.3)

We expand in series the matrix elements and correlators in &, & confining ourselves to the ap-
proximation lowest in &. We then introduce the oscillation density n(r) slowly varying in space
1

Wf N ke €Xp(ikcr) dec .

n(r)=
After making the Fourier transform, we obtain

i ot Sl S 4,
at ok or or ok (3.4.4)

Here @ is the frequency renormalized due to the interaction @, = wy + 2 [ Ty ne dk’. The derivatives
of the matrix element in (3.4.4) are to be understood in the following manner:

0T a
al:k = 6_k1 (Tln.k'n' + Tkk’hk’)'k1=k .
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It is not difficult to derive (3.4.4) even when the medium is non-conservative. In this case terms are
added to (3.4.4) which describe linear and non-linear damping (3.3.4).

Equation (3.4.4) formally coincides with (3.4.1), however, in (3.4.4) the self-consistent non-linear
frequency shift of the interacting waves is taken into account.

It is significant that in the medium described by (3.4.4) an inhomogeneity can arise spontaneously as
a result of the development of an instability analogous to the modulational instability of monochromatic
waves.

The equation (3.4.4) is significantly simplified when considering narrow wave packets. Expanding w;
in the vicinity of the packet centre

v
_ 1w, 2, 78 2
W = Wyt (Kvg,) + 30"k + ki

2ko

in the system moving with a group velocity we can obtain, for simplicity confining ourselves to the case
of a positive dispersion and introducing dimensionless variables [23],

on, O oN on,.
— tk— 2T ——=
at or or ok

0
(34.5)
T=Tko,ko; N=Jnkdk

This equation resembles the Vlasov kinetic equation for charged particles moving in a self-consistent
potential. The condition N = | n, dk is the analogue of the Poisson equation.

When deriving (3.4.5), (3.4.4), the four-plasmon collision term is ignored. The criterion of correctness
of this action for the simplest case when the spectrum has a single scale in k-space, ko, is

1 W Y
kL T o)

The most interesting region of applicability of the collisionless kinetics is Langmuir turbulence. In a
non-isothermal plasma this application is difficult because of the sound excitation.

In an isothermal plasma when ion-sound motions can be considered forced, the Langmuir turbulence
is described by the equation (1.6.21) and, consequently, the obtained results can be directly applied. The
self-consistent field equations describing a weakly inhomogeneous Langmuir turbulence in a homo-
geneous medium take the form

ot ok or or ok
(3.4.6)

(02

P.ReG.
2nT ©

(6* = Wg + 2j T,,,,rn,,' dk, , Tkl’ =

In the homogeneous case eq. (3.4.6) transforms into (3.3.4) describing induced scattering by ions.
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As was mentioned in chapter 1, eq. (1.6.21) is applicable to an isothermal plasma when krp <
Vm/M. In the decay part of spectrum when krp >\ m/M, eq. (1.6.21) has poles corresponding to
decay processes, and therefore (3.4.6) can be valid only for describing exotic initial conditions for which
decay processes are impossible or for describing a small intensity turbulence satisfying a rigid condition:

W kg Y
Lt = VM Q..

“PuT k Y m/

2. The idea that the modulational spectrum instability of Langmuir turbulence can be described

using the Vedenov-Rudakov equations is widespread. These equations obtained in 1964 are of the form
(24]

L9 O Ow O _ 347
ot ok or or ok ( )

Here &, = wo(3k°rd + 8n/n) is the dispersion law of Langmuir oscillations. A slow quasi-classic density
variation under the action of ponderomotive forces is described by the equation

2

P 1
o= iV on = V? f ne dk. (34.8)

The physical meaning of (3.4.7), (3.4.8) is evident — Langmuir oscillations lead to a plasma density
re-distribution that changes their trajectories.

It should be noted that in the Vedenov-Rudakov equations oscillations with different k interact only
via a mutual semi-classical modulation of the plasma density. Let us show that in (3.4.7), (3.4.8) the
essential non-linear effects are omitted. Consider, for simplicity, one-dimensional Langmuir turbulence
described by (1.6.6), (1.6.14):

oE 9 9? 32
i Z+E,=-nE —-c2 l = |Ep, (3.4.9)
ot ot ox ox

The Vedenov-Rudakov equations are obtained when averaging (3.4.9), assuming (8n EE*) = dn(EE™).
Let Langmuir oscillations consist of two narrow packets with wavevectors k; and k.

E= E1+E2; E1,2~exp{i(k1_2r—w(k1‘2) t)} (3410)

Then, besides a slow density variation under the action of Langmuir oscillations there arises a quickly
oscillating density variation

(ki — koP’E,E}

oA = .
(wk, - a’kz) - Cs(kl - kz)

(3.4.11)

Substituting (3.4.11) into (3.4.9), we see that in the equations a non-linear frequency shift appears
which does not result in a slow density variation. Within a static limit, when in the second equation of
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(3.4.9) the term °n/or* can be neglected, the density variation is explicitly expressed by the plasmon
number. From (3.4.9) it follows that

=+ T j medk, T=To,. (3.4.12)

It follows from eq. (3.4.12) with the correct answer @, = wy +2 [ Tw-ny dk’ that besides the error in a
factor two, the Vedenov-Rudakov equations substitute T, by its static value T’ o. Such a substitution
is impossible even for qualitative estimates, since T, is a sign-variable function.

The modulational monochromatic wave instability was first discovered just in such a way (Vedenov
and Rudakov, 1964 [24]). However, in so doing it is possible to find only the limit of the instability
growth rate as p— 0. It is explained by the fact that when transforming from the non-linear Schrédinger
equation to the Vedenov-Rudakov equations the dispersion and diffraction effects limiting the
instability are lost. Thus, the applicability criterion of the Vedenov-Rudakov equations is the Langmuir
wave spectrum narrowness:

(®k/k)>< W/nT.

The collisionless kinetic equations are applicable, on the contrary, for wide packets in k-space,
(dk/k)*> W/nT. In the intermediate case (3k/k)*~ W/nT giving an averaged description of weakly
inhomogeneous turbulence, simple equations were not obtained.

3. As an example of an application of the derived equations, let us consider the effect of the finite
packet width on the evolution of the modulational instability. Any uniform distribution of oscillations
satisfies the equation (3.4.5).

The modulational instability is the space turbulence modulation appearance. For perturbations
~exp(—iwt + ipr) we have a dispersion equation similar to that for plasma oscillations:

_ ¢ (ponjac)d
| +of [RoMH)dx (3.4.13)
 — pK

When integrating over «, the pole should be rounded along the lower semicircle. It should be noted that
only the plasmon distribution function averaged over «, p enters into (3.4.13). If the distribution width
4 in the direction p is sufficiently small* 42< TN, (f nx dk = N,) the pole contribution can be ignored,
and eq. (3.4.13) gives

w =|p| QTN (3.4.14)

when T <0, the modulational instability takes place. If ” <0, the instability criterion is of the form

. - k
(w"cosz@+v—gsin2@) T<0; cos@=(—p——)
ko pk

which coincides with the monochromatic wave stability criterion.

* Phase randomness is provided by a large spectral width in the transverse direction.
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The growth rate (3.4.14) infinitely increases with wavevector p. This is connected with ignoring
diffraction effects. The maximum instability growth rate is achieved on the quasi-classic approximation
applicability boundary p ~ V2TN,, and as to order of magnitude it is equal to the non-linear frequency
shift.

If a packet is considered which is narrow in all directions 42 < TN,, the numerical coefficient of the
growth rate (3.4.14) differs from the exact expression obtained with the help of exact dynamical
equations mentioned in chapter 2. It is connected with the fact that 42< TN, is a condition inverse to
the applicability criterion (2.3.4) of the self-consistent field equations. The equation (3.4.14) is applicable
only for describing packets which are wide in the direction normal to p (42> TN,). Due to this fact the
individual wave phase randomness is provided.

To investigate a finite width packet effect to fix the ideas it is assumed that the packet has a Lorentz
configuration

n.dee, =—

j 1 NoA
mKi+ 4%

Then after integration of (3.4.13) we obtain
w = |pl[{RTN,)? -i4}.

It is evident that the finite packet width, as was firstly mentioned in [24], stabilizes the modulational
instability; for an isotropic distribution the stability criterion coincides with the wave phase randomness
condition.

To explain the stabilization mechanism it is appropriate to remember that the equations (3.4.5) are
similar to the kinetic equation describing a gas of attractive particles; in these terms the finite packet
width is equivalent to a thermal spread. Therefore the instability is stabilized similarly to the process of
the gravitating gas instability stabilization by a finite temperature.

4. Now let us consider the effect of a wide turbulent background on the monochromatic wave
stability. Let us consider a, as a sum of coherent and stochastic parts

a,‘=A,,+d,‘.

Writing out the equation for the coherent part and transforming to the r-representation, due to the
turbulent background we obtain a parabolic equation for the complex envelope A of the coherent
packet

) <8A A ) 0" A vy
i o2

—t v |t + Vi =(TA2+f ) :
ar PO )t e Ty, VA AF+2 | Taoene dk | A

For the stochastic part we obtain

ot ok or or ok
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Here &, is the frequency renormalized due to the turbulent background and the coherent wave
(Z)k = Wy +2J Twn,,rdk'+ Tkko|Al2 .

If the turbulent background is also a narrow packet positioned in the vicinity of ko, the system of
equations may be simplified, and after transforming to dimensionless variables in the reference system
moving with the group velocity the following expression is obtained

10A/0t+30A = T(AP+2No)A
(3.4.15)
on. on, -39 e
B gk 22T S (N |AP) 2= 0.
at or or oK

The obtained system of equations has solutions in the form of a monochromatic wave on a homo-
geneous turbulent background. Linearizing (3.4.15) and ignoring diffraction effects in the parabolic
equation, the following equation is obtained:

w?= p*TA3(1-4TNo/4%). (3.4.16)
It is evident that the turbulent background weakly affects the monochromatic wave instability.

3.5. Quasi-dynamic description of singular spectra

The collisionless wave kinetic equations derived in the previous section do not describe some of the
important effects arising out of the framework of a quasi-classical description. Thus, for example, using
these equations it is impossible to obtain a correct structure of the modulational instability growth rate,
and, consequently, to describe adequately its non-linear stage. Thus, these equations are not suitable for
describing packets narrow in any direction. In the meantime, for plasma turbulence the case with
singular spectra when excited oscillations are concentrated on lines or surfaces within k-space, is typical.
The vicinity of wavevectors to this surface or line allows us to obtain simplified equations, on the one
hand, using the interaction weakness and the phase randomness appearing due to the wavepacket
prolongation in one (or two) directions, and, on the other hand, changing to wavepacket envelopes in
the third direction.

For simplicity, let us consider the case when the spatial inhomogeneity is one-dimensional [25]
(z-axis in the inhomogeneity direction). Then n,, is a 8-function in transverse directions

Ry = n,‘l(kz, k;) a(kl - ki) .

Taking into account that for fixed k, the packet ny,(k., k) is concentrated within a narrow layer
Ak, <k,,in eq. (3.4.1) it is possible to expand w, in a series in k, — k3 (k3 is the coordinate of the packet
centre, k2 = f(k.)) and to ignore the T dependence on k, — k<.

The derived equations are essentially simplified by passing to the r-representation along the
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z-coordinate

d a a "re? &
—+i(@ —ax(z))+ —t— |+ —(——— N = 3.5.1
{at (@4 (2) — @ (2')) vgr(az+ az’>+l > (az2 62,2)}11,,(2,2) 0. ( )

Here
Vgr = Own/ Ok ; "= 3w,/ k>
50 (2) = +2J'T' Az 2') dk
wk(z) Wy w (2, 2") dk (3.5.2)

1
@my

m(z, 2') = f na (s, k1) explilk.z — k12’ — k2(z — 2)]) dk. dk..

Like the equations derived above, (3.5.1) is an equation with a self-consistent field. The neglect of the
collision term is also significant. In a non-conservative medium there appear in (3.5.1) terms describing
linear and non-linear dampings (3.3.5). In a homogeneous medium n,(z, z') depends only on the
difference (z — z’). If the space inhomogeneity is slow, i.e. nx(z, z') depends on z + z’' more weakly than
on z—Zz',in eq. (3.5.1) it is possible to expand

()= (&) = o~ 2)

and change to the z-coordinate in the k-representation. Then we can again operate with the
collisionless kinetic equations.

However, there exists another method of simplification of (3.5.1) which is not connected with the
assumption on a quasi-classical medium parameter change [25]. It is evident that it has a partial
solution:

n(z, 2')= A(z) A(2"). (3.5.3)

In this case A, , «(2) satisfies the equation

(24 vy +ﬂ"3—2+'()},4—0 354
{l<0t v"'az) 2 92 A= (3-54)

where

G = wx +2 f T |Aul dk, |

Evidently it represents the generalized equation (1.5.8) for envelopes of a monochromatic wave for
the case of an extended packet. Ay, is a function of k,. If Ay~ 63k, — k<) is substituted into
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(3.5.4), for A,(z) an equation is obtained differing from (1.5.8) only by the coefficient 2 before T yu,.
The origin of the factor 2, as in (3.5.4), is explained by the phase randomness.

It is worth noting that for the validity of (3.5.4) it is also necessary that the relation (3.5.3) would be
satisfied on the boundary of the medium, which is, generally speaking, not necessary. For example, it is
not fulfilled for the cases when the turbulence is excited within a layer on the boundaries on which the
oscillation dissipation takes place.

However, for the most interesting physical problems of the modulational instability of turbulent
spectra of localized turbulent bunches evolution eq. (3.5.4) gives an adequate description.

It is not difficult to make some simplifications of (3.5.1). If the non-homogeneity is not assumed
one-dimensional, egs. (3.5.1) keep their form; however, the expression for the renormalized frequency
does not have a local structure (3.5.2). But if the wave spectrum is almost one-dimensional (an arbitrary
line), and the non-homogeneity is two-dimensional, for the quantity

N, i (r, r') = J' dk, dki ne, ip x, explitkoro—kir,—kS(r—r))}

@m)y?

a simple equation can be derived:

{i (§+ oy (‘a% —ain)) T i(@a(r) - @,(ri))}n,,(n, r)=0

(35.5)
(Dk(r) = Wy + 2J' T,,krnk'(r_,_, ri) dk’.

For the sake of conciseness here the diffraction term «w}. is not written down. The expression for @y
can be obtained for an arbitrary inhomogeneity if 7, = constant, and also in some other particular
cases. In the most interesting case in the study of the transverse modulation of Langmuir oscillations
propagating in one direction the analogue of (3.5.4) takes the form

i (ro) + 315V + J Tose |t P Ak iy + lj T |t > A& 4 = (3.5.6)

If a medium is slowly inhomogeneous even when oscillations are absent, it can be taken into account
for only a quadratic Hamiltonian

%= J o atay di d’ .

Because wy, in a quasi-classical case depends on the difference of argument more strongly than on
the sum, repeating all the above-mentioned considerations, we again come to the equations (3.5.4),
where the w, now depend on r,

w,—)w,‘(r)=

1 J .
—— | w,.explixr)dx.
Var * P
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Table 3.1
Induced scattering on ions matrix elements w;(k)— wx(k') + |k — k'|vT,. Induced scattering on
ions matrix elements have the form

w1(k) - wz(k’))

T = f(k k' ImG(
w=flk K) Fior

Process falk, k')
2 ’
¢ ¢ Wp (kk'Y
wi->wi+k-k|vr,
ek tlkklon S ik
. o wh wiop (kK - ohkki/okwit i)/ (@io§)?)?
wk—>wp+lk—k'|vri — - o) NPT 3
2noT, (037~ wp* W wi? - wi?)
R
Vo wl kKT, “p
wi~wi+lk-¥og T, k7

In particular, ignoring the interaction we obtain dynamic equations (see chapter 2) which describe the
wave propagation through a non-homogeneous medium.

Now let us use the obtained equations in order to investigate the above-considered problem of the
singular spectrum stability. Considering a narrow packet and assuming Ty = T for perturbations
~exp(—ifdt + ixr) from (3.5.4) we obtain the dispersion relation

”._ 2

2" + 4Tj | AgP? dk) :

®"k? (o

2

0 = (kvg) %

When ko" <4T [|Ag| dk it transforms to the relation (3.4.6). But, by virtue of the fact that the initial
equations contain diffraction effects, it gives a full structure of the growth rate which is qualitatively
similar to the growth rate behaviour of the modulational instability (chapter 2).
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