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It is shown that using multi-scale expansions conventionally employed in the theory of nonlinear waves one can transform 
systems integrable by the IST method into other systems of this type. 

1. Introduction 

The majority of nonlinear differential equations 
integrable by the inverse scattering transform (IST) 
and having physical applications represents differ- 
ent models of interacting waves. In the wave the- 
ory for nonlinear media there is a familiar totality 
of methods, which are applied in such cases when 
there exists two or several considerably differing 
scales. This totality is known under the general 
name of the multi-scale expansion method. This 
method allows to obtain for such situations new 
equations which differ from the initial ones and 
are more adequate to the given problem (see, e.g. 
[1, 21). 

So, if it is already known that the solution 
represents a set of one or more quasimonochro- 
matic wave packets of a small amplitude, it is 
reasonable to turn to a set of equations for com- 
plex envelopes of these packets. A characteristic 
packet size and wavelength play a role of different 
scales for this problem. If, on the contrary, we are 
interested in extremely long-wave weak nonlinear 
oscillations, the problem can be simplified by ex- 
panding the wave dispersion law in the neighbour- 
hood of the wave number k equal to zero, then by 
passing to the moving coordinate system we can 
eliminate the terms linear with respect to a wave 
number- the  KdV equation is usually derived in 
this way. 

It is important to note that these versions of the 
multiscale expansion method are structurally 
rough-  they are equally applied both to the inte- 
grable and nonintegrable systems. If the initial 
system is nonintegrable, the result can be both 
integrable and nbnintegrable. But if we treat the 
integrable system properly, we again must get 
from it an integrable system. That is why we 
became interested in application of multi-scale 
expansions to the integrable systems. We hoped 
thus to obtain new integrable formerly unknown 
systems. 

In reality we found few such systems. One of 
them is shown in the end of the present paper. 
However, application of multi-scale expansions to 
the integrable systems in most cases leads to one 
of the classical equations which at one time made 
famous the inverse scattering transform-the 
nonlinear Schrtidinger equation (NSE), the 
Korteweg-deVries equation (KdV), the Davey- 
Stewartson equation (DS), the system of N-waves. 
This emphasizes once more the universality of the 
enumerated systems. This fact explains publication 
of this paper in the present collection of works 
surveying almost twenty years of history of IST 
(beginning from the first papers by M. Kruskal 
and coworkers). We should like to show that in the 
first stage of development of this method many 
opportunities have been missed. Thus, from the 
fact of the applicability of IST to the KdV equa- 
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tions it is not difficult to predict the application of 
this method to solution of the NSE. This can be 
made easier basing on a matrix version of the KdV 
equation. Using the latter it is easy to determine 
the applicability of IST to the N-wave problem 
and to a vector version of the NSE. The integrabil- 
ity of NSE is also derived from the integrability of 
many other one-dimensional equations (Bous- 
sinesq equation, sine-Gordon equation and so on). 
The integrability of the Davey-Stewartson equa- 
tion and a two-dimensional N-wave problem is 
derived similarly from the applicability of IST to 
the Kadomtsev-Petviashvili  equation (KP). 

We should also note, that the method we use is 
related to the known "averaging method" by 
Whitham [1] developed also in the works of 
Flaschka, Forest and McLaughlin [3]. This method 
allows to describe solutions of integrable systems 
which are locally close to finite-zone solutions. 
However, our method is more elementary and we 
can advance further on; in particular we can real- 
ize a correspondence between integrable systems 
not only on the level of the equations but also on 
the level of their integrating procedures (L -A  
pairs, Marchenko equations and so on). 

2. Derivation of the nonlinear Schr6dinger equation 
from the scalar Korteweg-deVries equation 

Consider the scalar KdV equation 

u t + 6uu x + uxx x = 0. (2.1) 

The solution of it can be found in the form 

U= ~ Un einO, U*=U_n, O = k 3 t + k x .  
r l= - -00  

(2.2) 

Here k > 0 is an arbitrary number. Equating to 
zero coefficients at every e in0 separately, we get an 
infinite set of equations for u.,  

O 0 ink) ( _O_i + i n k 3 ) u , + ( _ff_dx + :3 Un 

t° + -O--d + ink E U q U n - q  = O. (2.3) 
q =  - o o  

It is sufficient to consider the case n > 0. Let us 
introduce a parameter e to these equations, assum- 
ing 

u , = e " " o , ( x ' , t ' ) .  (2.4) 

Here 

x ' = e ( x + 3 k 2 t ) ,  t ' = - 6 e 2 k t ,  a o=2,  
(2.5) 

a , = a _ , = n  (n > 1). 

Substitute (2.4), (2.5) into (2.3). Expression (2.3) 
becomes an infinite series with respect to a. Let 
a -o 0 and vanish the terms at minimal (for every 
n) power of parameter e. The system (2.3) is 
significantly reduced as e--* 0 converting into ex- 
plicit expressions for corresponding V~ (except for 
the case n = 1). In particular, we have 

2 1 
V 0 = -  ~-~IVll 2, V2=-~V12. (2.6) 

The equation for V 1 remains differential. It has the 
form 

8V 1 i 82V1 
St' ¢ 2 8x ,---T + i(VoV 1 + GVI*) = 0. (2.7) 

Let us introduce the function ~ = V~/k. Now, 
taking into account (2.6), (2.5) we have 

1 O2~k 1~12~k = 0. (2 .8)  
iq~t' -~ 2 8x ,2 

Thus, we got the nonlinear Schr&:linger equation 
from the KdV equation. This fact is quite natural 
because expression (1.2) at e---, 0 represents a 
quasi-monochromatic weakly nonlinear wave 
packet whose complex envelope should be de- 
scribed by the nonlinear SchriSdinger equation. 

It is less clear that correspondence between KdV 
and NSE can be established on the level of the 
integrable linear systems. 

The KdV equation (2.1) is a compatibility con- 
dition for the following overdetermined system: 

L ¢ =  Ox-- 5 + u  0 + 7 2 ¢ = 0 ,  (2.9) 

Mq~= (-O-t & + 4~x3 + 

= 0. (2.10) 
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As before, let us represent u in the form (2.2), and 
for • let us assume 

• = ~'~ ~k,, e i"°/:.  (2 .11)  

Here the summing up is taken over the even n. 
Introduce the parameter e into (2.11) 

~ .  = E (l"l -1) /20 . (X",  t ' ) .  (2.12) 

The choice of • in the form of (2.11), (2.12) is 
associated with the fact that for periodic potentials 
in the limit of e ~ 0 points of the spectrum for the 
operator L, hE = (n + 1)2k2, define the position 
of the forbidden zones. For potentials in the form 
of a quasimonochromatic wave (2.2) the reflection 
coefficient in these points has sharp peaks corre- 
sponding to the strong resonance subbarrier reflec- 
tion. 

Let us consider eq. (2.9) near the first resonance 
)~ = k/2.  Let 

k 
h = ~- + e/~. (2.13) 

Substituting (2.1), (2.11) into (2.9) and (2.10) and 
equating to zero coefficients at all e ine/2 in turn, 
we get two infinite sets of equations for 0 ,  (for the 
reason of brevity we do not insert them here). 
Each system represents an infinite series in powers 
of the parameter e. Consider the system arising 
from eq. (2.9) and put e ---, 0 in it. 

All the equations except corresponding n = +__ 1 
are converted into explicit expressions for 0, .  In 
particular, we have 

V 1  O -  1 • 3 = VI01 0_  3 = (2.14) 
2k 2 , 2k 2 

At n =  + l w e f i n d  

i 001 
--ff~xt --[-~O_1 =/.LO1, 

. 0 0 _  1 
- - l ~ q - l ~ * O l ~ - - - / . L O _  1. 

(2.15) 

In the system (2.15) we find out the L-operator for 

the nonlinear Schrt~linger equation (2.8). Simi- 
larly, substituting (2.2), (2.11), (2.12) into (2.10), 
consider n = + 1 and let e ~ 0. The terms of zero 
and first order in e are cancelled. Calculating the 
terms of second order we should take into account 
terms in the form of V1"O 3 and V10_ 3. Using 
formulae (2.4) after simple calculations we finally 
find 

[  i(1 
0 - 1 - - -  

2 ~k* -i(Vo+ I~12) O_1 

= 0. (2.16) 

Systems (2.15) and (2.16) are compatible when the 
quantity V0= -2bkl  2 is in complete correspon- 
dence with (2.6) and ~k obeys NSE. 

Let us observe a correspondence between the 
KdV equation and the NS equation on the level of 
equations of the inverse scattering problem. Con- 
sider the Marchenko equation 

fx ° 
r ( x , z ) + F ( x + z ) +  K ( x , s ) F ( s + z ) d s = O .  

(2.17) 

The potential u(x)= 2dK(x ,  x ) / d x  in the fo rm 
of a quasimonochromatic wave packet with a mean 
wave number k corresponds to the following choice 
of F(~): 

F(~)  = rp(~) e ik~/2 + ~*(/~) e -ik~/2. (2.1a) 

Function K(x,  z) should be sought in the form 

K(x,z)  

= Ko(x,  z)e i k/2) x-z) + K (x, z)e 
+ g l ( x ,  z) e i(k/2)(x+z) -Jr K{'(x, z) e -i(k/2)(x+z). 

(2.19) 

In the formulae (2.18), (2.19) the functions 
% ko, k 1 are varying on both arguments slowly 
relative to exponents. Substituting (2.18) and (2.19) 



458 V.E. Zakharov and E.A. Kuznetsov / Systems integrable by the inverse scattering transform 

into (2.18) and rejecting integrals from high- 
frequency oscillating function we finally get the 
equations 

K~(x,  z) + ~ ( x  + z) 

+ f x~KO(X,S )ep( s+z)ds=O,  (2.20) 

K o ( x ,  z) + f x ' K l ( x ,  s)ep*(s + z) ds = 0, 

which coincide with the Marchenko equations for 
the linear problem (2.15). 

The given scheme of NSE derivation is applica- 
ble (sometimes with small modifications) if we 
take as an initial equation any other integrable 
system, e.g. the Boussinesq or sine-Gordon equa- 
tion. However, the integrability of these systems 
was discovered later than the integrability of the 
non-linear Schr~Sdinger equation. 

Let us perform a separation of scales in the 
system (3.2)-(3.4) considering solutions locally 
close to (3.5). Introduce a parameter e, assuming 

U 1 = a 1 -~- E 2 V I ( x  ,, t ' ) ,  u 2 = a 2 -Jr- g 2 V 2 ( x  t, t t ) ,  

w = £ e i ( ~ t + k x ) ~ ( X  t, t ' ) ,  ( 3 . 6 )  

x '  = ex, t' = - 3ke2t. 

From (3.2), (3.3) as e ~ 0 we obtain 

1~12 1~12 (3.7) 
VI= 2a 1 , 112= 2a 2- 

As e-~ 0 "in eq. (3.4) we demand the terms of 
second order in e to vanish. This gives the follow- 
ing condition: 

a I + a 2 = k 2. ( 3 . 8 )  

3. Derivation of the nonlinear Sehr6dinger equation 
from the matrix Korteweg-deVries equation 

If we turn into zero the coefficient at e 3 in (3.4) 
we obtain 

It is easier to derive NSE from the matrix KdV 
equation 

u, + 3(uZ)x + Uxx x = 0. (3.1) 

i+,, + +x'x' - al~12~ = 0, 

k 2 k 2 

a - 2 a l a 2 - 2 a l ( k 2 - a a ) "  

(3.9) 

Here u is the complex N × N matrix. Let N = 2 [,,1 w] and u Hermitian, u = w* u2 ' uL2 are real. Eq. 

(3.1) is equivalent to the system 

OU 1 03Ul - - ~  
Ot t- Ox------T+3 ( u ? +  [w[2 )=0 ,  

Ou20----i- + -~x 3 3--~-a (u220x + [ w l 2 ) = 0 ,  

Ow O3w 3-L(ua+.2)w=0. 
Ot ~ Ox ------T + Ox 

(3.2) 

(3.3) 

(3.4) 

System (2.2)-(2.4) has an exact simple solution 

U 1 -----a 1 , g 2  = a 2 ,  w = e  i (kx+~t) ,  

6 o = k  3 - 3 k ( a  1 + a 2 )  , 

al, 2 are arbitrary constants. 

(3.5) 

So, we got the nonlinear Schr~Sdinger equation 
again. It should be noted that the constant a 
which characterizes the interaction, can have any 
sign depending on the choice of k 2 and a v 

From the scalar KdV equation we could only 
get the equation with a > 0 (NSE with repulsion). 

Let us observe the transformation of the L-A 
pair for the matrix KdV equation to a correspond- 
ing pair for NSE. Let us start from the system 

( u, w) is a matrix, and (2.9), (2.10) in which u = w* u2 / 
( ~1 ) is a two-component vector. • will be 4 =  ~2 

found in the form 

4 1 ~ e i (p+k/2)x+i(q+to /2) tXl  ' (3 .lO) 
4 2 -~ e i ( p - k / 2 ) x + i ( q - ~ o / 2 ) t x 2 "  
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Here p, q are the unknown constants, X1,2 depend 
on slow variables x',  t'. Eqs. (2.9), (2.10) are con- 
sidered in the X-plane near the point h = 2, 0 which 
together with constants p and q are determined 
from the requirement of vanishing in (2.9), (2.10) 
the terms of zero order in e. From (2.9) we have 

(3.11) 

from which 

al -- a 2 2a 1 - k 2 
P = ~ =  2k ' 

h 2 = a 1 ( a 1  - k 2 )  = 1 
k 2 24 " 

Now, by setting h---h 0 - # e / 2 X  0 and taking the 
limit as e --* 0 in (2.9) we get a system 

k ]  OX1 
2 i( p + 1-) --~-- + q,×2 = ~×1, 

k ~  OX2 
2i( p - )-) ~ + +*X1 =/~X2, 

(3.12) 

which represents one of the possible versions of 
the L-operator for NSE (3.9) (compare with [4]). 

Note that in the case of NSE with attraction 
(a  < 0) the point h 0 lies on the real axis. Similarly, 
from the requirement of vanishing the terms of 
zero order in e we find q = 2p 3. Simultaneously in 
(2.10) the first order terms are cancelled. To com- 
bine the terms proportional to ~ one can get the 
second linear system integrating NSE (3.9). It is 
not necessary to write it out here. 

4. Other applications of the matrix KdV equation 

The matrix KdV equation (3.1) represents a 
suitable object for application of different multi- 
scale expansions. Thus, from this equation one can 

get the known system of "N-waves" (see, e.g. [11]). 
Let in (3.1) u = uij be a Hermitian matrix,of order 
N. Let us separate a diagonal part in it, 

uij = uiSij + wij, wii = 0, (4.1) 

and introduce n real numbers a t ( i =  1 . . . .  , n). 
Further we introduce parameter e, assuming 

u i = a 2 + e 2 V i ( x ' , t ' ) ,  x ' = e x ,  t ' = 3 e t ,  

wij = ek ei(a'-aj)x-2i(a]-a~)t~ij(X' , t ' ) ,  (4.2) 

Substitute (4.1), (4.2) into (3.1) and take the limit 
as e---, 0. At i ~ j  there occurs a closed set of 
equations for ~kij = ~k~i: 

0 0~i  k n 
" ~ i k  -I- 2aiak--  ~ + 2 i ( a i -  ak) E ~bij~jk = O. 

)=1 

(4.3) 

The system (4.3) is a special case of the hyperbolic 
nonlinear system for N-waves (N = ½n(n - 1)). In 
order to obtain the L - A  pair for this system let us 
turn to the system (2.9), (2.10) in which ~/i repre- 
sents now a column of n elements. Let us put for 
them 

Oi = ei (":-2"~°Xi(X' ,  t ' ) ,  h 2 = ep. (4.4) 

Substituting (4.1), (4.2), (4.4) into (2.9), (2.10) and 
setting e ---, 0 we obtain 

aXk 
2iak--ff-~7 + ~ IlgkjXj "b ~Xk = O, (4.5) 

j ~ l  

aXk 2a 2°qXk + ~ ( a k - - a j ) ~ k j X j = O .  (4.6) Ot" k OX" 
j ~ l  

The system (4.3) is the compatibility condition for 
systems (4.5) and (4.6). 

Now let us obtain a vector analogue of NSE 
from the matrix KdV equation (see [5]). Let us set 
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in the matrix u defined according to (4.1), 

u 1 = a, + e2V(x  ', t ' ) ,  ui+ x = a 2 + e2Vi(x ', t ' ) ,  

a 1 + a 2 = k 2, wLi+l = e t~ i (X '  , t ' )  e i (kx-2k3t) ,  

W i+ l , j+  1 = ~.21~ij(X' , t ' ) ,  i, j = 1 . . . . .  n - 1, 

x '  = ex, t '  = - 3 k e 2 t .  (4.7) 

Substituting (4.7) into (3.1) and taking the limit 
e -~ 0, we obtain 

q'*4'i Iq~,l 2 
l ~ i j =  2 a 2 ,  V/= 2 a 2 ,  

V =  _ _ _  
1 n--1 

2a I ~ I~il  2 
i = 1  

( 4 . 8 )  

5. From the nonlinear Schr6dinger equation to the 
KdV equation 

To give a complete picture we show how with 
the help of the multi-scale expansion the KdV 
equation can be derived from the NSE with repul- 
sion (2.8)• Let us separate the amplitude and the 
phase in this equation assuming 

~k = V~- e i~. (5.1) 

Then 

Nt+ ~ - ~ ( N V ) = 0 ,  (5.2) 

ON-X~2 02 N1/2 (5.3) 
Vt + VVx + N x =  ½ 0x Ox 2 , 

For  ~k~ we now have a system of equations 

• 0 ~  i 0 2 ~ i  n - - I  
~- -~  + 0x------ ~- - a  5-'. I~kkl2¢~--0, (4.9) 

k = l  

where a = k 2 / 2 a l a 2  as before. The L - A  pair for 
eq. (4.9) can be easily deduced from (2.9), (2.10) 
by analogy with the L - A  pair for the system of 
N-waves. Basing on the matrix KdV equation one 
can form even more exotic systems of equations. 
We present a simpler one. Let n = 2, 

where V = qb x. 
If N -- 1 + 8n (Sn << 1) the equations (5.2), (5.3) 

describe the propagation of small amplitude waves 

with the dispersion law ~o k = Ck 2 + ¼k 4 . For long 
waves k 2 << 1 one can introduce the parameter e, 
assuming 

ep= - t  + ~ e2k-lepk(X' , t ' ) ,  (5.4) 
k = l  

N = 1 + ~ e2knk(x  ', t ' ) .  (5.5) 
k = l  

U 1 ~-- e 2 U ( X  ,, i t ) ,  Z t = ex, t '  = e3t, 

u 2  = 1, ~ + ~ ( ~ ' ) ,  ¢1~  = ' :e i°¢(x  ', t'), 

0 = k x -  2 k 3 t -  3 i e 2 k [ t k ( t ) d t .  j - - 

(4.10) 

By substituting (4.10) into (3.1) we have as e ~ 0 

Ou 03U + 3 ~ x ( U 2 +  Iq~[ 2) 0, 
0--7 + Ox 3 

-x ( t )¢+¢xx+  u¢=0. 
(4.11) 

Here 

oo 

v= E ~2kVk(x', t'), 
k = l  

x ' = e ( x - - l ) ,  t ' = e 3 t .  

Furthermore it is expedient to consider a half- 
difference and a half-sum of eqs. (5.2) and (5.3). 
The half-difference of these equations contains 
terms of the order e 3. Equating to zero a coefficient 
at these terms we obtain 

The system (4.11) is easily integrable; the discus- 
sion of this problem is outside the framework of 
the present paper. 

Vl( X', t ' )  = n l (  x ' ,  t ' ) .  (5.6) 

Taking it into account the half-sum gives the KdV 
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equation 

nit, + ~n,nxx, ' - O. (5.7) - -  -~rtlx,x, x, - -  

Transformation from the L-operator for NSE to 
the L-operator for the KdV equation represents a 
standard nonrelativistic expansion in the one- 
dimensional Dirac operator. 

and as before we have V 2 ---~k 2. With regard for 
this the equation for ~b takes the form 

i~k,+ l(t~xxq-fl21~yy ) -~-I~lZ~k + v0+ = 0. (6.5) 

The system (6.4), (6.5) is known as Davey- 
Stewartson equations. The L - A  pair for it is 
calculated from eqs. (6.2), (6.3) according to the 
scheme described in section 2 and has the form 

6. Multi-scale expansions in the Kadomtsev- (B_~y + iO3~x + ~)q, = 0, 
Petviashvili equation 

O 0 2 ^ O 1 ^ 

The interesting object for the appfication of the ~- - i°30x------~ - ~--~ - -2t~x (6.6) 

multi-scale expansions is the Kadomtsev- 
Petviashvili (KP)equation - i - ~ ( V  0 + fl~.~y + I1~ 2) + 2~'~W0y]~ = 0. 

0 
( u, + 6UUx + uxxx) = -- 3fl2Uyy. OX (6.1) 

This equation is a compatibility condition for the 
following linear system: 

Here 

m w°x=V°Y' ~=(~k"  0~) ' 03=(~  01)" 

fl + 0x----- ~ + u ~ = 0, (6.2) 

Ot + 4~x3 + 6 u  + 3 u ~ - 3 f l w  ~ = 0 ,  

(6.3) 
w x = Uy .  

It is more natural to repeat the procedure de- 
scribed in section 2 for the equation (6.1). Present 
u in the form of (2.2) and assume 

u,  = e~"Vn(x ', y ' ,  t ' ) ,  V 1 = k~k. 

Here 

x ' = e ( x  + 3k2t ) ,  y ' = e k y ,  t ' =  -3eZk t .  

This procedure differs from the one described in 
section 2 only in one point. The equation for v 0 
now takes the form 

+f l  fff2y2 Vo+2 I'kl 2 = °  (6.4) 

It is important to note the following. The one- 
dimensional SchriSdinger equation (3.9) is a 
universal model for the description of propagation 
of narrow spectral wave packets in one-dimen- 
sional nonlinear media with dispersion. 

In two-dimensional media the universal model 
takes a more general form (see [6]) 

i~b, + LI~  + a1~124~ + u~b = 0, 

L 2 u =  L3I~[ 2. 
(6.7) 

Here Li=H~BO2/Ox~Oxo are the second or- 
der differential operators, in particular, H~ '° 
= ½O2w/Ok,akt~, w ( k )  is the dispersion law of 
waves. 

The specific case of the system (6.7) is the 
Davey-Stewartson equation (6.4), (6.5) and be- 
sides, the two-dimensional Schr~Sdinger equation 
(when the operators are mutually proportional). 

The system (6.7) is, as a rule, nonintegrable. In 
particular, it is the two-dimensional NSE that is 
nonintegrable. All not numerous integrable ver- 
sions of the system (6.7) are enumerated in paper 
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[7] (see also [8, 9]) and the Davey-Stewartson 
equation is one of them, It is clear that as a result 
of application of multi-scale expansions to the 
two-dimensional integrable systems we can obtain 
only these special integrable systems. 

Properties of the KP equation (6.1) depend sutii 7 
ciently on the sign of the quantity/32. At /32< 0 
this equation is called the KP-1 equation, and at 
/32 > 0 the KP-2 equation. 

We show that from the KP-1 equation a system 
of two-dimensional equations for N-waves can be 
obtained. This system directly generalizes the sys- 
tem (4.3). 

Let us define n real numbers a k (k = 1 . . . . .  n) 
and introduce N = ½n(n - 1) phases 

It is easy to see that as e ~ 0 the set of equa- 
tions for ~,k closes and takes the form 

O4',k Oq~ ,~ O4' ik 
O----i- + 2 a i a k ~  + (ai + ak) Oy 

+ i ( a i -  ak) i ~ij~bjk = O. 
j = l  

(6.11) 

The system (6.11) is a natural two-dimensional 
generalization of the system (4.3). The L - A  pair 
for this system can be easily extracted from the 
L - A  pair for the KP equation. 

Let us consider the system (6.2), (6.3) at fl = i 
and present ~ in the form 

O~k = ~ -  ~k, I~, = a,x - a2y + 4a3t. (6.8) 

Note that 

Oik = - Oki , Oik = 0ij + 0jk. (6.9) 

The solution of equation (6.1) (at /3 = i) can be 
found in the form 

u= Y '~e~/ ,k (x ' , t ' , y ' )e° 'k+O(e2) .  (6.10) 
i ~k  

Here 

~ i k = ~ i ,  x ' = e x ,  t '=6e t ,  y ' = e y .  

Representation (6.10) gives u in the form of N 
quasimonochromatic packets. The relations (6.9) 
for them denote the decay conditions 

coik = ~oij + ~0jk, 

Pik = Pij + Pjk, 

qik = qij + qjk, 

where o~ = p 3 +  3p2/q is the dispersion law for 
waves with small amplitude for the KP-1 equation, 
and p, q are x, y-components of the wave vectors 
parametrized by the quantities a k [8]. 

ep = ~ Xi(X' ,  y ' ,  t ' ) e  i~, + 0(e) .  (6.12) 
i=1 

Substituting (6.10), (6.12) into (6.2), (6.3) we get as 
e--, 0 two systems of equations for Xr One of 
them coincides with the equation (4.6), the other is 
of the form 

i ~ + 2a k + q~kjXj= O, 
j = l  

that is, represents a two-dimensional generaliza- 
tion of the system (4.5). 

Let us also consider possibilities arising from 
application of multi-scale expansions to a matrix 
analogy of the KP equation. If u and w are 
supposed matrices in the system (6.2), (6.3) for 
fl = i, then the following equations arise 

u , +  3(uZ)x + Uxx x= 3Wy- 3i[u,w],  
(6.13) 

Uy = w x. 

Applying procedures, described in sections 3 and 
4, to the system (6.13), we can get from it the DS 
equation and its vector analogy and besides, a 
two-dimensional system of N-waves. Let us dis- 
cuss in detail the derivation from (6.15) a two- 
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dimensional analogue of the system (4.11). Let 

(u, 0)w:(W, ,) 
u =  ¢ .  u 2  ' w 2 

u 1 = e 2 u ( x  ', y ' ,  t ' ) ,  w 1 = E2W(X ', y ' ,  t ' ) ,  

X'  = ex ,  y '  = e2y, t '  = E3t, 

¢ = eEe i (kx -Ek ' t )~ (X  ', y ' ,  t ' ) ,  

= e 4 e i ( k x - 2 k 3 t ) x ( X '  , y ' ,  t ' ) ,  

u 2  = 1, 2 + w2 = 

(6.14) 

Let us substitute (6.14) into (6.13) and take the 
limit as e --, 0. As a result we obtain a system of 
equations 

~-~(u, '+ 6UUx + Uxxx) - 3Uyy 

i ~/ y = t~ x x + ut~. 

~2 
- -  - 

(6.15) 

The system (6.15) can be applied in the theory of 
nonlinear waves. It appeared earlier in the papers 
by V. Melnikov [10]. The system (4.11) arises from 
(6.15) when 

correspondence between different theories of equa- 
tions. 

Attempts can be made to apply multi-scale ex- 
pansions to each of the numerous known integra- 
ble systems, for example, to those which are 
integrated by means of linear problems rational 
over the spectral parameter. As a result we shall 
obtain with most probability one of the above- 
mentioned equations. However, after all we can 
not eliminate the possibility of getting something 
absolutely new. 

In conclusion we would like to mention that the 
concepts of the present paper have been suggested 
long ago and discussed for more than 10 years by 
our friends who from time to time took part in 
appropriate calculations. The present paper is "a 
dry remains" of these discussions and calculations. 
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