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THE ALGEBRA OF INTEGRALS OF MOTION OF TWO-DIMENSIONAL HYDRODYNAMICS 

IN CLEBSCH VARIABLES 

V. E. Zakharov UDC 517.9 

i. We will consider the equations of two-dimensional hydrodynamics of an incompress, 
ible fluid 

0~ OV x äVy 

on a torus r, i.e., in a square -L < x < L, -L < y < L with periodic conditions on the vel- 

ocity field. Moreover, the mean vorticity equais zero (<~> = I ~dxdy = 0). We also must 
P 

equate to zero the mean flow of the fluid 

<V>= IVdxdy=0. (1.2) 
F 

Then one can introduee a periodic function of the current ~(V x = -(8~/8y), Vy = (8~/8x) 
and rewrite (i) in the form 

?t q- {% f2) = O, {A,  B} = A x B y  - -  A y B x .  (1.3) 

Ler us remark that ~ = -(~H/~~), where H = -i/2 S »~dxdy is the kinetic energy of the fluid. 
P 

E q u a t i o n  ( 1 . 3 )  i s  a H a m i l t o n i a n  s y s t e m ,  t h e  p h a s e  s p a c e  o f  which  i s  t h e  s p a c e  U o f  
smooth p e r i o d i c  f u n c t i o n s  ~ ( x ,  y)  w i t h  z e r o  mean, t h e  H a m i l t o n i a n  i s  t h e  e n e r g y  H, and t h e  
P o i s s o n  b r a c k e t  be tween  t h e  f u n c t i o n a l s  Œ and ~ o f  ~ i s  d e t e r m i n e d  by t h e  f o r m u l a  

[a'~]=I~{6~6~ ' 8~5~} ~xdy" (1.4) 
P 

Equation (1.3), in which ~(x, y, t) is an arbitrary given function, has an infinite 
set of integrals of motion of th@ form 

r = l F ( ~ ) d x d y .  ( 1 . 5 )  
F 
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Among them, this is true for the hydrodynamic equations (i.i) and for a general form of 
Hamiltonian systems with the bracket (1.4), i.e., for the equations 

O~ {Q, /SH --~-} = O. o~ + ( 1 . 6 )  

Here, H is an arbitrary functional of ~. 

The existence of the integrals (1.5) has a geometric interpretation (see [i]) and is 
simply a consequence of the ability to change in the hydrodynamic equations [and in more 
general equations of form (1.3) with an arbitrary function ~] to Lagrangian variables. 
Let us denote by G the group S o Diff T 2 of diffeomorphisms of F, preserving area and the 
position of the center of gravity. It consists of substitutions of coordinates of the form 

X l = x '  (x,y) ,  yi = y i ( x , y ) ,  { x ' , y ' }  = 1, (1.7) 
X i (L, y) - -  x'  ( - -L ,  y) = 2L, 

J '  (x, L) - -  y'  (x, - - i )  = 2L, 

<x'> = <y'> = 0. 

The corresponding Lie algebra g consists of vector fields of the form - T=(B/ay) + Tu (8/Bx) 
with a periodic function T. The commutation in g of the elements determined by the func- 
tions Ti, T2 leads to an element determined by the function {Ti~ T2}. 

The phase space U is broken under the action of G into orbits - manifolds of functions, 
translating one to another by the transformations (1.7). The functionals (1.5) are invar- 
iant with respect to the action of G and are determined by the choice of orbit. On the 
other hand, (1.3) describes for arbitrary ~ motion along the orbit and, due to this, pre- 
serves the integrals (1.5). 

2. The bracket (1.4) is degenerate - the integrals (1.5) commute with any functionals 
of the vorticity ~, including themselves. This greatly complicates the diagonalization of 
the bracket (1.4) - the introduction into two-dimensional hydrodynamics of canonical var- 
iables. The degeneracy of the bracket indicates that (1.6) must be considered as a collec- 
tion of independent Hamiltonian systems, defined on the orbits of G. The canonical vari- 
ables must be introduced on each orbit separately, which requires as a minimum the effect- 
ive description of the orbits. Meanwhile, there was proposed yet in the last century, a 
way to avoid these difficulties - passage to Clebsch variables (see [2]). In the two-dim- 
ensional case, it can be generalized to systems of type (1.6) and consists in considering 
two equations 

at + k, = 0 ,  - ~ - - +  p , - ~ -  = 0 ,  ( 2 . 1 )  

a = {E, ~}. ( 2 . 2 )  

I t  i s  e a s y  t o  s e e  t h a t  Eq. ( 2 . 1 )  can  be  r e w r i t t e n  in  t h e  fo rm 

a~ 8H o~ _ 8H (2.3) 
Ot = 6 ~ '  Ot 6k " 

For  <~> = 0 t h e  f u n c t i o n s  I ,  ~ can  be c h o s e n  as  p e r i o d i c .  M o r e o v e r ,  t h e  Eqs .  ( 2 . 3 )  a r e  
H a m i l t o n i a n  on t h e  p h a s e  s p a c e  U x U. The H a m i l t o n i a n ,  a s  p r e v i o u s l y ,  i s  H, t h e  P o i s s o n  
b r a c k e t  i s  d i a g o n a l ,  and t h e  v a r i a b l e s  l a n d  ~ a r e  c a n o n i c a l .  They can  be d e f i n e d  w i t h  a 
large degree of nonuniqueness - with a precision up to the transformation 

• ~ '  = ~' (%, ~), ~' = ~' (~, ~), <~, ~> = i .  ( 2 . 4 )  

Here and in what follows for F = F(I, ~), G = G(I, ~) 

<F, G> = FxG~ - -  F,Gx. ( 2 . 5 )  

Further, two very simple lemmas are required, presented without proofs. 

LEMMA i. Let the functions A i ( i = i, 2) from U be subject to the equation 

0A i 
at + {%Ai} = O. ( 2 . 6 )  

Then, their Jacobian {Ai, A2} is subject .to the same equation. 
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~LN~,A 2 Let the functions A i (i = i N) from U be subject to (2.6) Then the 
functional 

] = I F ( A 1 , . . . , A N ) d x d y  ( 2 . 7 )  
F 

is an integral of motion of system (2.6). 

Lemma 1 explains the connection of systems (2.1) and (1.6) - formula (2.2) implements 
a projection of any solution of (2.1) to a solution of (1.6). Let us remark that these sys- 
tems are by no means equivalent, if only because they have phase spaces of different dimen- 
sions. Furthermore, it follows from Lemma 1 that the infinite set of equations of the form 
(2.6) follows along with (1.6) from (2.1). For example, 

Lemma 2 shows that Eqs. (2.1) have a vast set of integrals of motion not depending on 
the choice of the integral H. Actually, there is conserved any expression of the form 

] = f F (~,, ~t, Q, (~,, ff~}, {p, ~Q}. • .) dx dg. 
F 

(2 .9)  

All the integrals (2 n~ ~ ..... .,j ...... purely geometric origin. They are conserved under the 
transformations (1.7), i.e., they are invariant under motion along the orbits of the nat- 
ural action of the group in U × U. The integrals (1.5) are the simplest frequent case of 
the integrals (2.9). 

Let us state a question concerning the completeness of the system of integrals (2.9): 
with what arbitrariness can one determine one of the functions; for example D(x, y), having 
fixed the integrals (2.9) and the second function X(x, y): (The motivation for asking this 
question will be explained below.) The solution of this question is equivalent to deter- 
mining a subgroup G O of G conserving l(x, y). It is clear that the Lie algebra to this sub- 
group consists of the vector fields vanishing under the action on ~, i.e., having the form 

0 0 8 0 
Dg°= Oy / (X)-~z + - ~ - x / ( ~ ) - ~  - '  Dg°~=0"  (2 .10 )  

Here ,  f (X)  i s  an a r b i t r a r y  f u n c t i o n .  

The subgroup G o i s  a f low a l o n g  t h e  l e v e l  l i n e s  o f  ~(x ,  y)  and i s  commuta t ive .  Thus,  
t h e  sy s t em of  i n t e g r a l s  ( 2 . 9 )  i s  i n c o m p l e t e ,  and to  d e t e r m i n e  g (x ,  y ) ,  an a d d i t i o n a l  s e t  
of integrals is needed, determined by a function of one variable. One such integral is the 
Hamiltonian H. 

3. On the integrals J, there is defined the Poisson bracket 

[71 '72]= l ( '  671 6J r2 6]1 512 )dxdg,  (3.1) 
5)~ (r) ~ (7") 5~ (r) 5~ (r) 

I" 

immersing them in some Lie algebra. The structure of this algebra is quite complicated. 
It has two important subalgebras. Let us consider integrals of the form 

jo = !p(~, ~)dxdy. (3.2)  
F 

Evidently, 

[]0, ]0] =. f (FI'  F2) dxdg .  ( 3 . 3 )  
P 

The integrals j0 form a subalgebra £0 of £, isomorphic to the algebra of Hamiltonian 
vector fields on the plane X, ~. 
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Let us consider integrals of the form 

I = f F ( k ,  9, Q)dxdy  (3.4) 
r 

and compute the variational derivative 6J/6~. We have after simple computations 

( OF) 02F 6] -- ° F - - ~ j S I  + { ~ , Q }  o~2 • 5~ (r) ok (3.5) 

Let us restrict ourselves to considering the case when F is analytic according to 
in a neighborhood of zero, and let us consider integrals of the form 

in =lFQ~,~)Q.~dxdy" (3.6) 
F 

Using formula (3.5), it is easy to find 

7,~1 (n - -  t) (m --  t) l [ l l ,  2 j = ~ - - + ~ y  <F1, F2 > Qnzm dx dg. 
F 

(3.7) 

Thereby, is actually proved 

THEOREM. Integrals of the form (3.4) form a closed algebra isomorphic to the algebra 
of currents of the area-conserving diffeomorphism group of the plane. 

Let us remark that for periodic X, 

71 = I F ( E ' ~ )  ~ d x d g  =- O, 
F 

t h a t  a g r e e s  w i t h  ( 3 . 5 ) ,  ( 3 . 7 ) .  

Let us consider integrals of the form 

I~  = f ~m~n dxdy" ( 3 . 8 )  
F 

Due t o  ( 3 . 7 ) ,  t h e  i n t e g r a l s  ( 3 . 8 )  commute w i t h  e a c h  o t h e r .  T h i s  i s  a t w o - p a r a m e t e r  s e t  o f  
integrals, and it can be used to integrate the system (I.6), applying the Liouville theorem. 
For this, it is necessary on the first stage, fixing Imn and X(x, y), to express the func- 
tion ~(x, 3 • It follows from the results of Sec. 2 that it is impossible to do this, even 
using instead of the integrals (3.8) the entire set of integrals (2.9). 

Thus, the set of commuting integrals Imn is insufficient for integrating (1.6). Never- 
theless, the question is of interest whether one can imbed the set of integrals Imn in a 
wider (but automatically also incomplete) commutative subalgebra of the complete algebra 
£ of integrals (2.9). 

4. All the results obtained above can be transferred to the hydrodynamics of a com- 
pressible barotropic fluid. Instead of Eq. (i.i), we now have 

0k ot + d i v ~ V  = 0. (4.1) 

Here 
0'~ T Off) Oq~ Off) 

Vx- --  @ ~ ox ' V~l=--~-z + Oy ' 

¢ is the velocity potential. Equation (4.1) is supplemented by the system 

o9 + d ivpV,  off) + ot - - -~-+ ( V ~ ) 2 + W ( p ) = O ,  W - -  o~ ( 4 . 2 )  o 9 , 

e(p) is the density of the internal energy of the fluid. 
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System (4.1), (4.2) has a Poisson structure, connected with the diffeomorphism group 
of the torus Diff T 2 (see, for example, [3]) and the Hamiltonian 

i (4 3) R : l l 
F D 

coinciding with the energy of the fluid. "Geometric" integrals also occur, generalizing 
the integrals (1.5) 

In passing to Clebsch variables, instead of (4.1), there arises a pair of equations 

8~ 8~ 
at +div~ 'V=-O'  ~ + ( V V )  kt=O. 

(4.5) 

The projection of the system (4.2), (4.5) to the initial system is realized with the 
help of the formulas 

V=V~D+-b-V~,  Q---- -~- ,~ . ( 4 . 6 )  

The system ( 4 . 5 ) ,  ( 4 . 6 ) ,  c o n s i d e r e d  in an ex tended  phase space  p, ¢, ~, V, i s  Hami l ton ian ,  
where t he  v a r i a b l e s  a r e  broken i n t o  the  c a n o n i c a l l y  c o n j u g a t e  p a i r s  

89 _ 6H 8(19 _ 6H . 8~ _ 6 H  O~ _ 6H (4.7) 
8t 6(D ' 8t 6p ' 8t 6~t ' 8t 6)~ " 

System (4.7) has the same set of geometric integrals, that two-dimensional incompress- 
ible hydrodynamics does. In order to be convinced of this, let us remark that ~ = %/p sat- 
isfies 

a% 
a-/- + (vv) ~ = o. ( 4 . 8 )  

The following are simply verifiable. 

LEMMA 3. If the functions A i (i = i, 2) satisfy 

8A i 
8-7- + (VV) Ai = 0, 

t hen  1/p{A l ,  A2} s a t i s f i e s  t h i s  same e q u a t i o n .  

ral 

(4.9) 

LEMMA 4. If the set of functions A i (i = I, .... N) satisfies (4.9), then the integ- 

] = IPF ( A 1 ,  • • . ,  A N )  d x d y  (4. i0) 
F 

is conserved. 

Thus, the geometric integrals of (4.7) have the form 

1= OF ~t , - -g- , - -K,-  5- ~, ,o j 
D 

(4.11) 

5. Among the systems (1.6), there are systems to which the method of the inverse- 
scattering problem is applicable (more precisely the "vesture method," see [4]). Let us 
consider the linear redefined system of equations with respect to the complex-valued function 

(x, y, t, ~, ~) 

XDI~ + {e, ~} = 0, (5. I ) 
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Here 

a~ 
at + ~,Daq) + {S, ¢p} = 0 .  

a a o a 
D I = ~ + I  3 T y  ' D ~ = y - a T  + 6  ay 

( 5 . 2 )  

are constant vector fields on the plane, ~ and S are unknown real functions of x, y, t. 

The consistency condition of (5.1), (5.2) has the form 

D1S = DI~ ,  (5.3) 

e ~ + { ~ ,  s }  = o. ( 5 . 4 )  

E q u a t i o n s  ( 5 . 3 ) ,  ( 5 . 4 )  a r e  a H a m i l t o n i a n  s y s t e m  w i t h  H a m i l t o n i a n  

' I = I (5.5) H=T T 
p 

Except for the Hamiltonian, system (5.3), (5.4) conserves an arbitrary quadratic functional 
of the form 

t f flD3D~lfl dx dy,  ( 5 . 6 )  B = - y  
r 

where  D 3 = S z ( a / S x )  + S 2 ( a / 3 y )  i s  any  c o n s t a n t  v e c t o r  f i e l d  on t h e  p l a n e .  For  D 3 = D l ,  we 
have one of the geometric integrals of the form (1.5). 

The system (5.3), (5.4) has infinite sets of integrals of any integral positive degree 
of uniformity according to ft. Among them are contained all the geometric integrals (1.5). 

Physical applications of (5.3), (5.4) are yet unknown. 

Let us consider a general system of form (1.6) with a quadratic translation-invariant 
Hamiltonian. It is convenient to write it, performing a Fourier transform in the coord- 
inates and letting L + ~. Then 

H = + I ]~I~21'" (5.7) 

For incompressible hydrodynamics fk = i/k2, and in the integrable case (5.3), (5.4) fk = 

(~k x + 8kv)/(yk x + 6ky). Introducing the complex variable a~ = i/~[ (lk + i~k), let us 
rewrite (2.3) for this case in the form of one equation 

0% . 6H ( 5 . 8 )  
Ot -- t 6a--'-~ " 

Here 

H = l W ~ .  ~.,~.a~a~,a~.a~.,Sk @ k I - -  k s - -  k3 dk dk 1 dk 2 dk3, ( 5 . 9 )  

where 

I I 
w ~ , ,  ~.~, = T {kl, G} {G, k~} [1 (kl - -  G) + / (kl - -  G)] + -~- {k.  k~} ~G, G} [/(kl - -  k~) + / (G - -  G)]- ( 5 . 1 0 )  

A l l  t h e  H a m i l t o n i a n s  o f  a s y s t e m  o f  t y p e  ( 5 . 8 ) ,  ( 5 . 9 ) ,  t h e  H a m i l t o n i a n  o f  which  i s  g i v e n  
by ( 5 . 1 0 ) ,  h a v e  i n f i n i t e  s e t s  o f  g e o m e t r i c  i n t e g r a l s ,  i n c l u d i n g  commuting o n e s .  Among t h e  
f u n c t i o n a l s  o f  f o r m  ( 5 . 9 ) ,  d e t e r m i n e d  by g i v i n g  Wkkl ,k2ks  f o r  an a r b i t r a r y  c h o i c e  o f  f k ,  
e x c e p t  f o r  H, a f u n c t i o n a l  i s  c o n s e r v e d  f o r  wh ich  w = c o n s t ,  and a l s o  a f u n c t i o n a l  f o r  
wh ich  Wkk ,k  k i s  g i v e n  by ( 5 . 1 0 )  where  f k  = c o n s t .  I n  t h e  i n t e g r a b l e  c a s e  ( 5 . 3 )  ( 5 . 4 )  

1 2 3  ' 
all the functionals of form (5.9), (5.10) are conserved for which fk is an arbitrary ration- 
al function of the ratio kx/ky. In this case, the geometric integrals of type (2.9) are 
immersed in a much wider Lie algebra, concerning the construction of which almost nothing 
is known. 

It would be of significant interest to study systems of type (5.8)-(5.10), for which 
fk is close to a rational function of kx/ky, and to analyze the possibility of the exist- 
ence for them of additional integrals of motion. 

194 



Systems of type (5.8)-(5.10), including also two-dimensional incompressible hydrody- 
namics, can also become an object of numerical experimentation in the spirit of the classical 
Fermi-Ulam-Pasta experiments. The object of these experiments is to clarify to what degree 
the existence of an infinite number of geometric integrals presents an obstacle to the 
stochastization of a dynamical system and the arising of turbulence in it. 

In general, the existence of additional geometric integrals for system (2.1) compels 
one to look anew at the problem of two-dimensional hydrodynamic turbulence. Disregarding 
the "hidden" nature of these integrals, their existence must be considered in constructing 
phenomenological models of turbulence and computing indices of Kolmogorov spectra of various 
types. 

6. The construction described above has a direct finite-dimensional analog. Let R 
be a semisimple finite-dimensional Lie group, r be its Lie algebra, realized by matrices 
of finite order, and S be an element from r. The Lie-Berezin-Kirillov-Konstant bracket 
gives on the numerical functions ~(S) the structure of a Lie algebra 

<~l,a~>=SpS [O~Os ' O=2]OS ' (6 .1)  

and the equation 

-~--] (6.2) 
OS _ FS, OH 
Ot L 

is a Hamiltonian system with Hamiltonian H and Poisson bracket (6.1), which is nondegener- 
ate on the orbits of action on r of the group R. 

The bracket (6.1) is nondegenerate on the orbits of R fibering the space r, and it is 
necessary to generate the diagonalization of this bracket on each orbit separately. 

Let the pair (p, q) be an element of the space r x r, being mapped to r by the formula 

Then any solution of 

S = [p, ql. (6.3) 

Op 

ot [P '  ot [q '  (6.4) 

is carried with the help of (6'3) to a solution of (6.2). 

Op OH Oq OH 
Ot Oq ' Ot Op " 

It is easy to verify that we have 

(6 .5)  

Thus, the system (6.4) is Hamiltonian on p, q with respect to the canonical Poisson bracket. 
It has a rich set of integrals not depending on the form of H. There are conserved all the 
variables of the form 

I = S t F  (p, q), ( 6 . 6 )  

where F(p, q) is the product of any number of noncommuting matrices p, q, taken in arbit- 
rary order. The space r x r is exfoliated under the action of R into orbits; the integrals 
(6.6) are invariant with respect to the group action and, thereby, are purely geometric, 
and the question of the construction of the algebra of these integrals remains open. If 
(6.2) is integrable, then the extended system (6.5) is also integrable. 

Thus, the construction shown allows one, starting from integrate systems of type (6.2), 
to construct integrable systems in the phase space of doubled dimension. Thus, from the 
integrability of the simplest Landau-Lifshits equation for a one-dimensional ferromagnet 

OS _ [S, Sxx ] (6 .3)  
or, 

fo l lows  the  i n t e g r a b i l i t y  of  the  Hamil tonian system of equa t ions  

Op _ [p, [Pql~x]; Oq _ [ q ,  [p,q]=]. (6 .6)  ot ot 

Physical applications of (6.4) are unknown to the author; however, it is impossible to ex- 
clude that the described way of doubling the dimension of an integrable system will prove 
to be useful from an applied point of view. 
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In conclusion, the author conveys thanks to V. I. Arnol'd for a useful discussion. 
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A SPINOR REPRESENTATION OF AN INFINITE-DIMENSIONAL ORTHOGONAL SEMIGROUP 

AND THE VIRASORO ALGEBRA 

Yu. A. Neretin UDC 519.46 

Most infinite-dimensional representations of Lie groups can be easily realized by 
means of operators which are products of the change in variables and the multiplication by 
a function. In the case of infinite-diminsional groups, two very special classes of oper- 
ators, acting in the boson and fermion Fock space are almost as important; this means that 
representations of infinite-dimensional groups have a habit of "passing through" the Weyl 
representation and the spinor representation (see, e.g., [3, 8, 9, 14]). 

A spinor representation of the automorphism group of the canonical anticommutation re- 
lations (CAR) has been constructed by Berezin in [i]. The aim of our paper is to extend 
this representation onto as large a domain as possible; this domain is a semigroup (which 
is not surprising, cf. [ii]), containing some linear transformations of CAT, in general 
unbounded (there are many more bounded transformation CAR than had been usually assumed, 
see Sec. 2.3). Speaking of unbounded operators, it is natural to use the language of their 
graphs, in other words, our semigroup consists of linear relations between CAR. Notice that 
even in the finite-dimensional case our construction does not coincide with the standard 
sources on spinor representations [4, I, 15, 2]. 

The considered construction (a part of it has been announced in [8]) implies a number 
of corollaries for the theory of representations of infinite-dimensional groups. In Sec. 
3, we show that any irreducible representation of the Virasoro algebra with the highest-ord- 
er weight, no necessarily unitary, can be integrated to a projective representation of the 
group Diff of diffeomorphisms of the circle which, in turn, extends onto the complex exten- 
sion of the group Diff constructed in [i0]. Further, we consider a problem arising in con- 
formal quantum field theory concerning the construction of an operator with respect to an 
arbitrary Riemannian surface in such a way that the operators should multiply by each other 
when the Riemannian surfaces are patched together (notice that recently there appeared a 
number of articles in which the patching of Riemannian surfaces and the Virasoro algebra 
are considered, cf. [5-7, i0, 16]). Some other applications of the construction (in which 
only the group part of our subgroup has been used) have been considered in [8] and [9, Sec. 9]. 

The author is very grateful to G. I. Ol'shanskii for numerous and very useful discus- 
sions on the semigroup extensions in the theory of representations of infinite-dimensional 
groups. The author is also grateful to M. L. Koltsevich, who has informed him about the 
Shtan category (cf. Sec. 3) and a construction of the complex hull of group Diff, much 
simpler than that in [i0]. 
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