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Summary. We consider equations in 2 + 1 solvable in terms of a nonlocal Riemann- 
Hilbert problem and show that for such an equation there exists a unified dressing 
method which yields: (i) a Lax pair suitable for obtaining solutions that are pertur- 
bations of an arbitrary exact solution of the given equation; (it3 certain integrable 
generalizations of the given equation. Using this generalized dressing method large 
classes of solutions of these equations, including dromions and line dromions, can 
be obtained. The method is illustrated by using the N-wave interactions, the Davey- 
Stewartson I, and the Kadomtsev-Petviashvili I equations. We also show that a careful 
application of the usual dressing method yields a certain generalization of the N-wave 
interactions. 
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1. Introduct ion 

Many apparently disparate physical systems can be modeled in terms of integrable 
nonlinear equations. Such equations arise in ion-acoustic, electromagnetic, electro- 
static, ionospheric, and water waves, in stimulated Raman scattering, in biology, in 
relativity, in quantum field theory, and so on (see, for example, [1]-[5]). This is a 
consequence of the fact that integrable equations express a certain physical coherence 
which is natural, at least asymptotically, to a variety of nonlinear phenomena. Indeed, 
Calogero and Eckhaus [6] have shown that large classes of nonlinear evolution PDEs, 
characterized by a dispersive linear part and by a largely arbitrary nonlinear part, after 
appropriate rescaling yield asymptotically equations (for the amplitude modulation) 
having a universal character. These "universal" equations are therefore likely to appear 
in many physical applications. Many integrable equations are precisely these universal 
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models. Typical integrable equations in I + 1, i.e., in one spatial and one temporal 
dimension, and in 2 + 1, i.e., in two spatial and one temporal dimension, are the 
Korteweg-deVries equation, the nonlinear Sehrtdinger equation, and their 2 + 1 ana- 
logues, the Kadomtsev-Petviashvili (KP) and the Davey-Stewartson (DS) equations. 

Integrable equations in 1 + 1 can support solitons, i.e., exponentially localized 
solutions with particle-like properties. Integrable equations in 2 + 1 can support line 
solitons. The line solitons, in contrast to one-dimensional solitons, do not decay in 
all directions; there exist certain "lines" on which these solutions are bounded but 
nondecaying. The typical integrable equations in 2 + I do not support exponentially 
localized solitons. However, it has been recently established [7], [8] that a certain 
modification of the DS equation, obtained by adding some new terms to the usual DS 
equation, can support exponentially localized solitons (see figure I). These solutions, 
which possess several novel features not found in one-dimensional solitons, have been 
named dromions by the authors of [8]. 

For equations in 1 + 1, the initial value problem for decaying initial data can be 
solved by the so-called inverse scattering transform method. This method, which is 
based on the association of a given nonlinear integrable equation to a pair of lin- 
ear equations known as the Lax pair, reduces the Cauchy problem to the solution 
of a local Riemann-Hilbert (RH) problem. A RH problem involves the determination 
of a function analytic in given sectors of the complex plane, from the knowledge of the 

Fig. 1 describes the interaction of four localized exponentially decaying solutions of the 
Davey-Stewartson I equation. ~, ~/ are the spatial variables (characteristic coordinates) 
and Iql is the amplitude of the wave. Shown are the waves before (a), during Co), and 
after (c) interaction. Note that after the interaction four localized waves appear but their 
amplitude has changed. 
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jumps of this function across the boundaries of the given sectors. The extension of the 
above method for solving the initial value problem, for decaying initial data, and for 
equations in 2 + 1 was achieved in the early 1980s [9]-[11]. The local RH problem 
is now replaced by either a nonlocal RH problem or by a a (DBAR) problem. In 
the case of a RH problem, a function "loses" its analyticity only on certain contours 
while, in the case of the ~ problem, the function loses its analyticity in a certain two- 
dimensional domain of the complex plane. The ~ (i.e., a~) derivative of a function 
measures its departure from analyticity. In both the RH and ~ cases knowledge of the 
derivative of a function is enough to reconstruct this function. In spite of this progress, 
the question of solving an initial value problem for nondecaying initial data remains 
open. One very interesting such problem involves initial data that consist of a number 
of line solitons plus a decaying part. Another open question is the development of 
a method for systematically finding generalizations of integrable equations in 2 + 1 
(such as the modification of DS mentioned above) that support localized solutions. 

In this paper we address both of these open problems by presenting an extension 
of the dressing method which: (i) provides an algorithm for finding certain generaliza- 
tions of the well-known nonlinear equations as well as their associated Lax pairs. In 
the case of DS this generalization is precisely the usual DS with the additional terms 
studied in [7]-[8]. Thus, the extended dressing method is capable of yielding equa- 
tions possessing dromion solutions. (Actually, our method yields equations that have 
several additional terms, but most of these terms can be transformed out via a gauge 
transformation.) The extension is also (ii) capable of capturing solutions that are per- 
turbations of an exact solution of a given integrable nonlinear equation. In particular, 
it can characterize solutions that are perturbations of line solitons. As an example, we 
present the Lax pair that is appropriate for studying the initial value problem of the 
KP for initial data consisting of N-line solitons plus a decaying part. Our preliminary 
investigation in this case suggests a certain explicit formula (see equations (1.6) and 
(1.7)), but we have not carried out the inverse scattering transform in detail. The 
complete analytical treatment of this problem should be compared with the results of 
experiments under consideration [12] in water waves. 

The dressing method introduced by one of the authors and Shabat [13] has been a 
powerful tool for obtaining new integrable nonlinear equations as weI1 as character- 
izing large classes of solutions of these equations. This method is applicable to both 
equations in 1 + 1, i.e., one spatial and one temporal dimension [13], [14], as well as 
to equations in 2 + 1, i.e., two spatial and one temporal dimension [14], [I5]. Regard- 
ing equations in 1 + 1 there exist two formulations of the dressing method. One uses 
a local RH problem, and the other uses a Gel'fand-Levitan-Marchenko (GLM) type 
equation. The RH problem is equivalent to a linear integral equation whose Fourier 
transform yields the associated Gel'fand-Levitan-Marchenko equation. In this sense 
the two formulations of the dressing method are simply related. The usual dressing 
method for equations in 1 + 1 yields solutions that can be thought of as perturbations 
of the zero solution [16]. The starting local RH problem is inadequate for capturing 
solutions that are perturbations of an arbitrary nonzero solution. For example, the 
problem of finding solutions of the Korteweg-deVries equation that are perturbations 
of an N-cnoidal solution yields to considering certain analytic structures on a Riemann 
surface of genus N [17]. 
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With respect to the situation in 2 + 1 we distinguish between two classes of inte- 
grable equations. One class, like KPI and DSI and the N-wave equation, can be solved 
via a nonlocal RH problem. The other class, like KPII and DSII, can be solved in 
terms of a ~ problem. Physical applications of DS include plasma physics, nonlinear 
optics, and water waves. In the context of water waves, it describes the amplitude of 
a surface wave packet interacting with a mean flow. One assumes small-amplitude, 
nearly monochromatic, nearly one-dimensional waves. The DS equation is the shallow 
water limit of the Benney-Roskes equation; DSI corresponds to the case of dominant 
surface tension. The KP equations play the rote in 2 + 1 that the KdV plays in 
1 + 1 [1]. Again, in the context of water waves KPI refers to the case of dominant 
surface tension. Regarding the dressing method of equations of the first class, again 
there exist two formulations; one uses a nonlocal RH problem and the other uses a 
GLM type equation. For a complete discussion of the relationship between these two 
formulations see [18]. Here we consider the dressing method for equations in 2 + 1 
of the first class, i.e., we consider equations solvable in terms of a nonlocal RH 
problem. Our starting point is to postulate the equation 

y, t, k) = IR dl  lx- (x ,  y, t, I )F(x,  y, t, k, l), I~ +(x, 

Iz ~ I + ---~ + O , k --~ ~. (1.1) 

In (1. i), + ( - )  denotes holomorphicity in the upper (lower) half k-complex plane, fR 
denotes integration over the real axis, and F denotes the underlying scattering data. 
We consider F given and regard (1.1) as a nonlocal RH problem which, given F, 
implies/z ± . It is important to note that, although (1.1) appears as one equation for 
two unknowns (/x + and/z- ) ,  it can be solved for /x-  in terms of F through a linear 
integral equation (this is a consequence of the fact that/z + a n d / z -  are not arbitrary 
functions but are analytic in the upper and lower complex k-plane). It is interesting 
that in 2 + 1, in contrast to the case of 1 + 1, one is able to use the same analytic 
structure associated with decaying solutions (namely, the nonlocal RH problem (1.1)) 
to capture bounded but nondecaying solutions. It seems that this is a consequence of 
the decay in one of the two dimensions. 

In the usual dressing method one starts with (1.1), and then by using certain op- 
erators one finds nonlinear equations and Lax pairs that can be solved using this 
equation. The extension of the dressing method discussed here involves allowing cer- 
tain additional terms in the operators of the usual dressing method. The two different 
applications mentioned above, for vector equations, correspond to the following. If 
these additional terms are diagonal matrices, one obtains suitable generalizations of 
the given integrable equation, while if they are off-diagonal matrices, one obtains 
solutions of a nonzero background. In more detail this paper is organized as follows. 

In § 2  we consider the KPI equation. Since this equation is scalar our method 
yields only a formulation of a scheme for obtaining solutions that are perturbations of 
a nonzero solution. In particular, let qo(x, y, t) be any solution of the KPI equation 

1 3 3 -1 
qt + ~qxxz + ~qqx - ~ax qyy = 0. (1.2) 
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It is well known that (1.2) is integrable because it is associated with the linear equation 
ilxy = I~xx + 2iktzx + qlx. This equation is the x-part of the underlying Lax pair. 
Here we show that the x-part of the Lax pair associated with solutions of (1.2) that 
are perturbations of the solution qo is given by 

1 fR d v d s  tz(k - v)e-iV(x+S)qo(-s, y, t). (1.3) il~y = txxx + 2ikixx + q l x -  ~ 2 

Furthermore, 

q = q0 - 2i/x~ I), (1.4) 

where/x 0) can be obtained by solving the sealar RH problem (1.1). The scattering 
data F are given by F (x , y, t, k, e) = f (y , t, k, e) exp[ i ( e - k )x  ], and the Fourier 
transform of f ,  f (y , t, ~, 71) ~. IR d k d e f (y , t, k, e) exp[i(k~ + e~7)] satisfies 

i fy  = (finn - flee) + [qo(~/, Y, t) - qo( -e ,  Y, t ) ] f  , (I.5) 

and a similar equation for f t .  
The linear equation (1.5) can be solved by the method introduced in [8]. Having 

f and hence F, the RH problem (1.1) can be solved for/~; then the O(1 /k )  term of 
/~ yields/.tO). Having/x 0), (1.4) yields q. This procedure can also be used to solve 
a suitable Cauchy problem for KPI provided one analyzes (1.3) to obtain a map from 
q(x,  y, 0) to f (y ,  0, k, e). Here we consider only the particular case that q0 is N-line 
solitons. It is known that the analytic expression for the N-line solitons is 

"9 qo = 20x lndet(l + C), Cnm ~. Cnem e-(pn+~,)x" (1.6) 
Pn + Pm 

where Cn = 3'n exp[ - i  p2y + i p~t], Tn, P,  are complex constants and P,k > 0. We 
shall show, bypassing the analysis of (1.3), that a special solution in this case is 

q = q0 - 2ax2 lndet[l + p(l  + C*)-~], (1.7) 
/ 

where p is a constant matrix 'depending on the initial data. The additional part to q0 
appearing in (1.7) is a certain distortion of the N-line solitons. We call this part a line 
dromion. This is an analogy with the dromions: The external energy for the dromions 
is provided by the boundaries, while the "external" energy for the line dromions is 
provided by the line solitons. The line dromions like the line solitons" do not decay 
on certain rays, 

It should be noted that (1.7) could also be obtained via a Bticklund transformation. 
This is also similar to the case of dromions. However, the approach via B~ieklund 
transformations cannot answer the important question of how generic these solutions 
are. Namely, suppose that q0 and q(x,  y, 0) are given; what will be the form of q as 
t ----> to? Our speculation, in analogy with the situation in 1 + 1, is that q(x,  y, 0) will 
decompose into the N-line dromions given by (1.7) (the effect of initial data is only 
through p). To answer this question one has to perform an inverse spectral analysis 
of (1.3). 

In § 3  we consider DSI. We first indicate the approach to characterizing solutions 
that are perturbations of an-exact solution of DSI. We then concentrate on finding 
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integrable generalizations of the DSI equation. It is well known that DSI is a particular 
reduction (q2 = ---~1) of a more general system of equations for ql, q2, 

iqb + ql~ + ql, ,  -- ~ql  d~l'(qlq2)e + d~ ' (q lq2) ,  = O, (1.8) 

where q2 satisfies a similar equation. We derive a generalization of this system, 
namely, (3.28), and the associated Lax pair. We show that a particular case of this 
system is not gauge equivalent to (1.8). This case is (1.8) with the additional terms 
ql(v2~ + ul + u2) + ql~v2 + ql,~vl, where ul(r/, t), u2(¢, t), vl(r/, t), v2(¢, t) are arbi- 
trary functions of the arguments indicated. The special case v2 = vl = 0 corresponds 
to the DS with the boundary terms discussed in [7]-[8]. The terms vt, v2 correspond 
to the first member of the DSI hierarchy, iql, + ql~v2 + ql~vl = 0. 0t  is well known 
that linear combinations of the members of an integrable hierarchy yield integrable 
equations.) It should be noted that even for the cases that are gauge equivalent to 
(1.8), it might still be useful to have a suitable dressing formulation, since gauge 
transformations usually map decaying to nondecaying solutions. 

In §4 we consider the N-wave equations. We first present a missing equation! It 
is shown that a careful application of the usual dressing method actually implies an 
equation that is a generalization of the usual N-wave equation. This equation is given by 

eikj(Ii~-xlk--, ,  J I i Q I j Q I k ) = O ,  (1.9) 

where eiky is the totally antisymmetric unit tensor and l J, j = 1, 2, 3 are constant 
real N × N diagonal matrices with I~ ~ I~, IX # v. In the special case that I l = 
J ,  12 = I ,  13 = C,  Q reduces to an N × N off-diagonal matrix q, and one recovers 
the usual N-wave equation 

q i j ,  "~ a i j q l j ~  d- ( C i  - J i a i j ) q i j y  d- 

._ Ci - Cj 

a i j  . J i  - .]i  ' 

Equation (1.9) has been announced in [18]. 

N 

Z (aik - a k j ) q i k q k j ,  
k ~ j , k  -- 1 

i ~ j .  (1.10) 

We then apply our generalized dressing method to (1.9): (i) It is shown that the 
additional terms in (1.9) generated by our method can be transformed away by a 
gauge transformation. This is a peculiarity of the fact that all relevant operators of the 
dressing method are first order. Actually, it can be shown that if any of the operators 
is not of first order, then our method will yield equations that are not gauge equivalent 
to the starting nonlinear equation. (i/) We show how it is possible to characterize 
solutions that are perturbations of an exact solution q0. For simplicity we consider 
(1.10) instead of (1.9). Let q0 be a solution of (1.10). Then it is shown that the Lax 
pair associated with solutions of (1.10) that are perturbations of the solution q0 is 
given by 

Ixx = ik[J , Ix] + Jixy - ix * F + qix, 
(1.11) 

Ixt = ik[C , IX] + C IXy - IX * ~' + Ap ,  
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where the off-diagonal matrices 
I'ij =7- Fi jai i ,  and 

Furthermore, 

a, A have components a i j ,a i jq i j  respectively, 

(tx * F)(k)  -- IR dvlz(k  - u)F(v), 

F(x, y, t, k) - ~ ds eik(s-Y)qo(x, s, t). (1.12) 

q = q o -  i[J,txO)], (1.13) 

where /x (1) can be obtained by solving the RH problem (1.1). The scattering data 
F is given by F = exp[i(e - k)y] f (x ,  t, k, e), and the Fourier transform of 
f ,  f (x ,  t, ~, ~7) "---7- 1/2~r fR2 d k  d e f ( x ,  t, k, e) exp[ik~ + ie~] satisfies 

fix = J fn  - f~J + qo(x, ri, t ) f  - f q o ( x , - ~ ,  t), 
(1.t4) 

fy  = C f .  - f~C + ~lo(X, "tl, ' ) f  - f?to(x, - e ,  , )a ,  

where q0ij = q%ai j .  

Given an arbiWary solution q0 of (1.10), (1.14) yields f and then (1.1) and (1.13) 
yield q. Thus, large classes of solutions of (1.10) can be obtained. This procedure 
can also be used to solve a Cauchy problem for (1.10) provided that one is able 
to compute f ( x ,  O, k, 2) from knowledge of q(x,  y, 0). Finding the map from q to 
f requires an investigation of the "direct problem" associated with (1.11a). This is 
beyond the scope of this paper. 

In the examples of N-waves and DSI we distinguished two important eases depend- 
ing on whether the relevant matrices are diagonal or 6if-diagonal. It is clear that the 
most general case corresponds to considering full matrices. This will give rise to Lax 
pairs suitable for obtaining solutions of the generalized equations that are perturbations 
of any arbitrary exact solution. 

It should be noted that throughout this paper q0 is any exact solution of the asso- 
ciated equation such that the relevant integrals make sense. Appropriate estimates are 
beyond the scope of this paper. A rigorous investigation of (i. 10) has been recently 
given in [19]. 

2. The KP Equation 

Let qo(x, y, t) be any solution of the KPI equation 

1 3 3 
qt + "~qxxx + ~qqx  -- Oxlqyy = O. (2.1) 

Our aim is to develop an appropriate extension of the dressing method in order to 
capture solutions that are "perturbations" of the arbitrary solution qo instead of the 
zero solution. We first recall the usual dressing method. 
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2.1.  The Usual Dressing M e t h o d  

Let Dx, D r, Dt be defined by 

Dx = Ox + ik ,  Dy = Oy + i k  2, Dt = Oy + i k  3. (2.2) 

Since iDylx - D2xtZ ~ O(1), the unique solvability of the RH problem (1.1) implies 

iDytl~ = D2xlX + q t z  (2.3) 

or 

Similarly 

or 

itzy = Ixx~ + 2 ik t zx  + qlz,  q = - 2 i t x ~  ~. 

Dtl~ = - D 3  tz + vDxtz  + wlz ,  

(2.4) 

(2.5) 

(2.9) 

2.2. The Extended  Dressing Me thod  

We modify the operators Dx,  D r, Dt as follows 

Dx = Ox + ik ,  Dytz  = lzy + ik2tz + tz * F, 

D d x  = Izt + ik31 x + l x * ( 9 +  i k * E ,  

Izt = - ( tZxxx  + 3 ik lzxx  - 3k2/zx) + v(tzx + ik t z )  + wlz  

or, using (2.4) to eliminate 3k2/zx, 

The O(k)  and O(1) terms of this equation imply 

v = 3i/x(x 1) = 3 - ~ q ,  (2.6) 

3i ,  (~)_ 3 (1) 3 3. -1 
w = ~ ~xx  ~t~y = - ' ~ q x -  ~tOx qr. (2.7) 

Using (2.4) to eliminate k we find 

1 3 30_ 1 3 
tzt = - ~ l ~ x x x  + vlxx + wtz  + ~(qlX)x + -~ x IXyy + i 0~q(q/z)y. 

Expressing v, w, q in terms of/x (I) (equations (2.4b), (2.6a), (2.7a)) and considering 
the O ( 1 / k )  of the above equation we find 

/x~l) _ 1 (1) 3 i. o)2+ 30-~. (11 
~- 4t~xxx + 2 I~x ~ x I~yy " (2.8) 

Equation (2.8) reduces to the KPI for q. 
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where F, 0,  E are appropriate functions of k, x, y, t so that these operators commute 
with each other. To find the conditions for commutativity we consider the Fourier 
transforms of (2.9) 

L)x =ax+a,, by =ay-ia~+l ~, bt=at-O3s+(f~+:Es)+E~gs, (2.10) 

where ^ denotes the Fourier transform with respect to k, i.e., 

x, y, t) = IRdk  eikSF(k, x,  y, t), (2.11) ~(~, 

and similarly for ~,/~. Commutativity of/~x,/St,/St implies 

iPx+ l~s=0 ,  0 x + ~ s = 0 ,  (Sr - iOss)(~ + Es) = ~, - l~sss + E~s, (2.12) 

3 3ii~ = i ~, ~,  = -~ i~r  + ~- ,,. (2.13) 

Substituting (2.13) into (2.12) we find 

~, - "~ltsss + 3 ~ s ~  + 0sl3~ry = 0, (2.14) 

while (2.12a), (2.13) yield 

3i _13 
E = F, ® = - - ~ F x  +~x ~I'y, F = e- ikXT(k,y , t ) .  (2.15) 

Equation (2.14) implies that 

1 IR 
iF(k, x,  y, t) = ~ d~ elk(~-X)qo(~, y, t). (2.16) 

To summarize, let q0 be any solution of the KPI equation (2.1), and let 

3i 3i 3 -1 
e = - T r ,  o = - T r x  + ~ax rr, 

iF = ~ d~eik(~-X)qo(~,y, t). (2.17) 

Then the operators Dx,Dr ,Dt  defined by (2.9) commute. 
We now derive the Lax pair associated with the operators (2.9). In the process we 

shall also motivate the specific modification of Dx, D r, Dt considered above. 
Equation (2.3) suggests that Dr/x = /~r + ik21 ~ + ~ * F, or 

i/~y + i ~ * F  = I.~xx + 2 i k ~ x  + ql.~. (2.18) 

The O(1) term of this equation implies 

= -2i/z~ ) + iU, ~(x,y,t)  = [ d k r ( k , x , y ,  t). (2.19) q 
JR 



The Dressing Method and Nordoeal Riemann-Hilbert Problems 119 

Equation (2.5) suggests Dtl z = i~t + ik31 • + tz * 0 + iktx * E,  or 

Izt + lz * t9 = -iXxxx + VtXx + wlz 

(v 3 3 . 3  3 ) (2.20) 
+ ik i x - - ~ l X x x - ~ , l X r  + ~ q l z -  ~ i l ~ * F -  i~*E 

We choose 19, F, E in such a way that v and w satisfy the same equations in terms of 
q as before. The O(k) term of (2.20) yields 

3 3 ~ 
v + ~ q - ~ i F - E  = 0 ;  

thus, using (2.6b), 

3 3 
v = - ~ q ,  E = - ~ i F .  (2.21) 

Similarly, the O(1) term of (2.20) yields 

3 I _ 3 .  (1) 
w - O  = " ()  

~ z p . ~  2 ~ y  , 

or, using (2.7b), 

3 3 .  -1 
w = - qx -  t0; q r ,  O = - ~ - F x +  ax l ry .  

Eliminating the k terms in (2.20) we find 

1 3 3 -I  
P.t = --~l.~,xx + VtZx + wp. - I~ *O + -~(ql~ - i/.~* F); + ~0 x I.~yy 

3i - 1  
+ --~-0 x (q/x - i/z * F)y. 

(2.22) 

(2.23) 

Thus, since v = --~q and - 2 i / ~  ) = q - iF ,  the above equation implies that q 
satisfies the KPI equation provided that il~ = q0. Using this together with F = 
e-lkXy(k, y, t) (which follows from the eommutativity of Dx and Dy), we find that 

i fR dk  e-ikXy(k, y, t) = qo(x, y, t). (2.24) 

Equations (2.21b), (2.23b), (2.24) are equations (2.15a), (2.15b), (2.16). 

/z~ 1) 1 ' 0 )  (v 3/-,0)'~-. O) 3 - 1 ' 0 )  
= + - 2 ,r + 

Considering the O(1/k)  term of this equation and using (2.19a), (2.22) to express 
q - iF and w - O in terms o f / z  ~1), we find 
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2 . 3  T he  S c a t t e r i n g  D a t a  

The equations for the scattering data F(x ,  y, t, k, l) follow from the requirement that 
Dx, Dy, Dt commute with PF. 

Fx = i(l - k)F, 

= i(12 - k2)F + JR dv[F(v - l)F(k,  v) - F(k  - v,/)F(v)], Fy (2.25) 

= i(l 3 - ka)F + f dv{[O(v - l) + ivE(v  - F, l )]F(k,  v) 
JR 

- F(k  - v, l) [O(v) + ikE(v)]}. (2.26) 

Consider, for example, [D r, Pr ] = 0 

DyPFI~ = D r fR d l  Ix(l)F(k, l) 

= f R d l [ ~ r ( l ) + t L ( l ) F , + i k 2 ~ ( t ) F + f R d v ~ ( l ) F ( k - v , l ) F ( v ) ]  

P F D y i ~ = f R d l [ t ~ y ( l ) + i l 2 1 ~ ( l ) + I R d v l ~ ( l - v ) F ( v ) ] F ( k , l ) .  

Thus, [Dy, PF] = 0 implies (2.25b). 
To solve (2.25) and (2.26) it is more convenient to work with the Fourier transform 

o f F  

F(x ,  y, t, k, l) = ei(l-k)X f ( y ,  t, k, l), f ( y ,  t, ~, ~q) 

1 IR (2.27) 
- - ~  d k d l  ei(k~+t'7)f(y, t, k, l). 
• 2¢r z 

Then f satisfies 

i fy  = finn -- f~g + [q0(r/, y, t) - qo ( - s  r, y, t ) ] f  (2.28) 

and a similar equation for f t .  Since these equations are compatible, we concentrate 
on the solution of (2.28). 

2.4. The N-Line SoUton Case 

We now consider the particular case that q0 is the N-line soliton of the KP, i.e., qo 
is given by (1.6). To analyze the equations satisfied by the scattering data we follow 
the method introduced in [8]. Using separation of variables it follows that (2.28) is 
intimately related with 

iCpy + tPxx + q0q~ = 0. (2.29) 

In general, ~p will contain two parts corresponding to the associated discrete and 
continuous spectrum. However, here we are only interested in the long-time behavior 
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of solutions; thus, we consider only the associated discrete spectrum. Let ~pj(x, y, t) 
satisfy 

i~pj, + ~j~ + qo~j = 0; (2.30) 

then (2.28) and the reality of qo yield 

N 

: = Z PJr~OJ(--~)~Or('¢])' ( 2 . 3 1 )  
j,r=l 

where the matrix p depends on the initial data. The Fourier transform of (2.31) yields 

f (y ,  t, k, l) = Z Pjr d~ eik~cpj(~) drle-i*n(Or(rl) • 
j,r--1 

Thus, if we represent f in the form 

f (y ,  k , l )  j~=l[ - - -~ f  = N 1 d ,  e ikCfj( , )][__~ ~ fR drle-nngj(rl)] " 

it follows that 
N 

fJ(~) = ~J(~)' gJ(~q) = Z Pjr~r(rl). (2.32) 
r = l  

Equations (2.32) show that the Fourier transform of f can be expressed in terms of 
solutions of (2.30). These equations can be solved by linear algebraic equations [8] 

N Cn ~j 
q~n + ~ p~ T p j  exp[-(pn + pj)x]~j  = Cne - p : ,  

j = l  

N 

qo = -2ax ~ .  ~ne-P~X ~n, (2.33) 
n = l  

where c~ = 3'n exp(-  i p2y + i p3 n t), Tn, and pn are complex constants and PnR > 0. 
Hence, 

N Cn Cm 
~ = ~__,(I + C)n-~lcje - ~ : ,  C,,,, - - -  exp[- (p~ + pro)x]. (2.34) 

j = 1 Pn + pra 

Equation (2.31) indicates that, for this case, the scattering data becomes degenerate. 
Thus, the RH problem (1.1) can be solved in closed form 

~+(~:)- ~-(k) = d e ~ - ( e ) e x p [ i ( e -  k ) x l r ,  fj(k)gj(e). (2.35) 
j = l  

Let 

1 IR d£1z-(e)eieXgj(~)" (2.36) Aj ~ x / ~  
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Taking the minus projection of (2.35), multiplying this equation by ( 1 / x / ~ )  e ikXg ~(k ), 
and integrating over k, we find 

A~, = ~v + EAja j~ , ,  ajt,-- dk~j(k)e-ikX)-gT,(k), (2.37) 
j = l  

where the superscript - denotes the application of the minus projection. But 

fR f Y(k')e-ik'x 1 l fR eik'(p-x) f j(p) (fj(k)e_ikx)- = 1 dktk  ' = 2 2ilr - (k - iO) 2i¢r V ; ~  dk'  dp -~7-S-~ :~ -~  

_ 1 fx__~ ^ i - v~ ~ dpf j (p)e  k(p x). 

THUS, 

a jr = -- fx__~ dpfj(p)~v(p).  

^ 

Using (2.32) to express f j ,  ~j in terms of ~j , /k j,  (2.37a) becomes 

Av = E Pvr~r(X)- E pvrAj dptPy(p)'~r(p). 
r= l  j,r=l ¢~ 

(2.38) 

It was shown in [8] that if ~pj solve (2.33), then 

~ j ¢ ,  = a~(t + c ) j ) .  

Hence, (2.38) yields 
N N 

Av + E M v j A  j = EPvr(Pr(X), M - - p ( !  + C*)-'. 
j = l  r= l  

(2.39) 

= ~".rN=l((I + M)-lp)jr(Or, and since ~n is given by (2,34), we find Thus, Aj 

N 
Aj = E [(1 + M)-ip([  + C*)-I]j£ c£e -~¢x. (2.40) 

./=1 

The large k asymptotics of (2.35) imply that 

N 
= - i  Z ajcp j 

j = ,  

Using (2.34) and (2.40) to express A j, ~j in terms of C, M it follows that 

/.t C1) = - i  trace(I + M)-lp(I  + C*)-t(JxC*)(I + C*) -1, 

where we have used that JxC~t = c~ t  exp [ - ( P n  + -fit)x]. But Mx = p(I +C*) -1 × 
C~(I + C*)-1; thus 

gO) = i t race( /+  M)-IMx = i¢gxtraceln(l + M). 
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Rigorous results on KPI are given in [20]. The question of including line solitons 
to the usual inverse scattering of KPI is considered in [21]. 

3. The DSI Equation 

Define the operators Dx, D r, Dt by 

Dxtx = tzx + ikl~J + I~ * F, 

Dyt z = I~ r - iklx + Ix * 0 ,  (3.1) 

Ddz = I~t - ik2brJ + tz * A + iktz  * E,  

where F, O, A, E are functions of x, y, t, k. The Fourier transforms of these operators 
are defined by 

l~xM = Mx + MsJ + M~,  

L)yM = My - Ms + MO,  (3.2) 

D t M =  Mt ~" iMssJ + M Z  + MsE, Z ~ ~ + Es, 

where t ,  O,/~,/~ denote the Fourier transforms of F, ®, A, E respectively in the vari- 
able k, i.e., t ( x ,  y, t, s) = f R d k eikSF( x,  y, t, k), etc. Commutativity of/~x,/)y, /3t  
among each other yields: 

[J ,  = o, t r  - t .  + [ t ,  = + 

[J, E - i t ]  = O, Ex + F, sJ + [8, t ]  + [Z, J] = 2 i t s  J ,  
Zx + ZsJ  + [2, F] = t ,  + i t s , J  + F ,E ,  (3.3) 

There exist two important cases: (i) If matrices F, A, E, O are off-diagonal, one can 
use (3.1) to characterize large classes of solutions that are perturbations of an arbitrary 
solution of the DSI equation. For economy of presentation we do not consider this 
case here; we simply note that the relevant methodology is similar to that used in §2. 
This methodology will be illustrated further in § 3. (ii) If the matrices F, O, A, E are 
diagonal, one obtains certain generalizations of the DSI equation. We first consider 
the special case that O = 0. It will be shown later that the general case can be reduced 
to O = 0 by a gauge transformation. 

If O = 0 equations (3.3) become 

tr-t,=o, 
Ax + J~s  = t ,  + P ~ ,  - i J t s , ,  Ex + JE ,  = 2 i J t , .  (3.4) 

3.1. The Lax Pair 

To derive the Lax pair associated with the operators (3.1) we note that Dx/~ 
i k J ,Dy t x  ~ - i k ,  and Dtix ~ - i k 2 j  as k---> ~. Thus, 
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DxIX + JDrIX + qIX = O, (3.5) 

o17 

IXx + JIXy + i k  [IX, J ]  + IX * F + qIX = 0. (3.6) 

The O(1) term of  this equation implies 

= i [ J , I X O ) ] - I  ", F ( x , y , t )  = ( d k I ' ( k , x , y , t ) .  q (3.7) 
JR 

Similarly, 

DtIX = i J D ~ g  + BDyIX + AIX, 

IX t = i J ix y s - k ( ix x - J IX r + IX * F + q IX + i IX * E + iBis)  

- IX*A + BIXy +AIX. 

or 

The O(k )  term of  this equation implies 

B = i q + i / ~ ,  A - F + i E ,  

(3.8) 

(3.9) 

The O ( 1 / k )  term of  (3.6) yields 

a = -~ ~ qlq2, 
oa 

d = - ~  dr l 'q lq2,  

b (2) = -ql_..L + 
2 4 

C(2) = _ q2.._..~ + 1~'2 -- ~'1 
2 4 

~1 - f'2 
q l + 8 f n _ _ ® d r f q l q 2 ,  

q2 + "~  d~ 'q lq2 .  

(3.15) 

The O(1) terms of (3.11) yield 

QI = - ~ 1 ,  Q2 = - F 2 ,  b = ql _q..22 (3.14) 2-i" c = 2 i"  

q = q2 Q2 ' d ' = ~ c ( 2  ) d(2) , (3.12) 

= x + y ,  ~ = x - y ,  1 ~ = diag(~'~,F2), J = d i a g ( 1 , - t ) .  (3.13) 

Then (3.7a) becomes 

f 
JR d k  F(k,  x ,  y ,  t), (3.10) 

and/~,  A are defined in a similar way to ~.  Thus, (3.9) simplifies to 

tzt = iJ lzyy  - k(ix~ - JIXy + IX * A - fitix) - IX * A + i(q +/k)IX r + AIX. (3.1 I) 

Let 
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All = ~f d~'(qlq2)Tq + ~1, 

A12 = - iql~ + l (~k2 - A 1 ) q l ,  

A22 = -2-f  d~f(qlq2)~ + ~2, 

A21 = iq2¢ + 1(A2  - ,~l)q2. 
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ThUS, 

and, also, 

To derive the associated nonlinear equations we consider the O( 1 / k ) term of (3.11). 
In particular, the "'12" component yields 

b~ = i b y y  + b(2) - h(2) -t- (/~1 --/~x2) b(2) q- (All - ~2 - ~ 2 ) b  - y  - x  

+ i(?tl + Q1)by + iqldy + Amd, (3.17) 

where 

~2 = fR dkkA2(k, x, y, t). (3.18) 

Using (3.14)-(3.16), (3.17) reduces to 

_1 
iql, +qle, +ql~  ~ql[f_ dTl ' (qlq2),+I~ d"(qlq2)~ ] 

+ ql,(A2 - f ' l) + ql~(f'2 - ill) = 0. (3.19) 

The "21" component of (3.11) yields a similar equation for q2. 
We now determine the relationships among the functions I ~, ~,, E and express 

F, A, E in terms of them. Equations (3.4) yield 

r = e i k y ' y ( x ,  t ,  k), A ---- eikys(x, t, k), E = eiky~(x, t, k), (3.20) 

r = Lakr(x,y,,,k)= Lake'kY ( ,,,k) 

Also ,  

1 L F(x , y , t , k )  = ~ d z~ ' ( x , t , z ) exp[ i k ( y - z ) ] ,  

~(x, y, t, s) = ~(x, t, y + s), 

and similarly for A, E. Then, (3.4) imply that ~(x, t, y), ~(x, t, y), and F.(x, t, y) 
solve 

Ex + JEy = 2iJFy, Ax + J~y = Ft + EFy - iJFry. (3.22) 

z 
A2 = -i?ty. 

(3.21) 

(3.16) 
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In Summary: Let ~(x,  t, y) be an arbitrary diagonal matrix, and let J~, ~ be defined 
by (3.22). Let F, A, E be given by 

F ( x , y , t , k )  = ~ d z F ( x , t , z ) e x p [ i k ( y - z ) ] ,  

A =  2~ f d z A e x p [ i k ( y - z ) ] ,  

E = ~ dz F. exp [ik(y - z)], (3.23) 

and let A = F + iE. Then the nonlinear equation (3.19) (where q2 satisfies a similar 
equation) admits the Lax pair given by (3.6) and (3.11). 

We now solve (3.22). It is convenient to define g,(x, t, y) in terms of 1 ~ as follows; 
= ~x + J~y (the motivation for this substitution is given in §3.3). Then it is easily 

verified that/~t, = 2iJ~y and Ap = ~t + iJ~  2 - iJ~yy are particular solutions of 
(3.22). Hence, 

f'=g~+s~y, ~=~o+~?~,, ~=~o+~,~,, (3.24) 

where 

Eox + JF, o r = O, ~o x + j ~ o  .= F.o(gx + Jgy )y ,  (3.25) 

are the solutions of (3.22). Equations (3.25b) can be simplified by the substitution 
~o = Ao + ~y/~o to give a homogeneous equation for Ao. 

Having expressed ~,/~, ~ in terms of ~, J~0, and Ao, the terms appearing in (3.19) 
can also be expressed in terms of ~, Eo, and Ao. 

In Summary: Let 

I" = ~ x + J g y ,  J~ = Eo+2iJ~'y, A = Ao+~rF, o + ~ t + i J ~ - i J ~ y y ,  (3.26) 

where ~ is an arbitrary function of x, t, y and 

P~o~ = iv~(~, t), Eoz = -iv2(~,  t), Ao, = iul(~, t), ~ = - iu2(¢,  t). 
(3.27) 

Let F, A, E be defined by (3.23). Then the nonlinear equation (3.19) 

iql, + qlu + ql,~ - ~ql dTl'(qlq2)~ + d~'(qlq2)n + qle(2v~ + v2) 

2 + + v2v~vlv~ + ul + u2) + ql~(2vn + vl)ql(ivt + vgg + vnn + v~ + v n v2~ 
= 0, (3.28) 

where v = ~'2 - ~l (and q2 satisfies a similar equation), admits the Lax pair given by 
(3.6) and (3.11). In (3.6) q is given by (3.12a), and in (3.11) A is given by (3.16), 
while A = F + iE. 
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The astute reader will notice that the transformation ql = Q l e  -v ,  q2 = Q2e v 
maps (3.28) to an equation with v = 0. This will be further discussed in §3.3. 

3.2. The Scattering Data 

The equations for the scattering data F ( x ,  y,  t, k, l) follow from the requirement that 
Dx, Dy, Dt commute with Pv. This implies 

= i~JF  - i k F J  + fR dv  [I'(v - ~)F(k,  v) - F (k  - v, ~)F(~,)] Fx (3.29) 

Fr = i(k - e ) F  (3.30) 
Ft = - i e 2 J F  + i k 2 F j  (3.31) 

+ JR dv{[A(v - e) + i v E ( v  - l ) ]F(k ,  v) - F (k  - v, l ) [A(v)  + ikE(v)]}.  

Equation (3.30) implies that the dependence on y is exponential. To solve (3.29), 
(3.31) it is convenient to introduce the Fourier transform of F 

F(x ,  y,  t, k,  l) = exp [i(k - l ) y ] f ( x ,  t, k, l), 

f ( x ,  t, ~, 77) = ~ 2 d k d l f ( x ,  t, k, l)exp [i(k~ + l~)]. (3.32) 

Then (3.29) and (3.31) reduce to 

f x  = i J f,7 - i f~J  + ['(x,  - r  I, t ) ]  - f [ ' ( x ,  ~, t), (3.33) 

:, = iJ:~ -i:~J + A(x,-n, 1).:- :~(x,~,t) 
+ ~(x, -77, t):~ - [f~(x, ~, t)]~. (3.34) 

Indeed, one of the convolution terms in (3.29) becomes 

~ d v d k d l F ( v  - l ) f ( k ,  v)exp(ikl~ + il'q) 
2 

1__ 
fR d v d k d l F ( v  - l )e×p[i( l  - v)n]f(~,  v)exp( ik~  + iwT) 

2~  3 

= f ' (x ,  - '0 ,  O f ( x ,  t, ,~, 77), 

where we used (3.21). 

In Summary: Let the scattering data F satisfy (3.32)-(3.34); then the RH problem 
(1.1) yields solutions of the nonlinear equation (3.28) via ql = 2i(/~(1))12. Equations 
(3.33) and (3.34) can be solved by the method introduced in [8]. 

3.3. A Gauge Transformation 

In this section we investigate the question of gauge equivalence of the nonlinear 
equation (3.28) to the equation obtained by the usual dressing method. 
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a diagonal matrix, such that (3.35) reduce to 

b ° .  + ' , I , j  ^o = , Dyffk r = ~y  -- 'Its, 

This is the case if and only if 

and 

b ° ~  = ~ t  + i ~ s s J .  (3.36) 

~y - ~s = 0, (3.37) 

= 2 iJ~ , ,  £ = gt + i J ~  -- iJ~yy. (3.38) 

On the other hand, we know that I ~, ~, E satisfy (3.4). Therefore, there exist cases 
in (3.35) that are not gauge equivalent to (3.36), if and only if there exist solutions 
1 ~, A, E of (3.4) that cannot be written in the form (3.38). It is easily verified that the 
particular solutions 

= ~x + Jgy, Ep = 2iJ~y, At, = ~t + iJg, 2 - iJgyr 

satisfy (3.4). However, the general solution of (3.4) is given by (3.26), and it involves 
the arbitrary functions vl(r/, t), v2(~, t), Ul(~/, t), u2(~, t). 

In Summary: The particular case of the operators (3.35) given by 

L)xM = Mx + M s J ,  f iyM = My - Ms, 

L)tM = Mt + iMssJ + M(£o + Eo,) + MsJ~o, 

where Ao,/~o are given by (3.27), is not gauge equivalent to (3.36). This corresponds 
to the equation 

iql, + qlu + ql~ + ql [ - 2 ~ d ~ f  (qlq2) , - ~ d , ' ( q l q 2 ) ~  + v2e + Ul + U2] 

+ ql~v2 + ql~Vl = O, 
(3.39) 

and a similar equation for q2. The system of equations of ql, qz admits the reduction 
q2 = "Z'--ql provided that v2 = vl = v(t) and ul, u2, v E R. The terms vl, v2 
correspond to the first member of the DS hierarchy. Indeed, commutativity of the 
operators 

L -- Oy + JOx + [J , q], M - Ot + HOx + [H, q], H -  - i  diag(vb v2), 

implies 

Recall that (3.28) is associated with the operators 

D x n  = Mx + MsJ  + M~ ,  

DyM = M r - Ms, (3.35) 

D,M = kit + iMssJ + n ( ~  + 8 , )  + MsE. 

The question of gauge equivalence reduces to finding a transformation ~ = Me  ~, ~, 
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if 
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iql, + ql~v2 + ql~ vl = O. 

We now examine the case 0 ~ 0. The operators (3.2) reduce to (3.36) if and only 

= gy-?,s, ~ = ~x+J~,s, E = 2iJ~s, ~t = gt+iJ(-~ss+gs). 

However, the general solution of (3.3) (with 1 ~, ~, E, ~ diagonal) is given by 

0=~y-~s, l~=l~o+~x+J~s, F.=Eo+2iJ~,s, 

= /~o + Eo~, + gt + iJ(-~ss + ~s2), 

where I~o,/~o, ~o satisfy (3.4). Hence, the general case of ® ~ 0 is redu~ via a 
gauge transformation to the case O = 0. 

3.4. The DSI with Nonzero Boundary Conditions 

Let F = E = 0, q2 = e~l ,e  = +-1. Then 

iqt + qee + qnn + q - ~  dn'tql~ - ~ dg'jqt~ + u1(~7, t) + u2(¢, t) = 0. 

(3.40) 

Assuming that the scattering data F is off-diagonal with entries F12, F21, it follows 
that fl2 solves 

iA2, + A2,e + A2,,  + [ul(x + 71, t) + u2(x + ¢, t)]f12 = 0. 

Thus, 

where 

solves 

F12 = gl2(t, k, l )exp[ i l (x  - y) + ik(x + y)], 

F21 = g21(t, k, l ) e x p [ - i e ( x  - y) - ik(x  + y)], 

~12(t, ~, ~ / ) I  fR2 dk  d l  g12(t, k, l)exp [i(k¢ + I~7)], 

ig12, + gI2~¢ + gl2nn q- [Ul('r/, f) + u2(~, t) lgl2 = 0. 

It can be shown that g21(t, k, l) = gl2(t, l, k). 

(3.41) 

(3.42) 

In Summary: Equation (3.40) is associated with the RH problem (1.1) where the off- 
diagonal matrix F is given by (3.41) and the Fourier transform of g12 solves (3.42), 
while g21(t, k, l) = ~21(t, l, k). 
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Equation (3.40) has been investigated in [7,8]. Here we note that the functions 
ul,  u2 can be thought of as nontrivial boundary conditions for the velocity potential 
U, where 

8 2 
U1~-- ~lqle, 2 U2, = -~lqln. 

4. The N-Wave Equation 

We first derive (1.9). Consider the operators Dxj defined by 

Dx~lz = I~j  + iklxI j, j = 1,2,3.  

Since Dxj p, is asymptotic to i k I  j it follows that 

I~D~j t z -  IJDxitZ = Uijt~. 

Using the O(1/k)  of the above equation to compute Uij it follows that 

Ii(brxj + ik lz l  j) - IJ(px~ + ikl~I i) = i(Iitz(1)I j - IJlz(l)li)tx" 

Multiplying this equation by I k from the right, using cyclic permutation, and adding 
the resulting equations we find 

eljk[li f txjI k - -  ilil~(1)lJ f t l  k] = O. 

The O(1/k)  of this equation implies (1.9), where/~(i) _ - i Q .  
We now consider the extended dressing method. Define the operators Dxj, j = 

1,2,3 by 

Dxjl~ = ~ + ikl~I j + I.L * F j,  (4.1) 

where l J  are constant diagonal matrices, xl = x, x2 = y, x3 = t, and the * operator 
is defined in (1.12). Let ^ denote Fourier transform in k. Then 

OM i j  DxjM = OM + + M ~  j, (4.2) O~j lOS 

Demanding that [15xj,/)~,] = 0, i, j = 1, 2, 3 we find, 

~'Jl i + I /~  'i = ~'iI/ + Ii~ 'j, (4.3) 

~/x~ +~js Ii +~' j~i  =~ix~ + ~ i  j +l~il~,j, i ~ j ,  i , j  = 1,2,3.  (4.4) 

We again distinguish two important cases: (/) 1 ~j are diagonal matrices; (ii) ~J are 
off-diagonal matrices. 

In the first case it is a straightforward matter following the approach of § 3, to find 
the Lax pair of a nonlinear equation that is a generalization of the N-wave equation. 
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This equation involves certain functions that are generated from the solution of the 
following system of diagonal matrices, 

~J + l i ~  j = ~ix: + IJf'~, i # j ,  i , j  = 1,2,3.  (4.5) 

However, these functions can be transformed out by a gauge transformation. Let us 
find the appropriate gauge in a step-by-step procedure. The general solution of (4.5) 
can be written as 

f,1 = g, xl + I1~, ,  1P: = f':o + gxj + I Jg , ,  j = 2, 3, (4.6) 

where ~ is an arbitrary diagonal matrix and l~g solve 

FYox, + llFJo, = 0, j = 2, 3, ~'~3 + I3~2, = 1~°3x2 + I21~°3," (4.7) 

Thus, the gauge transformation M = ~ e  ~ maps the operators (4.2) to 

zS~,I, = ~I'xi + * , I  ~, /5~j'~ = , ~  + * , I ~  + 'z,'f'g. j = 2. 3. (4.8) 

where Fg solve (4.7). However, the general solution of (4.7) is given by 

2 ~ ~2 = G~2 + I G s, f'g = f + G x~ + 13G,, (4.9) 

where 

= G(XI  I1 -- S, X2, X3), : = : ( X l I  1 -- S, X2I  2 -- S, X3), (4.10)  

and, for any diagonal matrices G, J ,  we use the notation ( (z(xJ)) j j  = (J j j (xJ j ) .  
Hence, the gauge transformation W = qbe o reduces the operators (4.8) to 

DxJP = ~x~ + ~sl j, j = 1,2 3x3~ -- d)x3 + dPsI 3 + cD:, (4.11) 

where fi is given by (4.10b). Finally, the gauge transformation ~ = me ~, where 

f i  = hx3 + 13f'ls, ~l = h ( x l I  1 - s ,  x212 - s ,  x3), (4.12)  

maps the operators (4.11) to 

Dxjm = m x ~ + m s I  j ,  j = 1, 2, 3. (4.13) 

4.1 Dressing O f f  Nonzero Background 

We now consider the case that F j are off-diagonal. For the sake of simplicity we 
consider the usual N-wave equation, i.e., we consider the particular case of (1.9) 
where 

11 = J ,  12 = I,  13 = C .  ( 4 . 1 4 )  

Then (4.3) and (4.4) yield 

[1 ~2, J] = [f', c ]  = o, [1 ~3, J] = [I '~, c ] ,  (4.15) 
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P~ + P~J + P~P' = P', + P~c + P'P~, 
1~,2 + Ps2C + ]~2i~3 = 1~3 + i~3 + p3p2.  

Letting l ~1 = i ~, (4.15) and (4.16) imply 

t '2 = 0, I'~j = L j a ~ j ,  

while 1 ~ solves 

~ijr = ~ i j~a i j  -t- l~ijy(Cj - J j a i j )  + 

A. S. Fokas and V. E. Zakharov 

(4.16) 

Ci - Cj 
aij = Ji - Jj ' i ~ j ,  (4.17) 

N 

~i~tvj(aiv - avj). 
v#i,v= l 

(4.18) 

e - i k r f ( x ,  t, k), where f ( x ,  t, s) solves the N-wave Equations (4.18) imply F = 
equation (1.10). Hence, 

F 2 = 0 ,  F~j = F i j a i j ,  F = ~ d s e x p [ i k ( s - y ) l q o ( x , s , t ) ,  (4.19) 

where qo is a solution of the N-waves. Using (4.19) into (4.1), we find 

Dxk~ = I~x + i k ~ J  + Ix * F, Dyb~ = f~y + ikl~, 

Dtl~ = I~t + ikp.C + l~ * [', r'ij = Fijaij .  (4.20) 

We next require that the operators Dx~ commute with the RH problem (1.1). Com- 
mutativity of Dx~ yields 

= i2JF  - i k F J  + IR dv [F(v - 2)F(k, v) - F (k  - v, e)F(v)], y~ 

F r = i (2  - k ) F ,  

F, = i e C F  - i k F C  + [ d v  [~(v  - 2 ) F ( k ,  v)  - F ( k  - v ,  e)l~(v)].  
JR 

Thus, 

and if 

F(k,  2) = exp [i(2 - k ) y ] f ( x ,  t, k, 2) 

1 IR d k d 2 f ( x ' t ' k ' ¢ ) e x p [ i ( k ~ + e r l ) ] '  (4.21) 

f solves (1.14). 
Next we proceed with the usual dressing method based on the operators Dxj, j = 

1, 2, 3. Let /~(k) be the unique solution of (1.1) where F satisfies (4.21), (1.14). 
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We seek linear combinations of DxjtZ that also solve (1.1). Since Dxtx, Driz are 
asymptotic to i kJ  and ik as k ~ ~, it follows that 

Dx/z = JDyl~ + qtz, or /xx = ik [J , Iz] + Jtz  r - / x * F + q / x .  (4.22) 

Similarly, 

Dtlx = CDyI~ +AIx,  or /zt = i k [ C , t x ] + C t x y - l ~ * I ' + A l x .  (4.23) 

The O(1) of these equations imply 

q = q o -  i[J,/z(1)], Aij = ai jq i j .  (4.24) 

Compatibility of (4.22), (4.23), or equivalently the O(1/k )  terms of (4.23) imply 
that q satisfies the usual N-wave equation. 
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