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Using an inversion method, we construct an exact solution of the Kadomtsev--Pet- 
viashvili equation, which describes weakly nonlinear waves on the surface of 
a shallow fluid. The solution describes a "rectifying wave" which propagates 
as a distorted soliton. We have simultaneously obtained classes of exact solu- 
tions for the one-dimensional equation of thermal conduction with a source. 

I. In 1974 it was established []] that the method of the inverse scattering problem 
(MISP) was applicable to certain nonlinear Hamiltonian wave systems in two-dimensional space. 
The best known of these systems is the Kadomtsev--Petviashvili (liP) equation: 

0 
O-"x (ut + 6 uu~ + u = ~ )  = 3a  2 u~y, ( 1 .1  ) 

which describes weakly nonlinear waves in media where the~dispersion is small. Two cases can 
be distinguished, depending on the sign of the dispersion: 2 = _] (KP-] equation), and a 2 = 
+I (KP-2 equation). In the latter case, Eq. (l.l) describes gravity waves on the surface of 
a shallow fluid. In both cases, Eq. (1.1) has an exact solution in the form of a simple sol- 
iton: 

2~ 2 

u = ch2•  (x-- 4• ( 1 . 2 )  

Even in 1970 it had been established [2] that, in the framework of the KP-I equation, 
the soliton is unstable, and has a tendency to bend spontaneously. On the other hand, in 
the framework of the KP-2 equation, the soliton is stable. Oscillations of acoustic type may 
Propagate along the soliton. These oscillations undergo a :certain amount of damping, due to 
radiation of acoustic waves into space behind the propagating soliton. In [3], we used MISP 
to calculate precisely the growth rate of soliton instability (for the KP-I case) and the 
acoustic dispersion law, including damping (for the KP-2~case). (In this regard, see also 
the work in [4].) 

In the present paper, we present exact solutions of the KP-2 equation which describe the 
nonlinear propagation of sound in the form of a soliton. Corresponding solutions have already 
appeared in [l] and [3], but they were not interpreted properly. Consideration shows that 
these solutions describe the propagation on a soliton of "rectifying waves" similar to those 
which may propagate as a predistorted extended thread in a viscous medium. In the course of 
"rectification," soliton energy is lost in the form of sound propagating behind. These waves 
can therefore be considered as rarefaction shock waves, which are accompanied by bending of 
the soliton. It is probable that the solutions which we have derived may tu~ out to be use- 
ful in the study of the propagation of solitons in real situations. For example, they may be 
applied to describe the behavior of a tsunami wave traveling in the inhomogeneous zone on the 
bottom of the ocean. 

2. We consider a situation which occurs when one attempts to apply the exact methods 
which can be amalgamated under the general label of "the method of inverse problems" to non- 
linear equations, including the KP-2 equation. In carrying out this application, it is con- 
venient to proceed in two stages. In the first stage, it is advisable to present a method of 
constructing a rather broad class of exact solutions of the equation under consideration. 
This is relatively easy to do, if it is possible to do it in general, i.e. if the equation 
belongs hypothetically to the set of equations which can be integrated by means of MISP. 
(The KP equation belongs to this set.) It is further necessary to select out of the set of 
solutions obtained in this way those solutions which are actually of interest to us, i.e. the 
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solutions of the equation for the initial or boundary value problem which was previously 
posed. This may turn out to be a difficult job for even the simplest problem. Thus, the 
Cauchy problem for the KP=2 equation over the entire xy-plane with initial conditions which 
fall off rapidly as Ix ~ + y2 I § ~ was solved only in 1983 in [5]. We will show below that 
the results of [5] can be reproduced very simply. It is very important to apply the Cauchy 
problem in the xy-plane with initial data which falls off as I xl § ~ but is finite as IYl + 
~: up to the present time, this has not been solved, and it is not known how one should go 
about solving it. This applies all the more to the boundary value prohlem. The reason for 
the difficulty consists in the fact that the exact solutions which have been derived have 
more or less pronounced singularities in the xy plane, and they do not make much physical 
sense. It is therefore a reasonable problem to pick out those exact solutions which are cer- 
tainly free of singularities, even if they are possibly not solutions of any initial or boun- 
dary value problem. Solutions of such a kind make sense physically, and they may be used in 
applications. This class of solutions also contains the solutions which we have constructed 
of the type "rectifying wave solitons." 

3. We consider the method of constructing exact solutions of Eq. (1.2) which were de- 
scribed in [I]. Suppose we are given the Gel'fand--Levitan--Marehenko equation: 

K(x,z)+F (x,z)-t- ~ K(x,s) F(s,z)ds-=O. (3.1) 
x 

Here, F(x, z) is a known function, but K(x, 
pend on the additional variables y and t. 

O F O" F OeF 
- - +  . . . . . . . . .  O; 
Oy O x ~ Oz '~ 

OF (OaF OaF] 
0 7 @  4 -k = 0 .  

~,Ox a Oz ~ / 

Then the  f u n c t i o n  u (x ,  y ,  t )  = 2dK(x,  x,  y ,  t ) / d x  s a t i s f i e s  Eq. 

z) is unknown. Both of these functions also de- 
Suppose the function F obeys the two equations 

(1.1). 

Instead of Eq. (3.1), we can use the equation 

(3 .2 )  

(3.3) 

K(X,Z) + F  (x,z) q- S K(x ,s )  F (s,z) ds = 0 .  (.3./4) 

The solutions obtained from this will differ from the preceding solutions by substituting x 
for --x and t for --t: this is permitted by Eq. (l.l). 

Before we turn to analyzing individual solutions of Eq. (l.l) (which we may obtain by 
using the procedure we have just described), we should mention that this procedure may be 
substantially generalized [6, 7]. Let us write the functions F and K in the form 

ReX~>0 
ReX~>0 

T (;V~, ~ ,  M,~2) exp [ - -  (~,~x + ~zz) - -  ()~ --  X~) y + 4 (%a _ X~) t] dM d %---~dMd~'2; (3 .5 )  

K =  j~ K(X,-~,x,y,t)exp(--Xz+%2y+4%at) d%df. (3~ 
Re),>0 

Obviously, F satisfies Eqs. (3.2) and (3.3). Substituting (3.5) and (3.6) into (3.1) we ob- 
tain an integral equation: 

K (X, X'--, x, y, t) @ ST(Xt,'~I, s ( - -  s y Jr 4kat) ds dM (3 .7 )  

q_~ (K(%1,~i,x,%1 y'@%2t) T(%2,'~2'%'%--) exp[--(%lq-%2)xq- (%~@ >.~)9q-4(k~+ i~)t]]d%id~id)~2d~2=0. 

In Eq. (3.7) we deliberately do not indicate the regions over which the integrations are 
performed. According to the scheme in [I], the regions of integration should be those where 
Re %~ > 0 and Re %a > 0. In such a case, the denominator in (3.7) does not vanish. How- 
ever, it has been shown in [6] and [7] that Eq. (3.7) can be used by assuming that the inte- 
gration extends over the entire complex %1, %2 plane. In that case, the integral in (3.7) is 
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to be understood in the sense of its principal value: 

For the solution u(x, y, 

1 llm ~'~ -it- ~ 

t) we now have 

(3 .8 )  

u (x, y, l) ---- 2 d__dx ff K (~, ~, x, y, t) exp (--  ~x-bK~Vq-4~3t) d% d~ 

Eq. (3.9) allows us to guess what form we should look for in the kernel T(%~, 
that we can obtain solutions which fall off in the plane. Suppose the solution we are seek- 
ing is quite small. Then we obtain approximately 

(3 .9 )  

~ i ,  ~, ~) such  

dx  ,) 

(3.1 o) 

In order that u decline to zero as x 2 + y2 § 0, it is necessary that 

Re (~ + ~)  = 0, Re ( ~ - -  ~) = 0, 

This yields XI = --~, i.e., 

Eq. (3 .7 )  now t a k e s  on the  form 

(3 .11)  

(3 .12 )  

X exp [ - -  ( ~ - - ~ )  x +  ( ~ _ ~ 2 )  y] d ~ d ~  ---- 0 

This becomes equivalent to the integral equation which was derived in [5] for the rapidly 
declining case by a completely different method. Note that for arbitrary R(%, X) we obtain 
solutions of Eq. (1.1) which are in general complex. In order to obtain real solutions, we 
need to impose the requirement 

~(X,~)  = R  (~,%). (3 ,13 )  

By considering iterations in (3.12), it can be proved easil Z by induction that the solution 
fails off rapidly in the xy plane for finite T. When R(%, %) is sufficiently small, a series 
of iterations will converge. However, the precise conditions for convergence are unknown. 

4. We now turn to the construction of exact solutions of another kind, which do not 
reduce to solutions with rapid fall-off. We start with the Marchenko equation (3.1) and we 
seek a solution in the form 

F (x, z, y, t) = ~ (x, V, t ) ,  (z, y, 0- 

The functions q9 and ~ satisfy the equations 

O~ d2--~'~ ~- O, 
Oy + Ox ~ 

as well as the equations 

(4 .1 )  

Ot~ 02~ ----- O, (4.2) 
dy dz ~ 

0~ 03 0~ 03~ 
8-t -{- 4 q~ ----- 0, + 4 - -  = 0. (4 .3 )  

ax ~ ~ Oz~ 

Substituting (4.1) in Eq. (3.1) we have 

u : 2 - -  In A, A : 1 + ~ (x) ~ (x) dx.  ( 4 . 4 )  
d x  2 

X 

The question of choosing functions ~ and ~ is far from trivial. The function ~ satisfies the 
equation of thermal conduction, uncorrected as y § while the function ~ satisfies the 
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will occur on this curve. 
condition 

inverse equation of thermal conduction, uncorrected as y § ~. If the function A(x, y) vani- 
shes on some curve x = xo(y), singularities of the type 

l 
u=2 

(x - -  xo (v))2 
If singularities are to be avoided, we must satisfy the strict 

A > 0 .  

This condition can he satisfied if we assume 

(4.5) 

co 

q~ ---- J"/< (,;~) exp (--  ;~x - -  ~Zy + 4s t)d;~; 
0 

(4.6) 

oo 

= ,f g (X) exp (--  Xx + ~2y + 4;~3 t) dX, 
0 

(4.7) 

where f (~) ~ O, g (,~) ~ 0 are real nonnegative functions. 

f (,x) = g (,x) 

solution (4.4) is symmetric with respect to the substitution y § 
longs to solutions of the type (4.4). In this case 

f (~,) ---- g (~) ---- ~ 2• (.~.--x). 

In the event that 

(4 .8 )  

The soliton (1.2) be- 

(4.9) 

Let us consider solutions of the type (4.4) which are similar to the soliton (1.2) in 
the sense that the functions f(X) and g(X) are concentrated into narrow regions near the 

point ~- (• -- a~ <~<~,<-(~-a), 

A = l +  o f l  

simplifies to the form 

Here, x' = x -- 4• 

where a<<• . In this case, the expression for A 

cap [ - -  (M iq7 )~) x -  (),~ -- k~) Y + 4 (X~ + ),~) t] 'dX, dM (4 .10 )  

A = 1 + e -z~x' a) (x" + 2 •  8• 2 t) tF (x'--2•215 

is a coordinate in the soliton frame of reference, and 

(4.11) 

x+a 
r (s) --- 1/T~ J' t (x) e-~+'ax; (4.12) 

z+a 

(,s) = ]/2---~ S g (~') e-X8 d%. (4 .13)  
x--a 

Suppose f(X) = g(X) = A = const, such that the solution is symmetric with respect to replac- 
ing y with --y. 

Let us consider expression (4.11) in the asymptotic region 2•215 Here, the asymp- 
tote is independent of time: 

A = 1 +  exp [-- 2~ (x-I- 2• ] (4 .14)  

This  a s y m p t o t e  c o r r e s p o n d s  to  a s l i g h t l y  cu rved  s o l i t o n  whose peak  i s  l o c a t e d  on t h e  l i n e s  
__ A 1 x = - - 2 x a y - -  1 I n - - .  2x yi (4 .15 )  

Along these lines, the amplitude of the soliton is a constant, and is equal to ~ 2. 

Suppose now that y<<4~t. Here, the y-dependence can be neglected, and we have 

A' A "~ 1 --t ~ ~ e x p  {- -2  [ ( x - - a )  x'+.8x2at]}, x' = x - - 4 ~ t .  (4 .16)  

Expression (4.16) corresponds to a "rectifying soliton" of reduced amplitude 2 (~--a) z, 
propagating backward with velocity 
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8 ~ a  1 V =  
x -- a 2xt 

The reduction in the amplitude of the soliton can be explained by the backward radla- 
tion of small amplitude waves into the zone where the coordinate x' is negative. Thus, a 
rectifying wave can be treated as a running down shock wave. 

For more complicated choices of f(%) and g(%), a rather rich set of exact solutions 
occurs for the KP-2 equation. If these functions consist of sing~1 ~ nomponents in the form 
of ~-functions in %, then solitons of smaller amplitude will be present in the radiation back- 
ground x' + -~. These solitons break away as a result of the rectification of the main soli- 
ton. 

5. Application of the inverse problem method to Eq. (Io|) is based on the fact that 
this equation is the condition of compatibility for the redefined linear system: 

O~ 0 ~  ( 5 . 1 )  
- -  + -  + u ~ =  O; 
Oy Ox ~ 

�9 ~ + 4 ~ x  + 6u@x + 3 (us + ~w) ~ = O, w x = uy. ( 5 . 2 )  

If we construct exact solutions of the KP equation, this will enable us simultaneously to 
construct exact solutions of this linear system. They are given by the formula 

O ( x , y , t ) = ~ ( x , y , t ) +  ~ K ( x , s , Y , O ~ o ( s , y , t )  ds" (5 .3)  
x 

Here, ~o is an arbitrary solution of the unperturbed system 

a - -  q- - -  = 0, ~ + 4 ~ 0 ~ x ~ = 0  (5.4) 

@ Ox ~ 

and K(x,  z ,  y ,  t )  i s  a s o l u t i o n  of  Marchenko ' s  e q u a t i o n .  In t h i s  p a r t i c u l a r  c a s e ,  K has  t h e  
form 

K (x, z, v, 0 = ~ (x, v, t) ~ (z, y, 0 
~5.5) 

1 + S * (s, v, 0 * (s, v, t) as 
X 

When a = • Eq. (5 .1)  i s  the  h e a t - c o n d u c t i o n  e q u a t i o n  w i t h  s o u r c e s ,  and t h e r e  i s  g r e ~  
applied value in constructing exact solutions of this equation for geophysical problems, par- 
ticularly for problems in electroprospecting. It is therefore a matter of very real impor- 
tance to expand the class of functions u(x, y)for which solutions of this kind are possible. 
(Simultaneously, this will also enlarge the class of exact solutions of the KP equation). 
This might be achieved by generalizing the procedure which was used above, by choosing a 
kernel T in (3.7) in the form of a decomposition: 

N 

T (~1,-~t,~i~-) = ~=,fn (%i, ~--) g'n (~' ~--)" (5 .6)  

In this case, Eq. (3.7) transforms into a finite system of linear algebraic equations which 
can be solved easily. However, the following question is still unsolved: how much restric- 
tion should we place on the functions fn and gn such that the solutions will have no singu- 
larities? The solution of this question is a task for the near future. 

I | 
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