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In the traditional scheme of the inverse scattering method, the spectral 
parameter of the auxiliary linear problem is assumed to be a constant. 
It is here proposed to regard the parameter as a variable quantity that 
satisfies an overdetermined system of differential equations which is 
uniquely determined by the auxiliary linear problem. The nonlinear 
equations that arise in such an approach contain, as a rule, an explicit 
dependence on the coordinates. This makes it possible to construct not 
only the well-known equations (gravitation equation, Heisenberg equation 
in axial geometry, etc.) but also a number of new integrable equations 
that have applied significance. 

Introduction 

The inverse scattering method, discovered in 1967, has now become an irreplaceable tool 
of mathematical physics, permitting the effective investigation of numerous nonlinear 
partial differential equations that occur in applications. A very general formulation of 
this method was proposed in [i] (see also [2]). 

In the framework of this formulation, nonlinear integrable equations arise as condi- 
tions of compatibility of an overdetermined system of linear equations 

~=U~, ~=VO. (I.!) 

Here, U, V, and ~ are complex-valued N • N matrix functions of $, N, and the spectral 
parameter X, which is assumed to be an arbitrary complex constant. The dependence of U 
and V on X is assumed to be rational. In the general case, we have 

N, N~ 

u~ (~, ~) v (~, ~, ~)-- v0 (~., ~) + ~ v~ (~' ~) (i. 2) u ( ~ , ~ , ~ ) = u 0 ( ~ ,  ~ ) +  ~ -  ~n(~) ' ~ -  ~ ( ~ )  ' 
n=l n=l 

where X n ~ ~n" The situations with coincident and multiple poles are obtained from (1.2) 
by limiting processes. An important role is played by the polynomial case 

U=ao+a,~+ ...  +a+~. +, V=vo+v,~+...  +vj~ j. ( I .  3) 

The c o n d i t i o n  o f  c o m p a t i b i l i t y  o f  Eqs .  ( I . 1 )  h a s  t h e  fo rm 

V~-V~+[V, V]=0.  (1.4) 

E q u a t i o n s  f o r  t h e  f u n c t i o n s  Un, v n a r i s e  f rom t h e  r e q u i r e m e n t  t h a t  t h e  c o n d i t i o n  ( I . 4 )  h o l d  
i d e n t i c a l l y  w i t h  r e s p e c t  t o  X. To s o l v e  t h e s e  e q u a t i o n s ,  we u s e  t h e  " d r e s s i n g  m e t h o d , "  
b a s e d  on t h e  R i e m a n n - H i l b e r t  p r o b l e m  on t h e  complex  p l a n e  o f  X. A f t e r  a p p r o p r i a t e  r e d u c -  
t i o n s ,  t h e  m a j o r i t y  o f  s y s t e m s  t h a t  a r e  i n t e g r a b l e  by t h e  i n v e r s e  s c a t t e r i n g  method  can  
be  made t o  f i t  t h e  f o r m u l a t e d  scheme.  

The d r e s s i n g  me thod  h a s  been  m o s t  f u l l y  d e v e l o p e d  in  t h e  c a s e  when t h e  p o l e s  ~n (~n)  
do n o t  depend  on t h e  v a r i a b l e s  $ ( ~ ) .  The e q u a t i o n s  t h a t  t h e n  a r i s e  h a v e  c o n s t a n t  c o e f f i -  
c i e n t s .  I n  p a r t i c u l a r ,  i f  we s e t  

u v (I 5) 
~)~ ~-L-[ ~' @~-- ~ + i ~' u=-g~ -~, v=g4-', g=~i~=0, 

then for g we obtain the equation of the "principal chiral field" (see [2]) 

(gr nq- (g~g-') t=0.  ( I .  6 ) 
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An equation with nearly the same form as (1.6) is 

(ag~g-~)~+(~g~g-')~=O, (1.7) 

Here, ~ = a(~, q) is a scalar function that satisfies which has variable coefficients. 
the equation 

~=0 (1.8) 

Let g be a symmetric real 2 x 2 matrix and a 2 = det g; then Eq. (I.7) describes the 
gravitational field in Einstein's theory of gravitation under the condition that the metric 
tensor depends on only two variables. 

In the general case, Eq. (I.7) does not fit in the scheme described above. However, 
it was shown in [3] that one can also apply the inverse scattering method to it for 
arbitrary matrix dimension N; in fact, the requirement for the matrix g to be real and 
syrmnetric is not necessary. It was found in [3] that Eq. (I.7) is the condition of com- 
patibility of the overdetermined system 

u ____L___vO, ( 1 . 9 )  

where 

0 2a~ k 0 , 0 2 ~  0 D1--a- -~  l ~  ~ -  D a - - - - - ~ - + - ~ - - ~ i ~ - ,  u=-ag~g-', v=ag~g -1, g=@lx:0. ( I . 1 0 )  

The o p e r a t o r s  Dt, D2 commute i f  t h e  c o n d i t i o n  ( I . 8 )  i s  s a t i s f i e d .  I n  [ 3 ] ,  t h e  d r e s s i n g  
method was developed for Eq. (1.7), and classes of exact solutions were constructed. A 
different approach to Eq. (I.7) is also possible. As was shown in [4,5], it can be 
extracted from the system (1.4) if one assumes that X is a certain function of ~ and D and 
the additional complex constant z: 

s / = / ( ~ ) ,  h = h ( ~ ) ,  a=/+h, ( I . 1 1 )  

where  f and h a r e  a r b i t r a r y  f u n c t i o n s .  I n  wha t  f o l l o w s ,  we s h a l l  c a l l  z t h e  h i d d e n  
s p e c t r a l  p a r a m e t e r .  We n o t e  t h a t  i n  [5] t h e  s e c o n d  a p p r o a c h  was d e v e l o p e d  more d e e p l y .  
I n  [ 4 ] ,  o n l y  t h e  Lax r e p r e s e n t a t i o n  f o r  t h e  g r a v i t a t i o n a l  e q u a t i o n s  was f o u n d .  I n  [5] 
f o r  s y s t e m s  o f  t h e  t y p e  ( I . 7 )  t h e  d r e s s i n g  method  was c o n s t r u c t e d ,  e x a c t  s o l u t i o n s  f o u n d ,  
and t h e  c o n s e r v a t i o n  l aws  i n v e s t i g a t e d .  

I n  t h e  p r e s e n t  p a p e r ,  we s h a l l  show t h a t  t h e  d e v i c e  employed  in  [ 4 , 5 ]  i s  e q u i v a l e n t  
t o  t h e  d e v i c e  o f  [3]  and can  be  d e v e l o p e d  t o  t h e  l e v e l  o f  a g e n e r a l  me thod ,  wh ich  we s h a l l  
c a l l  t h e  i n v e r s e  s c a t t e r i n g  method  w i t h  v a r i a b l e  s p e c t r a l  p a r a m e t e r .  The t r a d i t i o n a l  
i n v e r s e  s c a t t e r i n g  me thod  [ 1 , 2 ]  i s  a s p e c i a l  c a s e  o f  t h i s  me thod .  

E q u a t i o n  ( I . 7 )  i s  an e x a m p l e  o f  an i n t e g r a b l e  e q u a t i o n  h a v i n g  v a r i a b l e  c o e f f i c i e n t s .  
T h i s  e x a m p l e  i s  by  no means u n i q u e .  Many s u c h  e q u a t i o n s  a r e  g i v e n ,  f o r  e x a m p l e ,  i n  [ 6 ] .  
The s i m p l e s t  way o f  c o n s t r u c t i n g  s u c h  e q u a t i o n s  was a l r e a d y  n o t e d  in  [ 1 ] .  I n  Eqs .  ( I . 1 )  
and ( I . 2 )  one  can  a s sume  t h a t  t h e  p o l e s  A n a r e  a r b i t r a r y  f u n c t i o n s  o f  t h e  v a r i a b l e  ~ and 
t h e  p o l e s  Un a r e  a l s o  a r b i t r a r y  f u n c t i o n s  o f  t h e  v a r i a b l e  q. Then t h e  c o n d i t i o n s  ( I . 4 )  
g i v e  e q u a t i o n s  w i t h  v a r i a b l e  c o e f f i c i e n t s .  I t  was shown in  [7]  t h a t  i n  t h i s  way one can  
a r r i v e  a t  Eq. ( I . 7 )  i n  t h e  s p e c i a l  c a s e  N = 2,  g = g t r ,  which  c o r r e s p o n d s  t o  t h e  a p p l i c a -  
t i o n s  i n  t h e  t h e o r y  o f  g r a v i t a t i o n .  

I t  f o l l o w s  f r o m  [ 3 , 8 ]  t h a t  t h e  d r e s s i n g  method  in  t h e  c a s e  o f  "moving  p o l e s "  i s  s i g -  
n i f i c a n t l y  modified compared with the case of constant poles described in [1,2]. 

The proposed method provides a possibility of studying systematically integrable 
nonlinear partial differential equations with variable coefficients. One can show that 
to every equation with constant coefficients to which the scheme of the inverse scattering 
method [i] briefly described above applies there corresponds an entire class of variable 
coefficients that are amenable to the new method. We shall call equations of this class 
deformations of the original equation. In this class we shall also include equations 
integrable in the framework of the scheme of [i] with "moving poles" Xn(~), Un(q). Thus, 
Eq. (I.7) is a deformation of Eq. (1.6) of the principal chiral field. One further 
example of this kind was already known -- the Heisenberg equation that models the evolution 
of cylindrically symmetric configurations of the magnetization of an isotropic magnet [9]: 
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St=S • ~Srr +-~--Sr), $2~---I, S---(S1, S2, Ss). ( 1 . 1 2 )  

T h i s  e q u a t i o n  i s  a d e f o r m a t i o n  o f  t h e  H e i s e n b e r g  e q u a t i o n  u s e d  in  t h e  o n e - d i m e n s i o n a l  
situation: 

St=SXS=, $2=I. (1.13) 

In the general case, as in the considered examples, the variable coefficients of the 
deformations satisfy a certain system of partial differential equations (for example, for 
the gravitational equation Eq. (1.8) plays the part of this system). In the general case, 
the system is nonlinear, and the question of its solutions is of independent interest. The 
point is that in general these systems do not have the Painlev6 property, i.e., their 
exact reductions to ordinary differential equations admit moving critical points. Neverthe- 
less, one can sometimes reduce the problem of constructing the general solution of these 
partial differential equations to the problem of integrating an ordinary differential 
equation. It could be that these systems are integrable, but, perhaps, in a quite new 
sense. 

In some cases, substitutions of the variables and fields can reduce the deformation of 
an equation to the original undeformed equation. We shall say that such deformations are 
trivial. An example of this kind is the well-known Korteweg-de Vries equation with 
"cylindrical divergence": 

U 
u, + 6uux + uxxx + -~- =-=0. (I. 14) 

The c o r r e s p o n d i n g  s u b s t i t u t i o n  was found  f o r  t h e  f i r s t  t i m e  in  [ 1 0 ] .  

T h e r e  e x i s t  s p e c i a l  c a s e s ,  o f  g r e a t  i n t e r e s t ,  when t h e  d e f o r m e d  e q u a t i o n s  h a v e  c o n s t a n t  
c o e f f i c i e n t s .  Such,  f o r  e x a m p l e ,  i s  t h e  s y s t e m  o f  e q u a t i o n s  

E~=p, N~+~/2(pE+pR)=c, p~=NE, ( 1 . 1 5 )  

( c  i s  a c o n s t a n t ) ,  wh ich  i s  a n o n t r i v i a l  d e f o r m a t i o n  o f  t h e  w e l l - k n o w n  M a x w e l l - B i o c h  s y s -  
tem ( s e e  be low f o r  p h y s i c a l  a p p l i c a t i o n s  o f  t h e  s y s t e m  ( 1 . 1 5 ) ) .  

The p r o c e d u r e  f o r  i n t e g r a t i n g  t h e  d e f o r m e d  e q u a t i o n s  by means o f  t h e  d r e s s i n g  method  
d i f f e r s  a p p r e c i a b l y  f rom t h e  me thod  d e s c r i b e d  in  [ 1 ] .  We i n t e n d  t o  d e v o t e  a s e p a r a t e  
p a p e r  t o  t h e  d e s c r i p t i o n  o f  t h i s  p r o c e d u r e .  

i. General Case 

The basic idea of the inverse scattering method with variable spectral parameter is as 
follows. Suppose the undeformed system is the condition of compatibility of (I.I), (1.2) 
in the case of "fixed poles" Xn, ~n" To obtain deformations of this system, we shall 
assume that in (1.2) the poles X n, ~n are certain functions of ~ and n and that X is a 
function of ~ and N and is locally an analytic function of the hidden spectral parameter z 
(in this case, the simple fractions I/(X -- X n) and I/(X -- ~n) are linearly independent). 
These functions are by no means arbitrary. They satisfy a system of equations that is 
uniquely fixed by the requirement that the condition (1.4) be satisfied identically with 
respect to z and the resulting system of nonlinear equations for the matrices Un, v n have 
precisely the gauge indeterminacy. By virtue of this, the equations for k have the form 

0 I NI N, 

0~ ~--Xn =p"+ k--~ m + ~__--------~, 

# 1 N, N, 

~=I m=l 

where the coefficients p~, q~, a~, b~, c~, d~ are functions of $ and N. 

We consider the system (i.i). All the equations of this system must determine the 
same derivative X N. Hence, we have 

p~= . . .  =p~,=p, a=~=a~6~=, b~,~=b,~/(~,~-~,~) 2. (1.3) 

At the same time 
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N2 
bm 

a n : 2 p ~  -- p -- Z (~ -- ~m) ~ ' 
? r i l l  

N~ 
0~,,+ bm 
0+---~-- P~'~ + ~ )~  + p - -  Z ~ - -  ~,~ 

where ~ and ~ a re  c e r t a i n  f u n c t i o n s  of  ~ and rl. Now 

N,  
0L bm 
0~ =--P~ + p~ + p-Z 

Similarly, from (1.2) 

with 

(1.4) 

( 1 . 5 )  

(1 .6 )  

qt=.. .=q~v,=q, d,,,=d,5,,~, c,.~=c,j(la.-L.)~, (1 .7 )  

(1.8) Cm 
NI NI 

Z c+ o , +  Z d .  = 2q~, ,  - q -- (~n - -  ~m) ~ ' 0~ - -  - q u#~ + q ~  + ~ - -  

where ~ and ~ are as yet unknown functions and 

~,--Em ' 

O~ N, 
o~ - -  q ~  + q ~  + q - , ~ _  ~ - - - - - - ~ .  ( 1 . 9 )  

71"1= 1 

Substituting (1.2) in (1.4) and taking into account (i.i)-(1.9), we obtain the matrix 
system 

Nt N~ 
Ouo Ovo 

+ [uo, vo] ++ q Z v., 0~1 O~j I 

n = l  n=l 

N~ N~ 

011 + un, vo + L. -- ~m = -- anU,~ + c~ (~. _ ~,.)~ , 
frL~l m = l  

Nt NI 
OVn [ Vn~ uO IZm = �9 Zl'ra 
O~ + I. + Z [,,tn ='.m ] -- dnvn + bn Z (~,n - -  . m )  2 ' 

m ~ l  m=l  

which c o n t a i n s  the  as y e t  unknown c o e f f i c i e n t  f u n c t i o n s  ~., ~,, c,, b., p, ~, p, ~ ~t, q. For t h e i r  
d e t e r m i n a t i o n ,  we no t e  t h a t  Eqs. ( 1 . 6 )  and ( 1 . 9 )  must be compa t ib l e  and de te rmine  k as a 
f u n c t i o n  of  ~ and 0 and t h e  c o n s t a n t  of  i n t e g r a t i o n  z, t he  h idden s p e c t r a l  pa ramete r .  
C a l c u l a t i n g  ASq in  two ways from ( 1 . 6 )  and ( 1 . 9 ) ,  and making s imple  m a n i p u l a t i o n s ,  we f i n d  

N~ N~ 
ap aq ap o~ ap o71 

+ Pq = - ~ -  + qP' O--~ -- 2p# - -  0q 2qp, O--~ -- p~ + 3 p _  Z c , n -  OD qP + 3q Z bin' O~ I 

7rt=l m = l  
N~ 

Ocn bm 
2PLn --  Z 0~1 + 2 c , ( - - p +  - -  (~'=--gm)')-----0, n : t , . . . , N 1 ,  

7/'t ~ l 

Na 

O~ +2b~ - - ~ + 2 q l x n - -  --~0, n-----t , . . . ,N~. 
m=l  

Equa t ions  (1 .11 )  in c o n j u n c t i o n  wi th  Eqs. ( 1 .5 )  and ( 1 . 8 )  form a system of  c o m p a t i b i l i t y  
c o n d i t i o n s  of  Eqs. ( 1 . 6 )  and ( 1 . 9 ) .  

In the trivial special case when X, An, and ~n are constants, the right-hand sides 
in (i.i0) are also equal to zero. Then Eqs. (i. I0) determine a general "undeformed" 
system that is integrable in the framework of the inverse scattering method (I.i), (1.2) 
with "fixed poles" An, ~n" In the general case, the system (i.i0), augmented by Eqs. (1.5), 
(1.8), and (i.ii), is a deformation of it. Note that the scalar system (1.5), (1.8), 
(i.ii) is not dependent on the matrix system (i.i0) and can be treated independently. 

This system is a set of 2(N I + N 2) + 3 equations for 2(N I + N 2 + 3) unknown functions. 
The underdetermination is here due to the possibility of making an arbitrary linear- 

(i.ii) 
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fractional transformation 

Z+ (aL+~) / (%+~), 

where a, ~, 7, 6 are certain functions of ~ and q. 

PROPOSITION I. By a linear-fractional transformation the system (1.6), 
reduced to the form 

Ol ~r, bm : O, OX N, 
y ,  _ = o .  
7frill m~ 1 

The conditions of compatibility of the system (1.13) have the form 

N~ /'Vt 
bm 0~,. bm - -  O, 0c,~ 2c~ 2 (%~ - -  -= O, 

+ on ffl.~l ra=l 
Nt N'~ 

O[l'n ~ 1  Cm = 0 0bn ~ 2 Cm : 0" 

( 1 . 12 )  

( 1 . 9 )  can be 

(1.13) 

(1.14) 

Here, the number of equations and the number of unknown functions are the same and equal 
to 2(N I + N2). 

We omit the simple proof of Proposition i. We merely note that the system (1.14) 
arises from (1.5), (1.8), and (I.ii) if we set p=ff=p=q=~=q----0. In addition, the matrix 
system (I.i0) has gauge indeterminacy (N l + N 2 + i matrix equations for N I + N 2 + 2 
matrices Un, Vk, n = 0, I, .... NI; k = 0, i ..... N2). This is due to the possibility 
of making in the system (I.i) the gauge transformation 

r  C=-g-ig~+g-,Ug, F=-g-ig,+g-,Vg, ( 1 . 1 5 )  

where g is an arbitrary nondegenerate matrix function of ~ and n. Besides the transforma- 
tion (1.15), in the system (I.i) we can make the change of coordinates 

~ ' : ~ ' ( ~ ) ,  -q'=n'(rl). ( 1 . 16 )  

We shall say that two deformed systems differing by the transformations (i.12), (i.15), 
(1.16) are generalized gauge equivalent. We shall say that the deformations that can be 
reduced to the undeformed equations by means of point transformations and the transforma- 
tions (1.15) are trivial, and we shall say that all the remainder are nontrivial. Suppose 
that the system of equations for X has been reduced by a linear-fractional transformation 
to the form (1.13). Then p = q = 0, and in Eq. (i.i0) we can make the functions u 0 and v 0 
vanish simultaneously by means of a gauge transformation. Then the system (I.i0) takes 
the simple form 

N2 N2 +~247 
O~l - -  ~,+ - -  ~ (X,~ __  ~ ) 2  , 

r~= l  , n = l  ( 1 . 1 7 )  
N:t Ar~ 

Y, CraUn + bnura 

One can a r r i v e  a t  t h e  sy s t em ( 1 . 1 4 ) ,  ( 1 . 1 7 )  i n  a q u i t e  d i f f e r e n t  way. 
spectral parameter but suppose Eqs. (I.i) are replaced by the equations 

DI~=U~, 

Here, the operators D~,z have the form 

0 0 0 0 
DI -N+Fg z, 

D 2 0 = V ~ .  

Let X be a constant 

(1.18) 

N I  -~'z 

r a i l  'i"o. ~ 1 

while the matrices U and V are, as before, given by (1.2). We require that the operators 
Di and D2 commute. We then obtain 

F~+GF~=G~+FG~. ( 1 . 2 0 )  

Equation (1.20) is the condition of vanishing of the commutator of the vector fields D1, z. 
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Substituting (1.19) in (1.20) and making simple transformations, we obtain Eqs. (i.14). 

The condition of compatibility of the system (1.18) has the form 

D~U-D2V+[U, V]=0. (1.21) 

It is readily seen that Eq. (1.21) (in the case of the canonical gauge u 0 = v 0 = 0) is 
equivalent to the system (1.17). 

In Eqs. (1.18) one can also make linear-fractional and gauge transformations and also 
stretch the coordinates. To conclude this section, we note that the scheme, for obtaining 
deformed equations using differentiation with respect to the parameter X follows directly 
from [3], whereas the technique associated with introducing the variable parameter X 
arose from attempts to understand the result of Maison [4]. 

We note also that the system (1.13), (1.14) contains a simple special case. Suppose 
c n = 0, ~X/~g = 0. Then ~n = ~n(~) and b n = bn(~) are arbitrary functions of one variable. 
The dependence X = X(z, ~) can be found by solving the ordinary differential equation 
(1.13) and the poles are ~=%[ ..... 

2. Deformation of the Equations of 

the Principal Chiral Field 

Turning to the consideration of specific examples, we note that in what follows we 
shall not necessarily reduce the considered system to the form (1.14), (1.17) but will 
exploit the freedom with respect to the gauge and linear-fractional transformations as we 
find convenient. Suppose the matrix functions U and V each have just one simple pole. 
By a linear-fractional transformation we can carry these poles to the points X = • 
Choosing the canonical gauge, we reduce Eqs. (I.i) to the form 

O ~ = ~ * ,  * n = - ~ t * .  " (2.1) 

In contrast to (1.6), X here is variable and satisfies the equations 

0 t a b 0 t c d 
On %--i--% I +~--+I ' O~ %+i = ~ - T  + ~  " ( 2 . 2 )  

With allowance for (2.2), the conditions of compatibility of the system (2.1) have the 
form 

u~+I/2[a, v]=-au+dv, v~-I/2[u, u]=-cv+bu. (2.3) 

The conditions of compatibility of the system (2.2)can be written in the form 

b~+2bc=O, ~+2da=O,  ( 2 . 4 )  

(a+b)~=(c+d),=-ac-3bd. ( 2 . 5 )  

It follows from (2.5) that we can introduce the function a in accordance with the formulas 

0 
O In a =  a-:-b. - ~ l n a : c  + d. ( 2 . 6 )  Oq ' . 

Wi th  a l l o w a n c e  f o r  ( 2 . 6 ) ,  i t  f o l l o w s  f rom ( 2 . 3 )  t h a t  

( ~ u ) , = ( ~ v ) t .  ( 2 . 7 )  

Expressing u and v by means of (2.1), we obtain for 

(a (~--1) r 1 6 2  ( a ( ~ +  1) r 1 6 2  ( 2 .8  ) 

E q u a t i o n  ( 2 . 8 )  h o l d s  i d e n t i c a l l y  w i t h  r e s p e c t  t o  t h e  " h i d d e n  p a r a m e t e r "  z -- t h e  c o n s t a n t  
o f  i n t e g r a t i o n  o f  t h e  s y s t e m  ( 2 . 2 ) .  I n  t h e  t r i v i a l  s p e c i a l  c a s e  a = b = c = d = O, X = 
c o n s t ,  ~ = 1, ( 2 . 8 )  goes  o v e r  f o r  X = 0 i n t o  t h e  e q u a t i o n  o f  t h e  p r i n c i p a l  c h i r a l  f i e l d .  
The s y s t e m  ( 2 . 2 ) - ( 2 . 8 )  i s  t h e  m o s t  g e n e r a l  d e f o r m a t i o n  o f  t h e s e  e q u a t i o n s .  E q u a t i o n s  
( 2 . 4 ) - ( 2 . 5 )  can  be  i n t e g r a t e d  s i m p l y  in  t h e  s p e c i a l  c a s e  

t 0 t 0 
a-~-b--~- o ~ I n a ,  c=d=--~- O~ l n a ,  ( 2 . 9 )  

which  s i m p l i f i e s  t o  t h e  s i n g l e  e q u a t i o n  ag~ = O. The s y s t e m  ( 2 . 2 )  can  t h e n  a l s o  be  
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integrated and gives formula (I.ii), which determines I = l(z, $, q) as a function of the 
hidden spectral parameter z, which lies on a two-sheeted Riemann surface. Going to the 
limit z + ~ on the upper sheet, we obtain I + 0. At the same time, Eq. (2.8) goes over 
into the gravitation equation (1.7). 

Other cases of integrability of the system (2.4)-(2.5) are known. Suppose d = 0, 
b ~ 0. Then the ansatz 

b:-~-f  -~- R~n + Rn (2 I0) , c--~- , a ~ - -  R~ ~ 

makes it possible to integrate the equation for ~ twice, after which the system is 
reduced to an ordinary differential equation with moving critical points: 

1 
Rn-- R + ~(n)R + Y(n)" ( 2 . 1 1 )  

Here, ~i,) and ?(~) are arbitrary functions. In the general case, this equation cannot be 
integrated by quadratures. 

0 In~, c~ o~In~ again leads to Simpler is the case d = b = O. Then the ansatz a=-~- 

the equation 

" a~=O, ~ = / ( ~ ) + h ( ~ ) .  

E q u a t i o n s  ( 2 . 2 )  can  now be  i n t e g r a t e d  and g i v e  

~__ - - / ( [ )  + h ( n  ) + z ( 2 . 1 2 )  
/ (~) + h (n) 

From Eq. (2.8) for z = 0 we have 

( / r  ~+ ( h r 1 6 2  t=0.  ( 2 . 1 3 )  

T h e r e  i s  one  f u r t h e r  c a s e  o f  i n t e g r a b i l i t y :  c = d = 0. Then a and b a r e  a r b i t r a r y  
f u n c t i o n s  o f  q ,  and Eqs .  ( 2 . 2 )  c a n n o t  be  i n t e g r a t e d  i n  g e n e r a l  f o r m .  I t  i s  i n t e r e s t i n g  
t h a t  we can  now t a k e  a and b t o  be  a r b i t r a r y  c o n s t a n t s .  Then Eq. ( 2 . 8 )  t a k e s  t h e  fo rm 

a(O~O-~)n+b(@~O-')~+a(aTb)O~O-'=O. (2.14) 

Both (2.3) and (2.14) become equations with constant coefficients. In the general case 
the solution of the system (2.4), (2.5) is not known to us. 

3. Deformations of the U-V System and the 

Maxwell-Bloch Equations 

The equations of the principal chiral field are gauge equivalent to a certain system 
of equations for two matrix functions U and V known as the U-V system. In a special case, 
the sine-Gordon equation can be deduced from this system. It is convenient to consider 
the deformations of these equations independently. We consider the system (I.i), in which 
the functions U and V each have one simple pole. By a linear-fractional transformation 
we carry the poles to the points I = 0, ~. We set 

U=~+Uo, V=v~.  ( 3.1 ) 

The function I satisfies the system of equations 

O~ C 0 " i ~ ( 3 . 2 )  
o~--aX+b+---~ -' O~ ~ : g k +  g + - - ~ .  

Taking them into account, we extract from (1.4) the system of equations 

Ou~=--aul + ~v, Ouo Ov O~ : - ~ -  + [ul, v] : - -  bul + ~v, ~ + Iv, uo]  : cu~ - -  *v. ( 3 . 3 )  

For a=5=b=~=c=6=O, the system (3.3) goes over into the U-V system of [ii]. (One 
usually takes u I = J, a constant diagonal matrix.) 

In our case, the coefficients a, 5, b, F,c, 6 satisfy a system of equations that follows 
from (3.2): 
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5~+25a=0, ~,+~a+3bS=O, c~+2c~=0, b~+bS+3~c=O, a:+5~+2b~+45c=O. (3.4) 

The choice of U and V in the form of (3.1) permits a stretching of the parameter X 
(l + eTl), and therefore the system (3.4) is underdetermined. By a stretching of I we can 
make the function ac~,n ~ vanish and the function ace. n) into a constant. Further, the 
following tree of variants is possible. 

i. a=1, c#0. By the substitution 

c=e~L ~=--%~, b=pe ~ ( 3 . 5 )  

the system (3.4) is reduced to the symmetric form 

~+3peX=O, p~+3~e~=O, %~=2p~eX+4e zx. (3.6) 

The sys tem ( 3 . 6 )  ( l i k e  the  sys tem ( 2 . 4 ) - ( 2 . 5 ) )  has no t  y e t  been s o l v e d  in gene ra l  form. 
In  t he  s p e c i a l  case  5 = p = 0 i t  i s  e q u i v a l e n t  t o  t he  L i o u v i l l e  e q u a t i o n  

%~=4e~. ( 3.7 ) 

2. ~=1, c=O, b#O. In t h i s  c a se ,  t he  sys tem ( 3 . 4 )  i s  reduced  by t he  s u b s t i t u t i o n  

b=eL 6=-X~, ~=I/z%t~e -~ (3 .8 )  

to the single equation 

%~--X~X~+6e~=0. (3.9) 

We also make the substitution YN = eX. Equation (3.9) can be integrated three times 
with respect to q, after which it becomes an ordinary differential equation of first order 
with moving critical points, 

Y~+ P+ft(~) Y+/o(~)=0, (3. i0) 

where f0,~($) are arbitrary functions. In the general case, it cannot be integrated by 
quadratures. 

3. ~=i, b=c=0. In this case, Eqs. (3.4) become trivial, and 5 and c can be made 
arbitrary functions of ~. Then I does not depend on D but it is not possible to find the 
explicit dependence of X on $ and z in the general case. 

We consider the simplest case 5 = 5 = 0. Then I = i/~2($ + z), and the system (3.3) 
takes the form 

Ou~ Ouo av 
aN : u ,  o-T §  - ~ §  u o ] = o .  (3 .11 )  

We set 

We have 

sn=i( ~.--~r r162 (3 .13)  

It would be of great interest to find an application of the system (3.13). 

4. We now consider the case ~=0. Then 3ui/8 q = 0 and we can take u I = J, a constant 
matrix. In the general case a stretching of X achieves 5 = i. Then, if c ~ 0, the 
change of variables c=e ~X, ~=-x~,b:1~X~ leads to the equation 

%~--X~X~+6e~=0, (3.14) 

which differs from (3.9) by the substitution ~++N. For c = 0, the substitution b=e ~, ~=-~ 
leads to the Liouville equation ~,=2e% The most interesting case is b = 5 = 0. Then 
from (3.4) we have 

$ = 0 ,  

Equation (3.3) simplifies to the form 

@u0 + [J ,  v] : o, aq 

c~+2c~'=0. ( 3.15 ) 

~U 
-~- + [V, uo] = C] - OU. u g  

(3 .16)  
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We set 

We have 

J : L  0 --lJ' u~= --E , v=~ _~ . 

E n - p = 0 ,  ( 3 . 1 7 )  

N~+'/~(pE+oE) =-6N--4c ,  ( 3 .18  ) 

p ~ - N E = - 6 9 .  (3.19) 

The system of equations (3.17)-(3.19) for c = ~ = 0 goes over into the well-known Maxwell- 
Bloch system [12], which describes the propagation of a radiation pulse in a two-level 
medium. The case ~ = 0, c = const is interesting. The system (3.17)-(3.19) now takes the 
form (1.15). For the spectral parameter we have X = ~ x), so that the deformation 
(1.15) of the Maxwell-Bloch equations is nontrivial. From the physical point of view 
this is the Maxwell-Bloch system in which there is pumping of atoms in an excited state. 
The value of /Ip[ 2 + N 2 varies in accordance with the law 

0 I ~ N ~ 4c N 
o~ V I p  + = -  

1 / l ~ l : +  N :  

Suppose  c = O, ~ = c o n s t ;  t h e n  t h e  d e f o r m a t i o n  i s  t r i v i a l .  
i 

The s u b s t i t u t i o n  v = ~ ,  a + = ~ 0 ,  

For now E=z~b(~), ~ (~)=exp[ - -6~] .  
0 0 

reduces the system to the undeformed form 

Z 

4. The Polynomial Case 

A significant number of integrable systems belongs to the case when the matrices U 
and V in (I.i) are polynomials in the spectral parameter %: 

U=ao+ui~,+...+am%, '~, (4. i ) 

V=uo+vi~,-t-. . .+v,~, ~. (4.2) 

Suppose the spectral parameter is variable. Then the following system of equations 
for k must hold: 

:~  ~ = p o + p , ~ + . . . + p ~ ,  ( 4 . 3 )  

s =qo+qi~+- �9 .+qzU, ( 4 .4  ) 

where k < m, s < n. In addition, pk~0, q~0. The conditions of compatibility of the system 
(4.3), (4.4) can be investigated in general form. To be specific, we take k 5- s Then 
we have 

PROPOSITION 2. The following alternative holds: k = i or k = s 

Indeed, suppose i < k --< ~. Differentiating (4.3) with respect to t, and (4.4) with 
respect to x, and expressing the derivatives by means of (4.3) and (4.4), we find in the 
leading order in X: 

(l-k)paq,Xh+z-i=O. ( 4 , 5 )  

Hence k = s 

We consider two possibilities. 

i. Suppose k = i. Equation (4.3) has the form 

~==p0+P~. 

We make t h e  t r a n s f o r m a t i o n  

),=a + b l~ 

and r e q u i r e  f u l f i l l m e n t  o f  t h e  c o n d i t i o n s  a==po+p~a, 
takes the form 

~==0, 

b~=p,b. Then the system (4.3), 

~,=~0+~,~+...+~,g, 

(4.6) 

(4.7) 

(4.4) 

(4.8) 
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where q0 ..... ~s are arbitrary functions of t. 

2. k = s To find the general compatible solution of the system (4.3), (4.4), we note 
that it now admits an arbitrary curvilinear transformation of the coordinates: x = 
x(x', t'), t = t(x', t'). The transformation can be chosen to make Pk ~ 0. By virtue of 
what was proved above, all Pi (2 ~ i & k - i) then automatically vanish, and Eq. (4.3) is 
reduced to the form (4.6). Further, by a linear transformation of the parameter ~ we 
can make P0 and Pl vanish. Thus, to obtain the general solution of the system (4.3), 
(4.4) for k = s we must consider the general solution of the system (4.8) and then in this 
system make an arbitrary change of the coordinates and an arbitrary linear transformation 
of the function ~. 

In the examples considered below, we shall encounter only the case k < s when the 
system (4.3), (4.4) can be reduced to the form (4.8) by a linear transformation of ~. The 
system (4.8) can be simplified still further by using the linear transformation ~=cr162 
and a change of the time t. We finally obtain 

L=0, 
This system arises from (4.8) if we set q0 = ql = 0, ~s = i. Examples of different 
deformations of systems of polynomial type are given in the Appendix. 

5. The Case of the Spectral Parameter on 

a Curve of Finite Kind 

In the system (I.I), the spectral parameter may be situated not only on a Riemann 
sphere but also on an algebraic curve of finite kind [13]. Instead of making an explicit 
uniformization of the algebraic curve, it is more convenient in this case to introduce 
analogs of simple fractions -- linearly independent functions w i that are rational on the 
curve and are connected by quadratic relations (see [13]). In general form, 

N N 

U=Zuiwi, V=Zuiw~. ( 5 . 1 )  

i = l  i=l 
H e r e ,  t h e  f u n c t i o n s  w i s a t i s f y  t h e  s e t  o f  q u a d r a t i c  r e l a t i o n s  

1-I~wiwj+~;,~w~=O, s = i , . . . , N - - p  (p i s  t h e  k i n d  o f  c u r v e ) ,  ( 5 . 2 )  

w h i c h  a r e  t a k e n  i n t o  a c c o u n t  when t h e  c o n d i t i o n s  o f  c o m p a t i b i l i t y  o f  t h e  s y s t e m  ( I . 1 )  
a r e  c a l c u l a t e d .  

H e r e ,  t h e  s p e c t r a l  p a r a m e t e r  - -  t h e  u n i f o r m i z i n g  p a r a m e t e r  o f  t h e  s y s t e m  o f  q u a d r i c s  
( 5 . 2 )  - -  i s  f r o m  t h e  v e r y  b e g i n n i n g  h i d d e n ,  t h o u g h  i t  i s  c o n s t a n t .  To make i t  v a r i a b l e ,  
we a s s u m e  t h a t  a l l  t h e  w i a r e  f u n c t i o n s  o f  x a n d  t a n d  s a t i s f y  t h e  s y s t e m  o f  e q u a t i o n s  

Ow~ Ow~ 
Ox - -  A~wjw~ -t- P~jwj, ~ = B~j~wjw~ -k- Qijwj. (5 .3 )  

The overdetermined system (5.3) must be considered simultaneously with the algebraic 
equations (5.2). At the same time, not only the coefficients Aijk, Bijk, Pij, Qij but 
also the parameters Hsij, ~si of the quadrics must be assumed to be functions of x and t. 

The general problem of such kind has not been studied at all. However, we shall 
give a fairly interesting example. We consider the well-known Landau--Lifshitz equation 
[14,15]: 

St =SX (S=+]S), S2=~, ( 5.4 ) 

where ~ is a constant diagonal 3 • 3 matrix, S=(S,, S~, Sa). In the case (5.4), the matrices 
U and V have the form 

Here, the functions 

3 3 3 

Sa(~a a , V i Z ~ U = i Z  wO) 2i Z S ,  w~) + ~ OSc (~w,,. = eab~o~ ~ (5.5) 
a : l  a = l  a, b, c = l  

w (~ satisfy the equations 

(w(~)) ~ - -  (w(b~)) ~ = 2A~ - -  2Ab, ( 5 . 6 1  
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(2) . (1) .  (1) wa =wb ~c , a,b and c a re  not  equal  to  each o the r .  

Here, o a are the Pauli matrices, and gab c is the absolutely antisymmetric tensor. The 
relation (5.6) determines an algebraic curve (torus). We calculate the condition of 
compatibility of the system (I.i) in the case (5.5)-(5.7): 

(5.7) 

3 3 3 

( 02Sr 8SbA=Sr + 2 Z(raw~2)[(S~--1)0S~ t O S ~ ] :  Z c~wa'[OSa Z e~b~ Sb Ox' Ox 2"S~-~-x ] 

3 

(~ 2S~ 0"---'7-- --7 + e~b~S~ Ox Oz " (5.8) 

In the calculation we used the relation 

3 3 

Sabc(YaWa SbAcSc, Z (~)~162162 2 Z a) SabcffaWb Wc U b ~  c - - -  

a ,  b, c = l  a ,  b, c = 1  

which is a consequence of the definitions (5.6) and (5.7) for w~) and w(2)~ In the case 
of constant w(~ ), expanding (5.8) with respect to the basis of the functions w~) and w a 
we obtain the Landau-Lifshitz equation (5.4), in which 

[i Oo] 2~--- - - 8  As �9 
0 Aa 

Now suppose the functions w~) and A a depend on x and t. In the general case, this 
dependence must be specified by the equations 

ow~ ) . (1) Ow~ ) 
Ox --]~u'a, Ot :g~w~2) + h~w~)" (5 .9 )  

However, it can be shown that the functional arbitrariness that arises in (5.9) is 
imaginary: omitting the proof, we state 

PROPOSITION 3. The requirement that the equations of the system of (5.9) be com- 
patible with each other and with the definition (5.6), (5.7) and also fulfillment of the 
condition S~=i leave possible the variant 

Ow(~ 1) t , 1  (1) = OWa 4 (~) 
- - w ~  -), =--wo (5. i0) Ox x Ot x 

where 

Substituting (5.10) in (5.8), we obtain a deformation of the Landau-Lifshitz equation: 

( ) S t = S x  S ~ + T S ~ + x ~ ] o S  , S ~ = t ,  ( 5 . 1 1 )  

Aa (x) : x2Aa ~ 
[ A~~ ] 

] o  = - -  8 A~, ~ . 
Aa ~ 

We note that in the cylindrical Landau-Lifshitz equation, in contrast to the deformation 
(5.11), the coefficient x 2 is not present in front of the term Sx(J0S). It remains to 
integrate the system (5.10). We seek the solution in the form 

w~ ) (z, x, t) = x ~  (~ : z -- 4pt), p ___ ~/~ |/j~o __ j~o 

(the complex constant of integration z is a hidden spectral parameter), which automatically 
satisfies the first equation of the system (5.10). Substituting in the second equation, 
we obtain 

d~a 
d~ = -- P-I$bY2~" 

The solution of this last equation can be expressed in terms of elliptic Jacobi functions 
[15]: 
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P O dn (X, k) p cn (X, k) V j.,o _ j~o 
$ z ~  s n ( L , k ) '  wz--  sn(X,k) ' $ 3 ~  s n ( X , k )  ' k =  j 3  o _ J 1  o , Jz ~ ~  ~ 

these being defined in the rectangle R = { l : l R e l l ~ 2 k ,  llm~[~2k' }. 
Note  t h a t  Eq. ( 5 . 1 1 )  can be o b t a i n e d  by a v e r a g i n g  o v e r  t h e  r e d u c t i o n  group  o f  t h e  

operators LI,2: L I = --3 x + U, L 2 = --3 t + V for the cylindrical Heisenberg equation (1.12) 
[16]. 

We are grateful to I. R. Gabitov for a fruitful discussion of the paper. 

Appendix 

Omitting the calculations, we give the list of the deformations (and corresponding 
linear systems of polynomial type) of various well-known equations that we have found. 

i. Deformations of the Korteweg-de Vries equation: 

ut=--vx=+2vxa+vux, " v = - -  ?x 2 u ~ + - -  dx, (A .1 )  
2 x 

To o b t a i n  ( A . 1 ) ,  we u s e d  t h e  " s c a l a r "  l i n e a r  s y s t e m  

r162 Ct=Ar (A.2) 

t 
U=k+u, A=4k+v, B = - ~ A . ,  (A .3 )  

2 

where X x = X/x, X t = (12/x)X 2, X = --x/12(t + z). By the substitutions u(x, t) = --5/16x 2 + 
u(x, t), x = x 312, t = (27/8)t the system (A.I) is reduced to the form (in what follows, 
we omit the caret) 

at +(xu)==+u== [ -3xuZ-2u ~udx ] - 3u z. (A.4) 
X 

The deformation (A.I) is nontrivial. To obtain Eq. (1.14) we must in (A.3) make the choice 
v = --2u, X x = --i/12t, k t = --X/t. 

2. Deformation of the modified Korteweg-de Vries equation: 

To construct (A.5) it is necessary to apply the linear system (I.i): 

@~=U@, ~t=V~, 

where 

[, o][o "1, 
U= ik + 

t - t  •  0 

[, f o o] V = 4i~/x + 

0 - - t  J t • 0 

0 

:~(xa)=+2a (x ~ttZ dz )z 

25~ 
+(xu), 

-(xu)=,• x ~u ~ 

1 
X,=0, M=4~L X(z,t)= 

?-8(t+9 

3. Deformation of Kaup's system [17]: 

t 
=, + -- (xa~)x+ (xn)x=-n, 

2 

- (xtt) ~ / 

/ 

dx )x 1 

] 7 

n,+ (z,lu) ~+ (z=)===-n =. 

(A.6) 

(A.7) 
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For the system (A.7), the corresponding linear system has the form (A.2), where 

U = ~2 + _ _  + _ _  _ _ _  A = - 2 i x X  - - - x a ,  B = - - - A ~ ,  X,=0, ~ t = - 2 i ~  ~, ~.(z, t) 
2 4 t 6 '  2 2 2 / ( t + z )  

The d e f o r m a t i o n  ( A . 7 )  i s  n o n t r i v i a l .  We a l s o  g i v e  a t r i v i a l  d e f o r m a t i o n  o f  K a u p ' s  s y s t e m  
o f  i n t e r e s t  f rom t h e  p o i n t  o f  v i e w  o f  a p p l i c a t i o n s  in  h y d r o d y n a m i c s :  

ut+uu,=+~l,==O, ~ l t + [ ( t - a x + ~ l ) u ] , ~ + u = = = O ,  ~z i s  a c o n s t a n t .  

For the system (A.8), the functions U, A, and B have the form 

U = ~  z + - -  + - -  (vl+ t -~x  ) -- A = - - 2 i ~ .  - - - -  B = -  - - A , ,  
2 4 --~6' 2 ' 2 

where M=0, M=-~, ~(z,t)=z +--ut. Note that the substitution 
4 

n(x,t)==x+~(x,t), x=~ + - - t , ,  . ( x , t ) = - ~ t + ~ ( ~ , ~ ) ,  ~=t, 
2 

r e d u c e s  t h e  s y s t e m  ( A . 8 )  t o  t h e  o r i g i n a l  u n d e f o r m e d  Kaup s y s t e m  [17] (we o m i t  t h e  c a r e t ) :  

u t + u u = + ~ l ~ = O ,  ~ l t + [ ( t + q ) u ] ~ + u ~ = = O .  

4. Deformations of the nonlinear SchrSdinger equation: 

i r  + - -  r +21~I2r = ~:4r dx .  

Here  and be low ,  t h e  l i n e a r  s y s t e m s  h a v e  t h e  f o r m  ( A . 6 ) ,  and t h e r e f o r e  we s h a l l  g i v e  o n l y  
t h e  c o r r e s p o n d i n g  m a t r i x  f u n c t i o n s  U and u  I n  t h e  c a s e  ( A . 1 0 •  we h a v e  

0] [ 0 ,] [, 0] [ 0 , ] .  
U=i)~ 0 --1 +i • 0 ' V=-2i)~a 0 --1 -2i~, -u_~- 0 

(A.S) 

( A . 9 )  

(A.10 • 

i •162177 ~ 1r ~ i 1 
;Z X 

z ~ ~1~12-T2~ }r d x  

x x 4(z+t) 

Equation (A.10-+), being a nontrivial deformation of the nonlinear SchrSdinger equation, 
is remarkable in being gauge equivalent to the cylindrical Heisenberg equation (1.12). 
The substitutions 

x . . . .  i 

,(x,t)=2 r x=--x~,4 7=t 

r e d u c e  Eqs .  (A.10  •  t o  t h e  fo rm (we h e n c e f o r t h  o m i t  t h e  c a r e t )  

A f t e r  we had  c o m p l e t e d  o u r  p a p e r ,  we l e a r n t  t h a t  Eqs .  ( A . 4 ) ,  ( A . 5 ) ,  and (A.11 •  had  
a l r e a d y  been  i n t e g r a t e d  in  [6]  : 

( , )  [, 0] [0 ,] 
i * t  + - ~ t  + , = • 1 6 2  U = i~. + i 

0 -i • 0 ' 

v = - 2 ~  - 2 a  + :~u , ~ = - -  ~ , = - - -  ~ , ( ~ , ~ , o = ~  
o -i • o �9 :,=qr ~ 4 t '  t '  t 

Equation (A.12), to us hitherto unknown, describes cylindrically diverging quasiplane 
envelope waves in a nonlinear medium. 
of the nonlinear SchrSdinger equation. 

(A.II • 

(A.12) 

In addition, this equation is a trivial deformation 
The substitution 
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t ix 2 ] ^ x 1 [-V *=--' 
t t 

in Eq. (A.12) leads to the nonlinear SchrSdinger equation (we omit the caret) 

. 

( A . 1 3 )  

~ t +  ~=• ~P 12@ =0.  

Deformation of the SchrSdinger equation with differentiated nonlinearity [18]: 

[, o I [ o ,] o.] V = - -2 ik~x  -- 2i~3x + t~, x [ 0 
o -i ~ o ~:1r + 

2x 1 
~.x , ;~=0, ~t=~ 3, ~(z,t) . 

- l / -2 ( t+z)  

2x 

(A.14) 

After the substitution ~ ( x , t ) = z - V ' ~ ( ~ , } ) , ~ = 2 x % ^ t = t ,  the system (A.14) takes the form (we omit the 
caret) 

(A.15) ~,t +,= + -~ ,x• r = ~ r �9 ~ 1,12,. 

LITERATURE CITED 

i. V. E. Zakharov and A. B. Shabat, Funktsional. Analiz i Ego Prilozhen., 13, 13 (1979). 
2. V. E. Zakharov and A. V. Mikhailov, Zh. Eksp. Teor. Fiz., 7__44, 1953 (1978). 
3. V. A. Belinskii and V. E. Zakharov, Zh. Eksp. Teor. Fiz., 75, 1953 (1978); V. A. Belin- 

skii and V. E. Zakharov, Zh. Eksp. Teor. Fiz., 7_~7, 3 (1979). 
4. D. Maison, Phys. Rev. Lett., 4_!l, 521 (1978). 
5. A. V. Mikhailov and A. I. Yaremchuk, Nucl. Phys. B, 202, 508 (1982). 
6. F. Calogero and A. Degasperis, Commun. Math. Phys., 6-3, 155 (1978). 
7. G. A. Alekseev, Pis'ma Zh. Eksp. Teor. Fiz., 3_~2, 301 (1980). 
8. G. A. Alekseev, Dokl. Akad. Nauk SSSR, 283, 577 (1985). 
9. A. V. Mikhailov and A. I. Yaremchuk, Pis'ma Zh. Eksp. Teor. Fiz., 30, 78 (1982). 

I0. B. B. Lugovtsev and A. B. Lugovtsev, Continuum Dynamics, No. i, Institute of Hydrodyna- 
mics, Siberian Branch, USSR Academy of Sciences, Novosibirsk (1969), p. 195. 

ii. A. S. Budagov and L. A. Takhtadzhyan, Dokl. Akad. Nauk SSSR, 235, 805 (1977). 
12. M. J. Ablowitz, D. J. Kaup, and A. C. Newell, J. Math. Phys., i-5, 1852 (1974). 
13. V. E. Zakharov and A. V. Mikhailov, Funktsional. Analiz i Ego Prilozhen., I_~7, I (1983). 
14. A. E. Borovik, Pis'ma Zh. Eksp. Teor. Fiz., 2_88, 629 (1978). 
15. E. K. Sklyanin, Modern Problems in the Theory of Magnetism [in Russian], Naukova 

Dumka, Kiev (1986). 
16. A. V. Mikhailov, Phys. Lett. A, 9_~2, 51 (1982). 
17. D. J. Kaup, Prog. Theor. Phys., 54, 396 (1975). 
18. D. J. Kaup and A. C. Newell, J. Math. Phys., 19, 898 (1978). 

240 


