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The self-tuning numerical scheme for s~mulat~on of collapse phenomena m the framework of the nonhnear Schrodmger 
equation ts developed The scheme allows to reach extremely htgh field amphtudes (Iq,12/Iq,012~ 1015) without lack of 
vah&ty Numerical results are compared with analytical predtctmns 

1. Introduction 

Wave collapses, i e. blowup-like processes of 
wave energy concentration in a decreasing vol- 
ume, are realized in nonlinear media in many 
cases when the nonlinear effects of increasing 
gradients prevail over the linear effects of wave 
packets running off. From a mathematical point 
of wew th~s means that the solutions of the 
nonhnear evolutionary wave equahons have singu- 
larities arising for a finite time. Actually the sin- 
gularlty is as a rule limited on a defined level by 
mechamsms of dissipative type. In many cases 
wave collapse ~s an elementary structural umt of 
strong turbulence and a main and strongly non- 
linear mechanism of wave energy &SSlpatlon in a 
medium with neghgibly small linear dissipation. 
The dissipation of wave energy in the collapses 
defines their most important physical meaning for 
construction of a consistent theory of strong wave 
turbulence in nonhnear media and for explana- 
tion of the macroscopic manifestations of this 
turbulence. 

The singularity structure near the collapse point 
defines essentially the effectiveness of the col- 
lapse as a nonhnear mechanism of dissipation. 
With a whole variety of physical examples of 
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wave collapses (different types of self-focusing 
of quaslmonochromatic waves, collapses of 
Langmuir, hybrid and electromagnetic waves in 
plasmas and many others [1]) only several qualita- 
tively &fferent regimes of &SSlpaUon are realized 
practically. It is stud that collapse is strong, when 
a finite and strictly defined energy is captured 
mto the singularity i e. a delta-hke singularity is 
formed. After the &ssipation of a fixed (not de- 
pending on the damping parameters) portion of 
th~s energy the collapse regime changes into a 
decay one. Postcollaptical decay also takes place 
in the case of a weak collapse, when the energy 
captured tends to zero when approaching the 
singularity. The energy absorbed in the weak 
collapse tends to zero with a decrease of the 
nonlmear dampmg coefficient and is actually de- 
fined by the amplitude level where the &ssipatlon 
starts. 

In the case of weak and strong collapses only 
the energy captured into the singularity at the 
moment of collapse dissipates. In many cases a 
principally different situation is realized when a 
dissipation zone of small size absorbing energy 
from the surrounding space is formed at the 
collapse point. In this case the collapse hfetime is 
longer than the characteristic time scale of the 
d~ss~pat~on; the decay ~s absent and replaced by a 
quaslstationary state. It Is natural to call such 
type of collapse a "superstrong" collapse" the 
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total energy absorptmn can exceed (over a fairly 
long time) the energy absorption in a single act of 
strong collapse. 

All types of collapse enumerated above are 
realized in the framework of one of the most 
fundamental models of nonlinear modern physics, 
the nonlinear Schr6dinger equation (NSE): 

i~,  + A~ +f( I  ~12)~  = 0. (1) 

This equation has a lot of physical applications. It 
describes, in particular, the evolution of a quasi- 
monochromatic wave packet in a conservative 
isotropic medium with a positive dispersion and 
inertialess local nonlinearity. Eq. (1) is derived by 
means of averaging over large frequencies, which 
corresponds to the wave packet center, of the 
initial equations describing a nonlinear medium. 
At f (u)  > Cu 2/d, C > 0 (d is a space dimension- 
ahty), the nonlinear effects prevail over &sper- 
sional ones and eq. (1) describes the singularity 
formation for the finite time t = t o (the collapse 
of wave packets) in media which are stable to 
small perturbations. In such media the perturba- 
tion leading to the collapse should exceed some 
threshold. 

The most intensive investlgatmns of wave col- 
lapses were carried out in the model of NSE with 
maximal symmetry and power nonlinearity, 

d z d - 1  d 
Ar=~r2 + ~ d  r '  

t )  = t )  = 0 .  (2) 

A lot of analytical investigations and computer 
experiments (see, for example, refs. [2-4] and 
references given therein) are devoted to the study 
of this equation. For the first time the collapsing 
solutions of eq. (2) were considered in connection 
with the investigation of stationary self-focusing 
of radiation in a medium with cubic nonlinearity 
(s = d = 2) [5-8]. On the basis of computer exper- 
iments the hypothesis of "moving foci" equivalent 

to the concept of collapse has been proposed in 
ref. [7]. The strict proof of the existence of the 
collapse in eq. (2) has been obtained (for s = d -- 
2) for the first time m ref. [9]. Except the station- 
ary self-focusing this equation describes qmte a 
number of wave phenomena (gravitational waves 
in deep water [10,11], one-dimensional excita- 
tions in optical fibers [12] and molecular struc- 
tures [13], etc.). Among these phenomena one 
should especially mention nonstationary self- 
focusing and subsonic collapse of Langmuir waves 
in plasmas [14, 15]. 

After early publications concerning seif-focus- 
ing (see reviews [16, 17] and references given 
therein) a lot of works have been devoted to the 
investigation of the structure of the singularity 
arising in the collapse and adjacent questions 
(see, e.g., refs. [18-25]). The interest in the inves- 
tigation of wave collapses in the model (2) has 
increased appreciably at present [2-4, 26-46]. 
This interest is due to, on the one hand, the 
universality of the NSE as a general model in the 
theory of wave collapses and, on the other hand, 
to remarkable contradictions in results obtained 
by different authors. Some debatable questions 
concerning the singularity structure have been 
kept vague up to the present. 

Since in most cases the problems of wave col- 
lapse physics, including the ones described by eq. 
(2), are nonintegrable, computer simulation plays 
a rather important role in the solution of these 
problems. Under the highly hmited possibilities 
of analytical methods by means of computer ex- 
periment the principal questions of the singular- 
ity structure and the effectiveness of collapse as a 
mechanism of energy dissipation are solved. At 
the same time the problems of computer simula- 
tion of wave collapses are very difficult because of 
two contradictory circumstances. The first one is 
to approach the singularity as much as possible 
without loss of accuracy and the second one is 
that the spatial and temporal gradients increase 
simultaneously when approaching the collapse 
point. To avoid these difficulties we have devel- 
oped a special adaptwe method with automatic 
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reconstruction in the calculation of spatial-tem- 
poral scales. The method used allowed us to 
approach the singularity appreciably closer than 
in calculations of other authors and to get a 
description of the collapsing structures in the 
vicinity of the collapse point. 

Our earlier works [4, 36, 37, 39, 42, 43] are 
devoted to these investigations and also include, 
m some cases, new analytical results. The present 
paper is a review of these works. The methods of 
calculations and obtained results are presented 
below. An analysis of the asymptotic behavior of 
solutions in different regions of parameters vary- 
ing in the framework of problem (2) with power 
nonlinearity and classification of the main types 
of wave collapse have been carried out. 

2. Statement of the problem and simulation 
method 

from which it follows that the collapse m eq. (2) 
takes place at 

sd > 4. (6) 

Taking into account the conservation of integral 
N one can also easily get this inequality compar- 
ing nonlinear and dispersive terms in eq. (2). 
While fulfilling (6) a sufficient condition of the 
collapse is that the Hamdtonian is negatwe. At 
sd = 4 (critical case) this condition is close to 
necessary, at sd > 4 (supercritical case) it can be 
exceedingly strong. Actually, the condition H < 0 
restricts from below the value ~ l  2 (~0 is the 
amplitude, 1 is the half-width of the initial wave 
packet). It means that collapse is possible for 
sufficiently intensive initial conditions. 

Eq. (2) has a family of soliton solutions: 

rF ( r , t )  = e'~:tA2/SR(r/), r / = A r ,  (7) 

First of all, it is necessary to point out the 
fundamental properties of the NSE essential for 
US. 

Eq. (2) has integrals of motion: " the number of 
particles" (with an accuracy up to small terms 
coinciding with the energy of the wave packet), 

N = f : l ~ 1 2 r  a- t  dr ,  (3) 

and the Hamiltonian, 

H =  I~rl 2 2 s _y_ 21WI s+2 r a - l d r .  (4) 

From (2) with account of (3), (4) one can get an 
important relationship (usually called the vlrial 
theorem), 

oo 2 d2 [ I~1 r d + l  dr 
dt  2 :0 

- 

(5) 

where R(r/) is described by 

A , T R - R + R S + ' = O ,  R,(0 )  = R ( ~ )  = 0. (8) 

The most interesting positive monotonously de- 
creasing solution (8) exists for arbitrary s at d < 2 
and for s(d - 2) < 4 at d > 2. As for the solitary 
solution (7) it is stable only at sd < 4. At sd > 4 
only linear instability of the soliton takes place, 
while in the critical case s d - - 4  the soliton is 
neutrally stable in the linear approximation but 
unstable with respect to the finite disturbances 

Eq. (2) permits also a self-similar substitution: 

~ (  r , t )  = ( t  o -  t ) - l / s - ' K g (  ~) ,  

= r ( t  o -  t ) - l / 2 ,  (9) 

An analysis of the corresponding self-similar so- 
lution (see below) demonstrates that in the super- 
critical case sd > 2 the formation of an lntegrable 
singularity takes place at t ~ t 0. This self-similar 
solution has physical sense only in the case of 
sd > 4. It corresponds to the weak collapse with 
zero energy flowing into the singularity. 
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It should be mentioned, finally, that eq. (2) is 
invariant under scale transformation 

~ (  r, t) _~ f-2/~qt( ~, ,r), 

= r / f ,  "r = t / f  2, f =  const.; (10) 

in the critical case sd -- 4 an additional invarlance 
with linear function f =  Clt + C2, 

rF(r, t) ~ f -d /2~(~ , , r )  e 'ffe2/4, 

d,r 
= r / f ,  ~ = f - z ,  (11) 

takes place. From this invanance it follows that 
there is an exact collapsing solution in the critical 
case" 

e~(l -r2 /4 ) / ( to - t  ) 

(12) 

which, however, is unstable with respect to finite 
disturbances and is not realized in calculations. 

As was already mentioned, the question of the 
singularity structure near the collapse point is of 
principal interest from the point of view of the 
effectiveness of collapse as a mechanism of wave 
energy dissipation in strong turbulent processes 
Eq. (2) has been subjected to numerical integra- 
tion for more than two decades, starting from ref. 
[7]. In this case the possibility to carry out the 
correct calculations in the direct vicinity of the 
singularity is extremely important. This problem 
is especmlly difficult in the crltlcal case (see be- 
low). The exceeding P =  11/'/1/'012 of the field 
intensity over the mitml one defines the degree of 
approach to the collapse point. Since, under the 
collapse, the wave field increases and the size of 
the characteristic region of its localization de- 
creases in a blowup way, usual algorithms (without 
even the adaptation of the partml scheme to the 
varylng field) are unsuitable to attain large ex- 
ceedmgs. These algorithms cannot ensure the at- 
tainment of exceedmgs Pmax larger than 1 0 3 - 1 0  'I. 
The apphcation in ref [20] of a nonuniform space 

grid with steps of integration depending on time 
allowed to reach the values Pm~ ~ 107" In ref. 
[19] in which the adaptwe method of Lagrangian 
coordinates over one independent variable with 
time step decreasing was used in the calculations, 
and the value Pmax~ 108 was obtained• In the 
recently pubhshed preprint [42] the attainment of 
Pmax ~' 1015 by the method of ref. [19] is reported 
without mentloning some improvements of this 
method. Another  adaptive method, used in refs 
[30, 33] (scale transformations (10) with function 
of time depending on the solution), allowed to 
reach Pmax ~ 109. 

Independently of the authors of ref. [30] (see 
footnote on p. 4 in ref. [4]) we have developed a 
method [4, 36] in many aspects analogous to the 
one used In ref. [30]: the calculations are carried 
out in a coordinate system compressing with the 
velocity of the field growth and a simultaneous 
nonlinear "straightening" of time transferring the 
moment of collapse into infinity. In the most 
difficult critical case we have managed to reach 
the record values Pmax ~ 1018 and in the simula- 
tion of weak collapse in a general case sd > 4 we 
have attained arbitrary large values Pm~x without 
loss of accuracy. Let us describe our method in 
detail. 

The transition to the coordinate system of the 
collapsing region is accomplished by means of a 
nonlinear substitution: 

d'r #=rh( , r ) ,  -d-y---A z, s/2 

(13) 

In these new variables problem (2) with initial 
condition q t ( r , 0 ) -  ~ ° ( r ) ,  I~° l r  < 0, takes the 
form 

iqt~ + A¢~ + I~a(¢)  ~ + A - 2 [ q t l ' q t  = 0, 

• s d  f q ' .  
a( ' r )  = -d-~ In A = I -T t-'~-- ¢:ffio - c.c. ) , 

q'¢1¢=o = = o ,  

= (14) 
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the finite time interval 0 _< t < t o maps itself into 
a semi-infinite 0 < r < 0% and the moment of sin- 
gularity formation is equal to 

r)l-Sdr (15) 

Problem (14) also conserves lnvariants (3), (4), 
which can be written in the form 

N =A-dfo la/tl2~ d-I d~, (16) 

2 - ~-----~l ~ls + 2) ~d- 1 d~. H = A - d  fo (A2lqt,' 2 + 

(17) 

The next rather important step introducing a 
quahtative difference between our method and 
other adaptive methods [19, 30] is to reformulate 
problem (14) for the finite region of integration 
0 _  ~ _< L. A constancy of the region of integra- 
tion in f-space means a decrease in physical 
variables. We chose the length of the segment L 
in such a way that the r a t i o  lalP'(O,r)/a/)'(L,r)l 2 
was sufficiently large. In the calculations it was 
more than three orders in the supercritmal case 
(under the power space j'asymptotlc behavior of 
the field) and more than isix orders in the critical 
case when the field decreases exponentially (see 
below). Such a choice of the region size allows 
one to suppose that the field near the right 
boundary IS "frozen": 

q ' ,+a (~ ' )  ~:qte=0, ~>_L (18) 

Applying the explicit algorithms to the solution 
of the evolutionary problem when the field is 
defined immediately by its previous value, one 
can simply use a polynomial extrapolation to de- 
fine the field in the additional grid point (neces- 
sary for Laplacian calculation at ~ - - L )  to the 
right of the boundary. This is equwalent to the 
supposition that the higher derivatives Omltf/O~ m, 

m > q  (q is the degree of the approximating 
polynomial) tend to zero near the right boundary. 

For the finite region of integration, the wave 
energy and Hamiltonian 

N L =A-dfoLIqtl2~d-1 d~, 

i l l  =A_afoL ( A2I ~f[2 2 ) s + 2 Iq'l'+2 U-~  ds¢ 

(20) 

are no longer integrals of the problem. However, 
with an account of the exchange with the periph- 
ery it is easy to get modified integrals. So instead 
of (16) we have 

N = N L + Ld£'~[ A(r')] -a I ~ ( L ,  ~-')12 

X [ a ( r ' )  + 2L-lqS¢(L, i"')] dr ' ,  

q) = arg (21) 

We do not present here the expression for the 
Hamiltonian because it is too bulky. The modi- 
fied integrals of motion were used, in particula, 
to control the correctness of the calculation. 

The nonstatlonary problem (14) can be pre- 
sented in the following form" 

It is natural to consider this relationship at 
i 

= L as a condition on the right boundary. It can 
also be represented in some other equivalent 
form. It is easy to get an analytical solution to 
(18) with initial solution @(~,~)= ~(~)  which 
has at ~ = L the form 

~ = f (~¢ ,~ , r l z ,~ ) ,  ~ =  ~ (~ : , r )  (22) 

Solving this problem numerically we used, as a 
rule, an explicit predlctor-corrector method of 
the second order of the accuracy over Ar (n IS 
the time step number): 

- /  ) 
r )= A--t-Zy, (19) 

1 n ~,~+1/2 qt , ,+ ~ A z f  , 

grn+l = attn + Ar fn+ l/2 
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Spatial differential operators in the right-hand 
side of (22) have been approximated on a uniform 
grid ~:j=jA, L = L / M ,  O<j<_M with second 
order of accuracy, here the polynomial extrapola- 
tion has been used to calculate the Laplacian on 
the right boundary ~: = L (1 = M ) .  For example, 
for q = 3 we have 

of accuracy starting from some moment, caused 
by finite word length in computers and leading to 
scheme violation. 

To study the evolution of localized distribu- 
tions the following functions possess a sufficient 
community and they are used in our calculations 
as the initml condition: 

~M+I = 4~M - 61/'rM- 1 -k" 4~M_ 2 -- 1/)'M_ 3 . ~ ( r , O ) = q % e x p [ - ( r / l ) " ] ,  I M P ' 0 = 0  , (23) 

Besides the observation of the modified inte- 
grals of the problem, we realized the formal 
control of the correctness of calculations consist- 
ing in the comparison of physically identical vari- 
ants which differ by the parameters M, Az and 
L. This control completely confirmed the ade- 
quateness of the simulation method used. Fur- 
thermore, in the investigations we have confirmed 
many theoretical and numerical results obtained 
by other authors. 

We shall note the main differences of our simu- 
lation method from the one used in ref. [30]. only 
independent variables are transformed, the func- 
tion A(z)  is chosen otherwise, the transformed 
equation is approximated in some other way. The 
main difference, however, is that we seek to re- 
solve in detail the region of "spike" at the cost of 
the refusal to consider the wave packet as a 
whole, i.e. throwing back the "tail" of the distri- 
bution. It explains most likely the approach of the 
exceedings larger than in ref. [30] and also m ref. 
[19], where another method of simulation of the 
wave packet as a whole has been used 

A transition from problem (2) to problem (14) 
makes it possible to study in detail the singularity 
near the center r = 0 with an automatic tuning of 
the steps of integration (which being constant in 
the g, ~- variables, decrease continuously m the 
physical variables) to the rate of the field change. 
Integration of initial problem (2) in physical vari- 
ables with a decrease of spatial and temporal 
steps (or with a decrease of one of these two 
steps) in the process of calculation is not equiva- 
lent to our statement of the problem and cannot 
lead to such exceedlngs due to the inevitable loss 

allowing one to simulate both Gaussian (n = 2) 
and, m terms of refs. [21, 22], "plateau-like" 
(n >> 1) distributions. The calculation of the in- 
variants (3), (4) for function (23) gwes 

N = ~ l  a F ( d / n )  
n2d/n , 

H = N [ D I - 2 _  s[ 2 ,](d+,,,/,,] ]' l 
(24) 

where 

D ( n , d ) = ¼ n 2 2 2 / n F ( 2 n + d - 2 ) / F (  

(it coincides for the Gaussian packet with space 
dimensionality), and F(x) is the gamma function. 
Taking into account (24) a sufficient condition of 
collapse takes the form 

[ 2 ](a+n)/n 
q'dl2 > D ( n ' d )  7-4  ) • (25) 

The calculations were made for a large number 
of variants with a wide variation of the parame- 
ters of the initial condition (23): 

1 < q % < 1 0 ,  1 _ < l < 8 ,  2 < n < 1 0 .  

However, we observed that for the initial condi- 
tion satisfying (25), the concrete values of these 
parameters did not practically influence the gen- 
eral picture of the process obtained while attain- 
ing sufficiently large exceedings P =  I ~ / q ,  ol 2 
Naturally, at moderate exceedings when the 
asymptotic regime is not attained yet, the influ- 
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ence of the initial parameters is possible. Thus, m 
calculations [28] the following parameter is quali- 
tatively essential: 

E = N/Nfh, 

which represents an exceeding by the energy over 
the conditional (increased) “threshold” of the 
collapse N th defined from the condition H = 0. 
In the critrcal case the sufficient condition H < 0 
is the nearest to the necessary one and the mtro- 
duction of the parameter E equal for the initial 
condition (23) to 

q n, d) ( fi$?)i”‘“““] -d’2 (26) 

(m ref. 1281 12 = d = 2, E = Y$12/8) is qualitatively 
justified. We shall emphasize that m our calcula- 
tions the established dynamics of the collapsmg 
structures did not depend on that parameter 
(except several details mentioned below in sec- 
tion 4). 

3. A weak self-similar collapse 

Acting similarly to refs. [4, 291, consider the It is easy to see that the integral m (29) diverges 

self-similar substitution (9) for eq. (2). The func- in the upper limit at t + t,, but the number of 

tion g(n) satisfies the equation quanta N remains finite, 

g ?? +g, ( ~+~,)+(~-,),+lgl,=O, 

g,(O) = g(m) = 0. (27) 

The solution of this equation is defined with an 
accuracy up to a multiphcation by a constant 
phase multiplier, which allows to consider 
Im g(O) = 0. From all the solutions of (24), we are 
interested (for each pair of the parameters s, d) 

m a regular solution monotonously decreasing on 
the semiaxis 0 s n < ~0. Its asymptotic behavior is 

g -& CT --YI/S-C’K). 

This means that at t + t, the formation of the 
finite power solution 

1 qq * -3 p+/s (28) 

takes place m every point with coordmate P. In 
the real physical space the self-similar solution is 
carried out m the restricted region I < r0 in the 
center of which the singularity (28) “arises” at 
t + t,. At sd I 4 this smgularity is nonintegrable 
(wave energy integral diverges in a lower limit) 
and solution (91, (27) has no physical sense. In the 
supercritical case sd > 4 (the most important par- 
tial case s = 2, d = 3 corresponds to the subsonic 
collapse of Langmuir waves in plasma [14]) is 
integrable and one can attach physical sense to 
the solution discussed A formal divergency of the 
integral N m the upper limit does not matter 
since in the arbitrary finite region r < r0 the 
value of the integral remains constant. Actually, 
for the region r < r0 we have 

N= cto _ ~~2(ad/4-l)/rlrs(‘s-r)-“2,g,*~d-l d,.,. 

0 

(29) 

N--J-r (sd-4)/s 

sd-4 O 

Since at sufficiently large ro, N should be close to 
its value m the region r < r. at the moment of 
collapse, the relationship 

/;p(lg12 - C2r)-“‘)nd-’ dn = 0 

is correct. This relationship has been earlier 
obtained in ref [29] for s = 2, d = 3. The 
constructed solution corresponds to the weak 
collapse: as the smgularity is reached the energy 
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captured m the collapse decreases so that, for- 
mally speaking, zero energy is absorbed into the 
singularity r = 0. The actual energy absorbed m 
the weak collapse depends on the level of the 
field amphtude on which the stabilizing mecha- 
nisms begin to act and the conditions of apphca- 
bdlty of initial equation (2) are not fulfilled. 

A mode structure of the weak collapse is de- 
fined by eq. (27), for which the reqmrement  of 
regularity and monotonous decrease of the solu- 
tton at 0 < r / <  oo removes the amb~gmty m the 
choice of the constants K and go = g(0), which 
are the elgenvalues of the nonhnear boundary 
problem (27). In refs. [4, 29] this problem is 
solved by the shooting method It was found that 
K=0.545,  g 0 = 1 . 3 9 a t  s = 2 ,  d = 3 1 2 9 ] a n d  K= 
0.359, go = 0.976 for s = 6, d = 1 [4]. 

In a set of works [3, 26, 29, 41] variants of 
collapse dynamics alternatwe to the solution con- 
structed above have been obtained in the super- 
crmcal case Mainly, it is a quas~classical regime 
of three-&menslonal wave collapse in a medmm 
with cubic nonlinearity proposed m ref. [26] (the 
consistent theory has been developed in ref. [29]) 
w~th generahzation in the arbitrary supercritical 
case sd > 4 [3] (see also ref. [37]). Quasiclasslcal 
theory predicts strong collapse of the wave as a 
whole which, however, is unstable to small-scale 
perturbations On the other hand, the calcula- 
tions in ref [41] confirmed (at s = 2, d = 3) the 
weak self-slmdar character of the field singularity 
and asymptoUc behavior (28). But as a self-similar 
vanable a value r / =  r(t  o - t )  -1/3 different from 
(9) has been determined. Finally, the calculations 
carried out at s = 2, d = 3 up to the exceedmgs 
Pmax ~ 109 not only confirmed the going out of 
the solution to the regime (9), (27) but also the 
values of the constants K, go obtained earlier by 
the shooting method for eq. (27) in ref. [29] #1. 

#1In ref [30] the values K = 0 917, Q0 = 1 885 are obtained 
from the solution of the evolutionary problem Taking Into 
account the relationships K =  1 / 2 r ,  and Qo=go K-W2, it 
completely corresponds to the values K, go obtained m ref 
[29] by the shooting method 

+wl 2) 
0 d-3  g=2. 

2 o 2 " ~ =  qO 

t0 : ~ " ~ :  2 0 

5- >"'~=~o 
" ~ = 0  

o q ~ .~2 ~6 
Fig 1 Space dependence of amplitude for &fferent mo- 
ments of time m the case d = 3, s = 2, ~ ( r ,  0) = exp( - r2/16)  

The stated clearly shows the actuality of the 
questions of the practtcal reahzability of solutions 
possible m the supercritical case and their inter- 
action m the process of nonhnear evolution, espe- 
cially of the weak self-slmdar collapse stabdlty 

Our calculations [4, 37, 42] carried out up to 
exceedings larger than in all enumerated works 
definitely confirm that the self-similar solution 
(9), (27) describes the general case of the super- 
critical collapse (before turning on the dissipative 
or some other stabd~zmg mechanisms). The calcu- 
lations were carried out mainly for the cases 
s = 2 ,  d = 3 a n d  s = 6 ,  d = l .  

The results of calculations showed that the 
initial &strlbutlon of the field is rapidly captured 
into a stable self-similar regime without changing 
the form m the process of the further evolution 
(figs 1, 2) To define the degree of correspon- 
dence between a stable process observed and a 
solution of a weak collapse (9), (27), we shall 
write this solution m variables of our simulation 
(13). For the amplitude I~[ and phase q0 it is 
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F~g 3 The going out  of the solution amphtude  to the mode  
of  weak self-slmdar collapse X(~:), (a) d = 3, s = 2, q t ( r , 0 ) =  
e x p ( - r 2 / 3 6 ) ,  (b) d = 1, s = 6, aP'(r,0) = e x p ( - r 2 / 3 6 )  

easy to get 

Iqt(~,~')l=Clgoexp(l-~')X(~), 

q,(~, ~) = ,~,,~ + . , ( ¢ )  + c2 ,  (30) 

where a = go ' ,  and X and o~ are amplitude and 
phase of the function 

y(~) =golg(~goS/2), 

described according to (27) by the following equa- 
tion: 

y(0)  = 1, y¢(0) = 0  (31) 

From (30) it follows that 

~ ' (~,  t)  = l X ( ~ ) l ,  
~ ( o , ~ )  

O(¢ ,  r )  - O ( 0 ,  ~') = arg co(~') .  

From figs. 3, 4 one can see clearly the going out 
of the solution to a unwersal mode y(~), calcu- 
lated from (27) (dashed hnes) The calculation of 
the parameters K and a over the results of simu- 
lation (it can be done using (30) or comparing the 
asymptotic behavior of y(~) at ~ ~ 0 and ~: ~ 
with the solution in the self-slmdar regime) gave 
the values coinciding w~th the result obtained by 
the shooting method. Thus, it follows from (30) 
that dQ/dr = a (Q = In AZ), d@(0, z)/d~" = Ka. 
From fig. 5 one can see well the going out of both 
functions to the constants equal to the values 
a = 1.160, Ka = 0.417. It corresponds exactly to 
the values K, go obtained independently by the 
shooting method at s = 6, d = 1 

The results obtained demonstrate that m the 
case of general position sd > 4 a stable regime of 
weak self-similar collapse defined by function (27) 
~s reahzed. However, th~s conclusion ~s com- 
pletely correct only for the evolution m the mer- 
tml interval preceding to the absorption. It ~s 
shown m secuon 5 that with account of postcol- 
laptlcal dynamics the physical picture besides 
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F~g 4 The going out of the soluUon amplitude to the mode 
of weak self-similar collapse w(¢), (a) d = 3, s = 2, ~(r,O)= 
exp(-r2/36), (b) d = 1, s = 6, ~(r,0) = exp(-r2/36) 

critical collapse is enr iched by a new class of  

solutions different f rom (9), (27). 

4. Cr i t i ca l  w a v e  c o l l a p s e  

The  case sd = 4 including, in particular, the 

most  impor tant  problem of  s tat ionary two-dimen- 

sional self-focusing (s -- d = 2) is called critical. It 
is well known that  this case is especially difficult 
both  for analytical and for numerical  investiga- 
tion (see, for example, refs. [2-4]  and the refer- 

ences given). 
In the critical case the self-similar solution (9), 

(27) leads at t ~ t o to the power  profile [ ~ 1 2 ~  
C2r -d on which the wave energy integral N 

diverges logarithmically. Hence,  the strictly self- 
similar solution is useless to describe critical col- 

lapse. Let  us consider  the solitary solution (7) 
with the shape described in the critical case by 
equat ion 

(A n- l+R4/d)R=0,  R,7(O )=R(oo)=O. 
(32) 

aQ 

~3 

Ot 

0 6  

d=~ S = 6  

(a) 

30 93 7 0  'C 

(b) 

~az¢. = 0 t-/f7 

\ 

0 to 30 5o 70 "v 

Fig 5 The dependence on time of the functions (a) dQ/d7 
(Q = In A 2) and (b) d~/dr(O,r) for d=  1, s = 6, ~(r,0)= 
exp(- r 2/36) 

In the one-dimensional  case R ( ' O ) - - - 3 1 / 4 ×  
( c h 2 r / ) - l / 2 ;  at d = 2 the funct ion R07)  has been  

calculated in ref. [49]. 
For  the solitary solution I~ l  2 = AdR2(Ar) and it 

is easy to see that  the energy integral does not 
depend  on the pa ramete r  A which defines the 

sohton size: 

N = f0=R2( r/)~7 d-  1 dr/ 

- N c r  = ~rv~-/4 d = l ,  

= 1 .86  d = 2. ( 3 3 )  

Neutral  stability o f  the sohton is an a rgument  in 

favor of  the following hypothesis:  The  singularity 

m the critical case is a compressing soliton It has 
been  proposed  in ref. [18] that  

t-~ t 0 

× e x p  i ~ - 7 + ~ - ~ - f l n f  d t  , 

f = f ( t  o - t ) ,  f ( 0 )  = 0 .  (34) 

The asymptotic behavior  in (34) means,  in partic- 

ular, that  critical collapse is strong, the energy Nor 
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depending only on the space dimension (see (33)) 
is captured into the singularity. This value defines 
the necessary condition of the collapse N > Nor, 
i.e. the threshold energy in the critical case. 

The spatial distribution near the singularity in 
the form of the soliton (32) and the capture of 
energy in the collapse close to the critical one are 
suggested in numerous computer experiments 
Refs. [21, 22] are exceptions in which it is stated 
that under a special choice of lmtial conditions 
("plateau-like" distributions with N >> Ncr) an 
energy substantially exceeding the critical one is 
captured into the collapse The main (and rather 
essential) disagreements between authors corre- 
sponds to the form of the function f ( t  o - t)  char- 
acterizmg the collapse velocity. 

At f ( t ) ~  t solution (34) is exact but, as was 
mentioned above, unstable. The result f ( t )  ~ t 2/3 

obtained in ref [13] on the basis of variational 
estimations has been confirmed in some works 
(see, for example, ref. [24]). However, more pre- 
cise experiments under the approxamation by 
power function f ( t )  ~ t ~ give the value/x = 1 /2  
obtained for the first time in ref. [19] The prox- 
imity o f / z  to 1 /2  has been pointed out m many 
papers and there are no doubts at present that it 
is the most exact result in the framework of 
power approximation. This numerical result ~s 
rather natural and at the same time perfectly 
unsatisfactory from a theoretical point of view. 
Actually, as we have seen, low f ( t )  ~ t 1/2, which 
we would have for a strictly self-similar solution, 
leads to "increasing" of the nonintegrable singu- 
larity and cannot be realized In the process of 
nonlinear evolution. On the other hand as the 
energy integral diverges weakly (logarithmically) 
on the self-similar solution, the asymptotic behav- 
ior (34) should be "quasi-self-similar" This 
means, in particular, that time dependence re- 
quires more precise approximations than a power 
approximation: f 2 ( t ) ~  t / b ( t ) ,  where b( t )  varies 
essentmlly slower than linearly. The presence of 
weak dependence b( t )  confirmed numerically in 
many papers (including works with adaptive mod- 
els) does not give rise to doubt Nevertheless, 

recently, in ref [41] the conclusion f 2 ( t ) ~  t has 
been drawn again 

The law b ( t ) ~  Ilogtl proposed and numeri- 
cally verified in refs. [20, 25] (see also ref. [3]) has 
not been confirmed in adaptwe calculations [30, 
33], which have demonstrated a slower behavior 
of b(t) .  The authors of ref. [30] have the opinion 
that the same conclusion is correct for the ap- 
proximation 

b ( t )  ~ Ilog t[ v. (35) 

Finally, in refs. [27, 34, 35, 44] in a distinct 
asymptotlcal region the following result: 

b ( t )  ~ logllog tl, (36) 

was obtained analytically and with some reserves 
supported (see below) by results of calculations 
presented in ref. [34]. 

Before giving and analyzing the results of our 
simulation [4, 36, 42] we must emphasize that in 
the critical case the virial theorem (5) allows one 
to define an upper bound of the collapse t~ 
which at Im gr°(r)  = 0 is equal to 

and for the initial conditions of the form (23) is 
expressed through the exceeding (26) 

t~ = / 2 2 - 1 - 1 / n  

( F(d/n) ) -1 /2  
× D ( n , d )  ( & d  _ 1) r ( ( d  + 2)/n) 

(37) 

Certainly, since the condition H < 0 is just suffi- 
cient, the real time of the collapse is always 
smaller than t~. In ad&tlon, t o is sensitive to the 
structure of the initial profile of the packet [18]. 
Quahtatlvely, however, relationship (37) gives in 
most cases a correct dependence on the parame- 
ters and can be useful for estimations 

We have performed a computer simulation for 
a large number of one- and two-dimensional van- 
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Table 1 

No d qt o l n N /Ner  ~ t~ t o 

1 2 4 1 2 215 2 0250 0146 
2 2 10 1 8 20 5 8 0 053 0 036 
3 2 134 8 10 24 71 8 3136 1711 
4 1 1 4 2 184 176 2774 1378 
5 2 8 1 2 860 8 0094 0043 

3,1 \"i, _, (') 
16 ' ,  $33t0 IWI~,T=|~ 0 

0 o~25 c~5o O~~s L 

ants. The illustrative material gwen below corre- 
sponds to the variants presented in table 1, in the 
last column of which the values of the moments 
of singularity formation, obtained by the results 
of simulation from relationship (15), are also pre- 
sented. 

In all variants the going out to the asymptotic 
behavior (34) has been surely observed. At a 
sufficient approach to the collapse point a spike 
compressed self-similarly has been formed in the 
center; its form coincides with the form of the 
stationary soliton (fig. 6). From (13), (34) with 
account of sd = 4 it follows that 

qt(O,¢) l--~ ~---~R(~/Co2/d), 

C O = R(0) = 31/4, d = 1, 

=2.2062, d = 2 .  (38) 

From fig. 7 one can clearly see in the example 
of variants 1, 4 the going out of the solution to 
mode (32). Independent of the initial conditions, 
the energy N L captured into the collapse goes 
rapidly to critical value (33) (fig. 8). Thus, hypoth- 
esis (34) is effectively confirmed. The variance 
with the results of papers [21, 22], in which a 
relatively small proximity to the collapse has been 
attained, can be explamed by the fact that m 
these papers there has been observed an interme- 
diate asymptotic behavior depending on the form 
of the initial conditions. This asymptotic behavior 
corresponds to the following physical picture. 

At large exceedings over critical threshold the 
plateau-like field distribution is under the influ- 
ence of a modulational instability, as a result of 
the development of which the field distribution ts 

'12 | ~  I WI 2. T=~). 
o ~{~-'~- --.,, ( l 

\ z,o r: 0 ,, 

o O2S 0 50 o 7S L 

42) k 3,6~,~.~so .,, 

0 o25 oso oTs L 

Fig. 6 The established space dependence of the solution and 
the mmal condmons (dashed hne) (a) variant 1, (b) variant 2, 
(c) variant 3 
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~o ¢ ~ X ~  (a) 

4 0 ~  

Fz8. 7 The going out of the solutlon amphtude to the form of 
the statlonary sohton for (a) varmnt 4, (b) variant 1 



28 N E KosmatoL et al / Computer stmulatton of wave collapses 

i ~  ~oo 2,o0 ..~o. t 
0 5~,~0 ~ t~z~ ~ O~ to ~' 

qc / 
/ 

zQ ~ " c )  

/v~, o . . . . . . .  £ - .  . . . . .  ,~0 - , ;  . . . . .  , ~ L  
tt 0 o.~ •" ~z1~o t~,~¢ P 

ZO' ~ 

N~ 11o . t6o .~ 2q .~s" _ 
. . . . . . . . . . . . . . . . .  . .  ~ -  

Fig 8 The dependence on time of the captured energy NL(~) 
and the functton Q(~), (a) variant 1, (b) variant 2, (c) van- 
ant 3 

t ransformed into a system of compressed "rings" 
Each ring energy exceeds the critical one A ring 
is reduced in a quasi-self-similar way while con- 
serving its width. When the most rapid comes to 
the center at a distance of the order of its width, 
the values of the exceedlngs of the intensity 
over the initial one ( P  ~ 102-103) are attained in 

the center. At this stage, in papers [21, 22] a 
nonlinear damping absorbing energy has been 
included. However, in the conservatwe system the 
collapse takes place according to the usual sce- 
nario with the formation of a compressed soliton. 
We must emphasize that the picture described is 
unstable relatwe to angle perturbations; thus, in a 
real two-dimensional situation, when the axial 
symmetry is not artificially pressed, it will not be 
reahzed. This lnstabdity has been surely demon- 
strated, for example, in calculahons [48]. 

Thus, the spatial structure of the singularity 
near  the center at the critlcal collapse zs com- 
pletely defined by the form of the stationary 
sohton (32) 

The question of t ime dependence is very dif- 
ficult. An asymptotlcal regime of the behavior of 

f ( t )  is attained at t very close to t 0, characteristic 
times (in ~" representation) are very large in the 
critical case. To obtain reliable results it is neces- 
sary to attain rather large exceedlngs Pmax" As 
was pointed out above we have attained Pma~ "" 
1018 . This exceeds the best results of other au- 
thors Another  important question is to process 
correctly the time dependence of the results. 
From our point of view, it should be carried out 
only in the r variable. An alternative variant even 
under the condition of very exact t o calculation 
can distort essentially the picture since the com- 
putation of t o - t  used in general formulas of 
processing is a source of mistakes #2 starting from 
some moment  of time t. We processed time char- 
acteristics constructing for each investigated 
model f ( t )  such a functional at ~: = 0, F[A(~-)], 
which in the frameworks of the given model 
should be a hnear  function of z The following 
thorough processing on the basis of a computer  
experiment of F & )  (see details in ref [4]) al- 
lowed us to draw clear conclusions about the 
degree of adequateness of the considered model 

f(t). 
The calculations have demonstrated that f 2 ( t )  

is close to a linear function. Under  f 2 ( t ) ~ t  
F(A)  = log A 2 (or l o g d A 2 / d r )  In all variants we 
have obtained that function Q ( r ) =  log A 2 is 
nearly linear over ~ (fig. 8), but as the processing 
has demonstrated,  the function Q & )  increases 
slightly slower than hnearly. At the same time 
even an insignificant increase of the power ~ > 
1 / 2  assuming f ( t )  = t ~' (F(A) = A 2-1/~) leads to 
an increase of F(z) ,  which is essentially faster 
than the linear one. 

The results obtained surely confirm the cor- 
rectness of the law f 2 ( t )  ~ t/b(t), where b(t) is a 
slowly varying function. 

#2We suppose that this c~rcumstance ts one of the reasons 
causing a sharp discrepancy between the results of ref [41] 
and the theoretical and numerical results of other authors 
both m the crmcal and m the superermcai case 
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The dependence on time of the functions S~(T), (a) 
1, (b) variant 2, (c) vanant 3 

Assuming (35) one gets the relationship F0") -= 
S~O')[B - 3"/B + ½0//B)  2 + . .  ]t+~, BOO = 
log(dA2/d-r)  >> 1. The processing of functions 
S~0-) for 0 < 3' < 1 showed that at 3' = 1 [20, 25] 
model (35) describes an exceedingly rapid growth 
of the field amplitude. The value 3' = 0 consid- 
ered above corresponds to the contrary case of 
slower field growth than true. Considering rater- 
mediate values 3' we have that there is a value 3'0 
for which the difference between S~o(~-) and a 
hnear function is practically absent even under 
special processing. These conclusions are obvi- 
ously illustrated by fig. 9, where the curves S~(z) 
are represented at 3'---0, 3' = 1 and 3' = 3/0 • It 
turned out that although the values 3'0 obtained 
from the computer experiments depend on the 
mitml conditions they are within the limits 0.35 < 
3'0 < 0.65. It means that attained law (35) in the 
frames of exceedings with the pointed out moder- 
ate values 7 satisfactorily approxamates the func- 
tion b( t ). 

Let us consider, finally, the "double logarithm" 
law (36) describing weaker growth of the field 
amplitude than (35). This law follows, in particu- 

t:)i (") 

g 

g 

. 1  

Fig 10 The dependence of - l n ( - a a ~ )  on 1/a for (a) van- 
ant 1, (b) variant 2 

lar, from the asymptotic equation 

(c2) da C1 exp - 7  ' (39) 
d~- a 

obtained in ref. [34] for a slowly decreasing func- 
tion a(z). Here  a0-) coincides, up to a constant 
factor, with the function a(~') introduced in eq. 
(14). From (39) it follows that at 1-~ 0% a ~ 
C2/log 1- and since a ~ - d log f / d z ,  law (36) is 
correct. The processing of results of our s~m- 
ulation showed, however, that the function 
- l o g ( - a a ~ )  increases with the growth of 1/a 
during large intervals of this value varying slower 
than linear (fig. 10). Thus, our calculation does 
not support formula (36): we observed a slightly 
more intensive field growth. To explain this dwer- 
gence it is necessary to develop a theory which 
explains formula (39). A summary of this theory 
has been published in ref. [43]. (Variants of this 
theory have been developed with different modi- 
fications in refs. [27, 34, 35, 44].) 
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Let us consider in eq (2) with s = 4/d a transi- 
tion to new variables: 

r d r  
= f '  d---[ =f-2, 

( d ))-1/2 
f ( t ) =  -d~- arg ~ ( 0 ,  t , 

and in t roduce the functions 

~( ~, ~') = f-d/21-'Talt, 

d 
a = - ~ log f ~_~--:-~ 0 

Z = ~o e x p ( l i a ~ 2 ) ,  

These  functions satisfy the equat ion 

i~o T + Ae~o + m( }d~o + ~ ) + 1~14/% - ~ -- 0, 

1z T+ A¢Z + IZl4/dZ-- Z(1 - • ~ : 2 )  = 0, 

• = 4'-(a 2 + a T ) .  ( 40 )  

This equat ion is a nonsta t ionary Schr6dinger 
equat ion with an effective potential  

U= - IZ[ 4/a + (1 - • ~ 2 ) .  

In the exact self-similar case • = 0 and one can 

manage  with the stat ionary solution of  the 
Schr6dinger  equation.  In our  case the asymptotic 

behavior  is quasi-self-similar, • > 0. The  time 
derivatives of  the functions U and Z are small as 

before  and one can neglect  them in the first step. 

However ,  the Schr6dmger  equat ion (40) has no 
localized eigenvalues now since U ~ - ~  at ~---> 
pp. To find a way out  let us suppose that  

Z = x e x p  v ( a )  d~- v(a) ' a a--,~) O, 

x = x o  + x i  + . . . .  Ix, I << Ix01. 

Here  X0 is the solution of  a non-self-conjugate 
nonl inear  eigenvalue problem with an exphcit 
eigenvalue iv(a) For  an appropr ia te  function ~o 0 

(~o = ~00 + ~o~ + . .  ) this problem takes the form 

A~00 + la(½d~°o + ~P0,) + [~0014/d~00 

--~PO - lv( a)~o = O, 

(41) 

Boundary  problem (41) defines the imaginary 

par t  of  v(a) uniquely. Such type boundary  prob- 

lems are well known m the theory of  a -decay  (see 
ref  [49]). 

F rom the solvability condit ion of  the equat ion 
for Xl one  can get  [43] 

oo 
da v(a) C = 4Ncr/ f ° R2~ d+l dE d-"~ = - C  a ' 

(42) 

At  ~" ~ oo, a ~ 0 the imaginary eigenvalue v(a) 
can be calculated using the quasiclassical formula  
for the coefficient of  passing through the poten-  
tial barrier,  

( 2f:" 1/2(~)d~) U(~)---0. v = exp - U , o 

In a remote  (~ ~ ~)  asymptotical limit a 
0 neglecting small terms one can assume that  

I -2~-2 U(~:) = 1 - ~a ¢ . Then  

v ( a )  ~ exp( - n/a) .  (43) 

So, f rom the stated follows not  only eq. (39) but  
also the value of  the constant  C z = "rr. I t  was 
pointed out  above that  results represented  m ref. 
[34] of  adaptwe calculations up to the exceedmgs 
Pmax "~ 109 confirm the correctness of  eq. (39). 
However,  the value of  the constant  C 2 that  was 
obtained ~s appreciably smaller than the theoret i -  
cal one. In connect ion w~th this the authors  of  
ref. [34] point  out  that  the asymptotic regime has 
not been  at ta ined in their calculations. 
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Thus, we think that in the critical case even the 
attaining of record exceedings Pmax ~ 1018 does 
not allow to confirm surely b(t)~logllogtl ,  
which, probably, is actually realized in a very 
small regmn near t 0. In the framework of exceed- 
rags obtained the approximation b( t )~  [log t[ ~, 
0.35 < 3' < 0.65 is satisfactory. But a more exact 
answer m the broad vicinity of t o can be obtamed 
solving numerically the eigenvalue problem (41). 

5. Collapse and dissipation. Superstrong wave 
collapse 

The central question of the physical theory of 
collapses is to estimate the effectiveness of col- 
lapse as a nonlinear mechanism of wave energy 
dissipation. For that it is necessary, first of all, to 
include in the equation describing the collapsing 
medium nonlinear dissipative terms. It is conve- 
ment to modify eq. (2) introducing nonlinear 
damping concentrated near the center r -- 0: 

i(~t  + /31~lm~)  + Ar~ + I ~ [ S ~ =  0. (44) 

At sufficiently large m eq. (44) has regular solu- 
tions for arbitrary small /3. The energy absorbed 
in the collapse act is 

I=/3 f dt f?drlgtlm+2r a-1. (45) 

The behavior of integral (45) at /3 ~ 0 defines 
energetic effectiveness of the collapse. In section 
1 we pointed out that insensibility of I to varying 
the damping parameters is characteristic for the 
strong collapse. Numerical integration of eq. (44) 
at sd = 4 has confirmed [48] that critical wave 
collapse is strong. The energy absorbed in the 
collapse is over (0.15-0.25)Nor. This value did not 
nearly change when decreasing /3 and weakly 
decreased when increasing m. 

In the supercrltical case sd > 4 the integrable 
singularity of wave energy density (28) is formed 

in the collapse point. Characteristic time At of 
the formation of the dissipation scale rmm on 
which the collapse is stopped is, according to (9), 
At ~ rmm.2 Substituting the self-simzlar solution in 
(45) we obtain an estimation 

I ~/3r~ d+2s-4-2m)/s. (46) 

It zs clear from (46) that the nonlinear damping is 
effective if m > (sd + 2s - 4)/2. Assuming that 
the whole energy concentrated in the collapse 
zone is absorbed, 

r ( s d -  4)/s 
A N  ~ sd - 4-mm 

we have 

and 

, 
~ z = 2 ( m _ s ) .  

From (47) it follows that I ~ 0 at f l - ,  0, 1.e. 
collapse is weak; at sd-* 4 the weak collapse 
transforms into the strong one. 

The considerations presented are correct only 
for the absorbing in a single collapse act. The 
situation pointed out in section 1 is also widely 
spread when as a result of collapse in the vicinity 
of the singularity the stationary suck in point - the 
dissipation zone, which absorbs energy from the 
surrounding space with constant energy flux to 
the singularity. This effect of "hot  spot" consid- 
ered more or less in detail in various models in 
refs. [32, 38-40, 43, 45, 46, 50-52] has been 
termed a "funnel effect" [50], a "nucleation" [51], 
a "distributed collapse" [32, 40], "hi-self-similar 
collapse" [38], and "singular collapse" [46]. In 
refs. [39, 42] we have proposed the name "super- 
strong collapse" for this effect, which is extremely 
important from a variety of points of view. The 
reason was that the total energy absorption for 
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the life-time of such a regime larger than A t may 
be significantly greater than the energy absorp- 
tion in a single collapse act 

The existence of superstrong collapse in the 
frameworks of NSE means, in particular, that the 
limit (at /3 ~ 0) of eq. (44) has a stationary singu- 
lar solution with constant value of energy flux 
into the singularity 

p =  _ l iml~12rd_l  d r--,0 ~ arg qt. (48) 

We have shown and confirmed numerically m ref. 
[39] that the solutions of such type can actually be 
obtained. Let us demonstrate following ref. [39] 
that under the condition sd > 2s + 2 (taking place 
at d > 2) supercntical collapse is superstrong. 

Consider d > 2 ,  s d > 2 s + 2 .  Then the hmit 
stationary equation 

Ar~+ I~1~= 0 (49) 

has the exact singular solution 

~ = A r  -2/s, A = [ 2 ( s d - 2 s - 2 ) / s 2 ]  1/~. (50) 

One can use this equation as a first step for the 
construction of the singular solutions with a flux. 
For 2s + 2 < sd < 2s + 4, solution (50) is supple- 
mented by a family of stable singular solutions 
which have the following asymptotic behavior as 
r ~ 0 with energy flux (48) 

I~1 =Ar-2/s(1 +Air*" + • .) ,  

i z = 2 ( 2 s + 4 - s d ) > O ,  A~=qP 2. (51) 

(We shall not reproduce the bulky expression for 
the constant q = q(s, d) > 0.) At d = 3 the case 
pointed out takes place at nonlinearity indices 
2 < s < 4 .  I n t h e c a s e s d = 2 s + 4 ( s = 4 i f d = 3 )  
eq. (49) has a single-parameter family of exact 

singular sotutions for which we have 

If sd > 2s + 4, solution (50) Is isolated, but eq. 
(49) has a single-parameter family of "quasiclassi- 
cal" (m the sense of ref. [29]) solutions with 
asymptotic behavior 

Iqtl = C r - r ( 1  + C1 r~ + . .) ,  (53) 

where C = P " ,  3 ' = a ( d - 1 ) ,  v = a ( s d - 2 s - 4 )  
> 0, ot = 2/(s  + 4), Cl(S, d) > 0. 

Finally, at the lower limit of the parameter  
region under consideration, sd = 2s + 2 (the case 
d = 3, s = 2 corresponding to the subsonic Lang- 
muir collapse, which is a particular version of this 
limit, but physically the most important one, was 
analyzed in refs. [32, 38, 40]), the following spe- 
cial stationary solution can take place: 

Iqtl = (2/s2)l/Sr-2/Sllog r1-1/~ (54) 

Near this solution there is also a family of singu- 
lar solutions with a flux. The existence of station- 
ary singular solutions of eq. (2) with a nonzero 
flux is analogous to the case of "failing on a 
center" in quantum mechanics (see ref. [53], for 
example). 

To test the fact that stationary regimes of su- 
perstrong collapse are estabhshed, we carried out 
a numerical integration of eq. (44) in variables 
(13) using the method presented in section 2 
Below we report results for s = 2,/3 = 10 -9, rn = 
6, and ~ ( r ,  0 ) =  e x p ( - r 2 / 1 6 ) .  It is convenient to 
consider space-dimension d as a not obligatory 
integer value. We varied d over the range 2.5 < 
d < 5  in such a way that the grid of variants 
covered all possible dynamical regimes When we 
fixed the dlmensionality at d = 3 and varied s, we 
found no quahtatwe change in the picture. 

In all variants we observed that the solution 
rehably approached the mode of the weak self- 
similar collapse in the inertial interval, to the 
point that the nonhnear damping came into play 
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Fig 11 IRvolutlon of the field at the center for s = 2 and 
var ious  va rmnt s  (1) d = 2 5, (2) d = 3, (3) d = 3 5, (4) d = 4, 
(5) d = 5 

at the level I~(0,~')1 ~ 104-105. We see from fig. 
11, which shows the time evolution of the ampli- 
tude at the center, that the behavior of the solu- 
tion at d = 2 5 is characteristic of the ordinary 
scenario of weak collapse. At d = 3 we observe 
an oscillatory regime, which we can somewhat 
arbitrarily regard as a "quasistationary" regime. 
For the variants d = 3.5, d =  4, and d = 5 the 
behavior of the amphtude is approximately sta- 
tionary. The hypothesis of the existence of hot 
spots is thus effectively confirmed. We also found 
an agreement between the spatial behavior of the 
collapse mode which was established and 
the formulas gwen above. For example, we see 
f rom fig. 12 t ha t  the  va lue  F(~:) = 

K I ~(~ ,  ~')1/11/;(0, r)l  s"/2 (for the variants shown 
here x = 2 / s  = 1) becomes essentially indepen- 
dent of the spatial variable outside the effective 
radms of the nonlinear damping. Finally, the 
existence of stationary singular solutions (5)-(7) 
of eq. (2) was verified by our direct numerical 
Integration of the stationary equation with a dis- 
continuous damping coefficient/3 = / 3 0 0 ( r m m  --  r), 
rmm << 1, where 0 is the theta function. 

So, the analys~s and calculations show that at 
sd > 2s + 2 the supercritical case is superstrong. 
Collapse is weak only if 4 < sd < 2s + 2, s > 1. 
According to the hypothesm proposed in ref. [46], 

(a) 

O S  

(~ 

Fig  12 Spat ia l  s t ruc tu re  of  the so lu t ion  m the  quas l s ta t lon-  
ary s ta te  for two var ian t s  (a)  d = 3 5, (b) d = 4 

this fact is explained by the weakness of nonlin- 
ear effects in region of parameters pointed out 
and gradual relaxatton of the field to the state in 
which the nonlinearity is overwhelmed by the 
dispersion. 

We shall emphasize that hot spots supplied by 
a constant energy flux can exist regardless of the 
degree of nonlinearity only in a case with d > 2 
(realistically, only for three-dimensional physical 
systems). In cases with d < 2 there can be (at 
sd > 4) only weak collapse, which is what was 
observed in ref. [37] and an analysm of eq. (2) 
with d = 1 and s = 6, as a model suggested for 
the three-dimensional problem. It is clear now 
that this assumption is unjusttfied and that con- 
stancy of the product sd does not guarantee a 
quahtative similarity in the behavior of the solu- 
tions as the dlmensionahty ~s reduced. This fact 
was also pointed out in a recent paper [40]. In 
this work the stability of superstrong collapse 
wtth respect to perturbations destroying its sym- 
metry has also been demonstrated (for s = 2, 
d = 3; see also ref. [45]). 
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It should be pointed out in the conclusion of 
th~s section that we understand the "quasi-sta- 
tionary" nature of superstrong collapse m the 
sense that the lifetime of the regime is signifi- 
cantly longer than the ttme scale of the preceding 
evolution in the inertial interval. 

6. Conclusion 

We have developed an adaptwe method of 
numerical investigation of smgularit~es arising in 
the collapses in the framework of one of the 
fundamental models of theoretical physics-the 
nonlinear Schr6dinger equation. This method ts 
based on the nonlinear substitution of variables 
corresponding to the transition into the coordi- 
nate system of the collapsing region with s~multa- 
neous "straightening" of time and throwing back 
the peripheral part of the distribution. The ob- 
tained record exceedlngs over the intensity (Pmax 
~ 1018) exceed essentially the values reached in 
most advanced calculations. Using the method 
developed we have investigated the structure of 
wave field smgulanty near the collapse point in 
detail. 

We have demonstrated numerically that the 
stable regime of weak self-similar collapse is real- 
tzed m the supercritical case sd > 4 before includ- 
ing stabilizing mechanisms. The collapse mode is 
defined by eqs. (9), (27). The analysis of the 
postcollapt~cal state has shown that at sd > 2s + 2 

there are &fferent regimes of superstrong col- 
lapse- quas~stationary burning m the center sup- 
plied by constant energy flux into the smgulartty. 
We have constructed corresponding stationary 
singular solutions (51)-(54). Analytical conclu- 
sions are confirmed by computer s~mulation. Su- 
percritlcal collapse is weak in the region 4 < sd < 

2 s + 2 ,  s > l .  
The singularity structure of critical (sd = 4) col- 

lapse is investigated. The going out of the field to 
the self-similar asymptotic distribution (34) de- 
fined by stationary soliton is shown. The energy 
captured into the singularity is fixed and equal to 

the critical one. The approach law to the collapse 
point is investigated, the quasi-self-slmdar behav- 
ior of time law is confirmed. The approxamate 
formula for collapse velocity ts obtained. The 
method for time dependence definition is ob- 
tained. This method is connected with the 
solution of the auxihary nonlinear elgenvalue 
problem. 

The results obtained not only can be apphed to 
the problems described by NSE but also are of 
principal importance from the point of view of 
general theory of wave collapses, playing a cen- 
tral role in many problems of strong turbulence 
physics. We must point out a remarkable physical 
example of superstrong collapse: It is natural to 
consider the shock wave formation in gas dynam- 
ics as a collapse of spatial gradients of velocity 
field occurring for a finite time. As for the shock 
wave representing the long-lived zone of energy 
dissipation it can be considered as a one-dimen- 
sional superstrong collapse. 
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