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Inverse Problems 10 {1994) 817835, Printed in the UK

Integrable (1+1)-dimensional systems and the Riemann
problem with a shift

L V Bogdanov and V E Zakharov

International Institute for Nonlinear Sciences, GSP-1 117940, 2 Kosygina, Moscow v-334,
Russia ’

Received 22 March 1993

Abstract. We study (1+1)-dimensional integrable systerns considering them as special cases
of the more general (2+)-dimensional systems. Using the non-local d-problem approach in
(2+1) dimensions, we show that the r’-l-problem with a shift and (for the decreasing solutions)
the Riemana problem with a shift arise naturally in (I+1) dimensions. The Boussinesq equation
and the first-order relativistically-invariant systems are investigated: The approach developed
also allows us to investigate the structure of the continuous spectrum and the inverse scattering
problem for an arbitrary-order ordinary differential operator on the infinite line. -

1. Infroduction

The starting point of our work is the dressing method based on the non-local §-problem
[1-5]. This is a powerful method of constructing (2+1)-dimensional integrable equations
together with a broad class of their solutions. Removing the dependence on one variable, we
20 to the one-dimensional case. In terms of the d-problem this leads us to the problem with
a special kind of non-locality—the 3-problem with a shift and the Riemann problem with
a shift. It appears that these scalar non-local problems are a general and natural technical
tool in the (1+1)-dimensional case.

The main objects of our investigation are the KP equation and the system of equations of
N-wave type [4]. Slightly modifying the KP equation and descending to (1+1) dimensions,
one obtains the Boussinesq equation. The approach developed enables us to construct the
small non-singular decreasing solutions of this equation and to investigate the continuous
spectrum of its L-operator. The geometry of this spectrum is rather interesting; the spectral
data are localized on a hyperbola in the complex plane and on a segment of the real axis
and the decreasing solutions are given by the Riemann problem with a shift on this curve
(see another approach in [6]).

Using the N-wave type equations in (2+1) dimensions, we obtain the relativistically-
invariant systems in (1+1) dimensions. These systems were first integrated by Zakharov
and Mikhailov [7], using the matrix local Riemann problem. In our work we use the scalar
non-local problem and obtain some new spectral information about these equations.

Finally, we use the developed technique to study the inverse scattering problem for the
differential operators of arbitrary order on the line. A special case of this problem was
considered in detail in [8] . Our investigation is not so detailed. We use the ideology of the
dressing method and do not treat the direct scattering problem at all. The dressing method
yields the structure of the continuous spectrum, which is quite non-trivial. The spectral
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818 L V Bogdanov and V E Zakharov

data are localized on certain algebraic curves in the complex plane, and the inverse problem
reduces to Riemann problem with a shift on these curves.

We would like to emphasize that the calculations in this work are based on the 3-
dressing technique and they are mainly formal. A rigorous investigation of the underlying
analysis is beyond the scope of this paper. The integral operators are supposed to be ‘small’
in some sense, 50 that the integral equations are uniquely solvable. But we hope that this
work produces a link between the formal technique and the spectral theory.

2. The 8-problem and its special cases’

The main idea of thig paper is the following. We consider (1+1)-dimensional systems as
special cases of the more general (2+1)-dimensional systems. For instance, the Boussinesq
equation is a special case of the more general Kadomtsev—Petviashvili (KP} equation. We
will show that, in this case, the Riemann problem with a shift naturally arises.

In some sense the technique of constructing (2+1)-dimensional integrable systems is not
in the least more complicated than the (1+1)-dimensional case [1-5]. We briefly outline
it in this paper, restricting ourselves to the scalar case as the simplest. We would like to
emphasize that the contents of this section are not original and are in the main described in
the papers mentioned above. The dressing method uses the non-local 5-pr0blem with the
special dependence of the kernel on additional (space and time) variables

3wz, M) —n(z, ) = Re(z,A) (1)
Ry = [[VORG wep@mmads =K - K0, 1<1<3
@)

where A € C, § = 8/8X and n(x, 1) is a rational function of A (normalization), K;() are
rational functions, the choice of which determines the equation that can be solved using
{I1). We suppose that the kernel R(x, p) equals zero in a neighbourhood of A and u, which
appear in the divisor of the poles of the functions &;(}), tends to zero as A, g — oo and that
for the chosen kernel R{A, u) the problem (1) is uniquely solvable (at least for sufficiently
small x). The solution of (1) normalized by 7 is the function

V@, A) = n{z, 1) + ¢z, 1)
where n(x, 1) is a rational function of A (normalization), (=, A) decreases as A — o0 and
is analytic in a neighbourhood of the poles of K;(A).
The problem (1) reduces to the integral equation for the function ¢

ela, A) = 31 Rlp(, 2) + n(z, 1)) (3)

here

Glo)h) = Qri)™! f [ (“’( ) adi

—I gg(lf)(/v — A‘) 3 I
= (21} hm jf (i — A.|2+e)d AdA
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which is supposed to be uniquely solvable for the given R. Solvability is guaranteed if the
operator 3~'R is ‘small enough’ (i.e. the norm of this operator is less than one for some
properly chosen space of functions).

Let us introduce p(i. ) = 5(0, Now

Yz, M) =n+ Qui)” [f (p( f) 3 A di @

Substituting (4) into (3), we can get another form of the basic integral equation, resolving
the non-local 3-problem

plz, Ay = R(n+37"p). &)

In the most important cases the kernel R{A, i) is a singular function localized on some
manifold in €?, This means that the kernel contains the &-function localized on the
corresponding manifold, or, i other words, that the measure of integratién in the operator
571R is localized on this manifold. The operator 8 IR in this case is still well defined.
In a typical situation this manifold is a covering of the complex A-plane, defined by the
edquation

FOh ) =0 ®

where f is some function in C?. Equation (6) defines a multi-valued shift function
tt = ;(A, A). The kernel of the problem (1) in this case reads

R= Z Rih, 28 — pi(h, 1)),

We will call this case a 3-problem with a shift.

Another special case of the problem (1) is a non-local Riemann problem. Let y = A(£),
& € R be an oriented curve in a complex plane (which need not be connected), and the
kernel of the problem (1) be concentrated on the product of two of these curves in the A
and & planes. In other words

R, p) = 8, (M Ry (2, )dy (1) M

where §, (1) is a §-function picking oﬁt points on y. The solution 3 of the problem (1)
with the kernel (7) is rational outside ¥ and has boundary values ¥*, ¥~ on y. After
regularizing &, we obtain from the problem (1) with the kernel (7) the non-local Riemann

problem
pr -y =4 f,, W+ ¥R, Gy ) du @®

the integration in (8) goes along the curve y.

A combination of these two special cases leads to the Riemann problem with a shift
(or Carleman’s problem). The shift function p = u;(A) is now defined on the curve y
(A, it € ¥). In this case

Ry(hoit) =) RL(DS,(p = (W)
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and

Yt — T =1 W) + ¢ ONIRL () ©)

where p;(X) is a multi-valued shift function on the curve A(£). We will write the problem
(9) symbolically in the form

A AEN) = Ry (A, OGN ((AE)) (10)

where y = A(§) (§ € R) is a curve in the complex plane, A is a jump of the function
across the curve, the value of the function on the curve is the half-sum of the boundary
values and () is the shift function (which may be multi-valued).

In all these three cases the problem is equivalent to a certain integral equation which
can be obtained by a proper reduction of equations (3), (5). Let us do that for a Riemann
problem with a shift. Introducing

py(l) = ¢’+ - #’_lley
we can restore the function 3 in a form

}.f
! oy ) da’.

v=ntoa , (o — A7)
Hence

1o+ v py(l)

SO+ ¥ ey = 1)+ v L
and from equation (9} one gets
1 A .
oy} = 7 (A)) + —v.p. p—"()~7-dl’ R, () AEY. (11)
‘. 2mi ] G =7)

Let the curve ¥ consist of n connected branches y; = A;(£), £ € R, and p;(§) be the jump
of the function yr across the correspondmc branch. Then the expression for the function v
takes the form

LAt &
k| e @

and the integral equation (11) reads

_ _ 1 - £E) Ay o) it
pi(E) —Zij(n(u,(xk(s)m — j;v.p. f G0RE) ~ L@ & E) ).

(13)

Thus we have obtained a system of n singular integral equations.
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3. The KP equation and the N-wave system of equations

The non-local 3-problem and its special cases (3-problem with a shift, non-local Riemann
problem, Riemann problem with a shift) are powerful tools for constructing integrable
nonlinear wave equations and their selutions (see [2-4,9])

The algebraic scheme of constructing equations is based on the following property of
the problem (1): if v (x, A} is a solution of the problem (1), then the functions

u(x)y Dy = (0/0x; + Ki)y (14)

are also solutions. Combining this property with the unique solvability of the problem (1),
one obtains the differential relations between the coefficients of expansions of the functions
¥(x, ») into powers of (A —A,) at the poles'of X, (A). Let us outline the basic steps of this
scheme for the equations which will be used in this work, i.e. for the KP equation and for
the N-wave type system of equations [4].

For the KP equation Dy == 3/8x +ik, Dy = 8/8y +a 'A%, (¢ = 1,1). D5 = 3/8t +1iA%.
Let us introduce the solution of the problem (1) normalized by | {n = 1)

YA, X, ¥, Diseo = 1+ tolx, Jht))\._] 4,

It follows from the unique solvability of the problem (1) that this solution satisfies the
relations

(D3 + D} + 2v(x, y, ) =0
(D3 + D% + g(x, y. ODy + h(x. y, O)W = 0.
The successive use of the coefficients of expansion of these relations as A — o¢ allows us

to define the functions v, g, %

i 3
v=—iz—vo g=3 hy = 35 Wz —ovy)

and to derive the KP equation for the first coefficient of expansion of the function ¥ as
A= 00

] 1 3
a—x(v, + 7 Ve + 3va) = -—Zozzvyy. (15)

To construct the N-wave type system of equations, we use the functions K; (X} with an
arbitrary number of simple and distinct poles

f, o

K.() =ZATM (16)

=1

where a”, MY € C, 1 € a < m, A} # )Lf . Let us introduce the solutions ¥*(x, A) of the

[ Bt

problem (1), normalized by (A — A¥)~". These solutions satisfy the relations

D] — Kyl —yffaff =0
(17)

£ () = v (2. 29)
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where { % J and summation over § is understood. The leading order of expansion of the
relation (17) as A -> A.}:, i # j % k yields the equation

0
TV EOD - KO - yitatvyl =0 (18)

summation over 8 is understood. If the different permutations ijk and substitutions of
the indices 8, y are taken into account, (18) is a closed set of equations for the functions
1,tr “(x). The system of equations (18) is formally Lagrangian with the action density

C(@) = e ivlal avllaf + KOOV el witar + Safyly o} wifal wh)

(19)

summation is over «, 8, v as well as over i, j, k.

4. The decreasing solutions

A solution given by the problem (1) in a general case is defined only locally in a vicinity
of the point & = 0, where the 3-problem is uniquely solvable. Solvability may be lost on
some manifold in a space (x[, x2, x3), where the solution has a singularity. To get ‘good
enough’ solutions having no singularities and bounded (decreasing) as [#| — oo one should
put some restrictions on the kernel R(A, ). These restrictions were discussed in our article
{5]; the main result of this article can be formulated as follows. Let us choose a unit vector
n; (3 n? =1) defining a direction in the a-space. The solution given by the problem (1)
is regular in a neighbourhood of the straight line x; = n;£ and decreases along this line as
& — oo, if the condition

3
Re ) mi(K;(4) — Ki(u)) =0 (20)
=]

is satisfied (this condition is in fact the condition for the kernel R(A, &), it means that we
should use the kernet localized on the manifold (20)), and the kernel R(A, ) is ‘small
enough’.

To get a solution which is ‘good encugh’ in a neighbourhood of some plane, defined
by two vectors »;, m;, one has to satisfy two conditions

3
Re Y ni(Ki(\) — Ki(u) =0
i=I

3
Re ) mu(Ki(d) = Ki(u)) = 0.
i=I

In a generic case a pair of conditions (20) define some manifold with real dimension two
in the space C? of complex variables A, y.

Let us illustrate this result for the simple example of the KP equation. To obtain the
small non-singular solution decreasing in the plane (x, ¥), it is sufficient to use the problem
(1) with the kernel localized on the manifold defined by the system of conditions (20)

Im(A —p) =0 (21)
Rea~ (A2 - =0. (22)
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If @ =1, the system (21), (22) has a solution A, # € R, which defines a non-local Riemann
problem on the real axis. So the small decreasing solutions of the KP1 equation are given
by the non-local Riemann problem

oty = f W + YR, (s 1) exp(ixe) de 23)
. ¥ .

which was originally used by Manakov [10] to integrate the KP1 equation.
If ¢ = 1, the solution of the system (22) is & = —A. Thus the small decreasing solutions
of the K2 equation are given by the d-problem with a conjugation

W (x, y, 1, ) = R(A, —A) exp(@ixi) ¥ (x, ¥, £, —A) (24)

and we reproduce the result of Ablowitz et af [11].

A technique used in the 8-problem is flexible enough to construct solutions with a
different given type of asymptotic behaviour. For instance, to get a solution, periodic in x
and decreasing in y, one can use the kernel localized on the countable system of manifolds

A—u=2mn/X -0 <H <O0 (25)
Rea '(A2 —uPHy=0. (26)

If & =i, the system (26) has a solution A, £ € R, A — p = +2%wn/X, and the solutions
of the KP1 equation, periodic in x and decreasing in y, are given by the Riemann problem
with a shift on the real axis with the shift function (25).

If @ = 1, the system (26) has a solution ReA, p = xan/X, A — p = £2an/X.
Thus the solutions of the KP2 equation, periodic in x and decreasing in y, are given by
the Riemann problem with a shift on the system of lines Re i, g = £mn/X with the shift
funetion p = —A. This interesting problem is quite complicated, but we will not treat it
here in detail.

5. The (I1+1)-dimensional case

The solutions independent of the variable x; can be obtained from the problem (1) with the
kernel localized on the manifold

K;j(A) - K;j(u) =0 27

This observation allows us to use the (2+1)-dimensional dressing method for (1+1)-
dimensional equations, and leads us naturally to the &-problem with a shift and, for
decreasing solutions, to the Riemann problem with a shift. Let us consider this observation
in more detail.

If we have a (2+1)-dimensional integrable equation, defined by the functions X; (), we
can descend to the (1+1)-dimensional case, using the condition (27) for some coordinate x;
in the original or rotated coordinate system. For example, the y-independent KP equation
gives the Kdv equation

(v + %U.rx.r +3v;0) = 0.
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The condition (27) in this case reads
Mep?=0
and the solutions of the KdV equation are given by the d-problem with a shift [3]
§¥ () = R(x, =2 expgix) ¥ (~}) (28)

the shift function for this case is quite simple (¢ = —A), and it is easy to transform the
problem (28) to the local matrix (2 x 2) Riemann problem.

We may also consider the case of the z-independent KP equation, which corresponds to
the simplified Boussinesq equation

2020y = —(§Vrx + 20%) . (29)
The condition (27) in this case reads
A% - [.LS =0 . -

and the solutions of the simplified Boussinesq equation (29) are given by the §-problem
_ 3
W)=Y Rifrled)
=1

where ¢ = [. This simplified variant of the Boussinesq equation was considered in {12].
Let us show that for decreasing solutions our approach leads us to the Riemann problem
with a shift for the functions analytic in sectors (such a geometry for the local matrix
Riemann problem arose in [12] from the analytic properties of the direct scattering problem).
Combining the condition (27) with the condition (20}

Im@A — p) =
we obtain
A—egu=10
A—p=E§ EeR
The selution of this system is
A=81—¢e)”
p=—51-¢")"

which defines a Riemann problem with a shift on the pair of straight lines with the vectors
exp(in /6), exp(—in /6), the shift function is 4 = —A. So we arive at the problem for the
function analytic in correspending sectors.

For the arbitrary rational function K;(A) the condltmn (27) defines a multi-valued shift
function u;(A), and the corresponding 3-problem reads

W) =Y Rip (). (30)
i=1
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Let us introduce a modification of the KP equation

d 1 3
'é‘;‘((vt — puy) + vaxx + 3”:”) = _Zazvﬂ’ p=1 (31

The solutions of this equation are given by the problem (1) with the dependence of the
kernel on the variables x, y, ¢ defined by the expressions {(compare (2), (14))

Dy = 8/9x +iA
Dy =3/0y +a~'a? (a=1,0) (32)
D3 = 8/3t + 1A +iBA
the derivation of this statement for the XP equation is given in section 2, in this case it is
completely analogous (or othérwise one may treat equation (31) as the KP equation with

transformed variables x, y, ).
The time-independent solutions of equation (31) satisfy the Boussinesq equation

200y ~ Bue) = ~($ex + 307y (33)

Such solutions are given by the problem (1) (v = —i(3/8x)r), if the support of the kernel
R(A, ) belongs to the manifold defined by the condition (27)

W +pr—p’—pu)y=0  r#u (34)
or

MHip+pi+g=0.
This relation defines a 8-problem with a shift

Y (h, x. ¥} = RO, (1)) exp(@ixi )Y (), X, ) o= 3(=rt@p -39,
' (35

The solutions of the Boussinesq equation, given by the problem (35) (v = —i(8/8x)yr),
are defined localiy in the neighbourhood of the point x = @, y = 0. We consider the
Boussinesq equation as a dynamic equation with respect to the variable y. To obtain
solutions decreasing as |x| — oo, we should investigate the intersection of the manifold
(27) with the manifold defined by the condition (20)

Im(k — ) = 0. (36)

The conditions (34),7(36) define the Riemann problem with a shift (Carleman’s problem)
which is a proper tool for solving Boussinesq’s equation. "Introducing & = %(?L — i),
v = —iz(A+ p), £ € R, one can obtain

B+E -3 =0. ) , (37)
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In

Figure 1. The localization of the continuous spectmrn for the *plus’ (broken curve) and ‘minus’
(full curve) Boussinesq equations.

5.1. The “plus’ Boussinesq equation

One can see that the properties of the Boussinesq equation depend essentially on the sign of
B. Let § = 1, then the corresponding equation (the plus Boussinesq equation) has a form

%asz -ty + %Uxxxx + (%,Uz)xx =0. (38)

In the case @* = 1 this is a nonlinear wave equation, having an approximate linear
monochromatic solution

v~ ei(a)y+kx) 6!) =__ (k2 + k4)
In the case o = —1] it is a nonlinear elliptic equation. In both cases equation (38) can be
solved by the following shifted Riemann problem

—324ET41=0

A=-id (39)
A=E&+1iv po==£-iv. 7

Equation (39) defines a hyperbola with branches belonging to the upper and the lower half-
planes, respectively (figure 1, broken curve). The shift is the change of the sign of the real
part of A. Let us introduce

p=E) = &Y [+
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to denote the jumps of the function (i) across the upper and lower branches of the
hyperbola. The function ¥ can be represented in the form

1 f°° 1) Gy 1 [T _p @) dh
271 oo (= 2uEN GE 2 oo = A (E)) OF

1 2
@) =iy 2

The Riemann problem with a shift (39) is equivalent to the system of two integral
equations (13)

v=1+ dz’

where

- L @) dh
=11 —vw.p. —
A+ &) ( * o P f,oo O (E) — ar Gy dE' &

1 [® ) di
o f_m O (=8) — A_(E) G

X 8Xp (%5\/ 1+ &2y + 2i§x)

S SN S
_{&) = —v.p. —d
o0 = (1o g [ G (8) — A &

N i = 2+(&) %
271 J oo (A (=) — A4 (§7)) dE

H 2y —2j
xexp(ﬁa’g' 1+E&2y 21.§x).

The solution of the Boussinesq equation is given by the formula

d‘s") RT(§)

dE)R_(S)

AL ey i
w=—gam ) (p+(E) 7 T-OF )ds-

5.2. The ‘minus’ Boussinesqg eguation

This equation -
3.2 [ 3.2
0 Uyy + Upe + gUncax + (EU Jex =0

arises after putting 8 = —1. The reduced & problem for this equation is described by the
conditions

Mtrp+pi=1 (40)
(time independence) and

Im(h — ) =0 _ (41)
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{decreasing in the x direction). There are two possibilities to satisfy these conditions.
First, A and y are real (A2 < 2, u? < 43) and

uz—%kﬁ:,fl—%xz.- (42)

We have a Riemann problem on the cut —\/g <Rek < \/g with the twofold shift (42).
Second, A and w are complex, A =v+if, u=—v+if, £,ve R

vP—3Er =1, (43)

Both A and u are placed on the hyperbola (see figure 1, full curve). The shift, as for the
‘plus” Boussinesq equation, is the reflection with respect to the imaginary axis.

Let us parameterize the curves, on which the solution, ¢, of the Riemann problem with
a shift has a discontinuity, in the following way

Vo = Ap(E) = + /14362 —x<E<oo
y-=A_(§) =if — V14382 —o<f <
yo=Ao(E)=¢£ g2 <3

and introduce the jumps p4.(£), 0-(§). po(§} of the function ¥ across the corresponding
curves. Then the function ¥ can be represented in the form

1 o p—l—(":&") dJ\'+ I
=1 — e
v=1+ f_m = r.)) a8 = .
e plE) A, 1 YT ey
+ o f..w G @y o5t fm G-

The Riemann problem in this case is equivalent to the system of three integral equations

) =1+ (ﬁ f: TRGE W e
aml (#+(;-—(§;)-I(§’)) o f-j:s (u_ﬁgg—lﬂ d‘?)
X R§ () exp {i(%& -1 3% + &(%&2 A l)y}
* (%I f_: (u-(;;{i(f’n %];i *

ﬁf: ey -fs %ﬁ df’)

X Ry (§)exp {i(%é' +/1T=30x + é(%gz +E/1 =257 - 1)y]
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where

pa = g k1 - 382

L ) D,
e =1+ (zm f_m O®) — ArE)) & &
1 % a8y da_ ., 1 [T poED )
- L stk AL Ay, | —_— —_—
T o) O — ey &t [Jm -0~

x R (&yexp {2iy/1 — 362x + (4i/er)E/1 — 382y}

L (® p®) s
G =14 (= ) Sy
p-) ”’(m fm B - A &
1 [ p () dhp ., 1 [T ) )
ST 8) D T pl)
Tl e ey im0

x R™(&) exp { — 2iy/T — 382x — (di/m)E/1 — 3E2y).

The solution of the Boussinesq equation is given by the formula

3 1 = i dA_ Va3 dho
U= —Eﬂ[/_m (M(E)E + P-(E)E) dg +f‘mpu($)a; dé]-

In this case the spectral data R, split into two parts; the short-wave part of the continuous
spectrum is localized on the hyperbola (43), and the long-wave part of the spectrum is
localized on the segment of the real axis (in fact on the covering of this segment); see
figare I, full curve. For & = 1 the hyperbola corresponds to the stable part of the spectrum
{where the exponent (2) for y is imaginary) and the segment to the unstable part (where the
exponent is real), for ¢ = I the situation is reversed, i.e. for o = 1 the long-wave instability
takes place, and for & = i the short-wave instability occurs.

Let us make a remark about the reduction. For o = 1, v{x, ) is real if the kernel of
the problem (1) satisfies the condition

R(h, ) = R(—k, —f1)
and, for & =1, it is real if

R(A, ) = R(fi, A).

6. The relativistically-invariant systems

The systems considered in this part were integrated first by Zakharov and Mikhailov [71,
using the matrix local Riemann problem. In our work we use the scalar non-local problem
and obtain some new speciral information about these equations.

Let us consider the solutions of the ¥-wave type system of equations (18) independent
of the variable x;. Such solutions are given by the d-problem with a shift defined by the
condition (27) and obey the relation

Y = (K1) - KGO P alylY
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where j £k, j, k = 2, 3. Substituting this relation into equations (18) w1th the denvatwes
@; and 0z we obtain the closed set of equations for the functions 1”13 , 1#12, 3] , %1

(% + (K5 G0 — Kfili‘)))w:‘;:’ = (KiO) — KOOy ey o
d

8 @
(a—xj 0D - K, a*m) 4

~ (K1) = K O ey o v

k# j, k, j =2,3, summation is over £, &'. We consider the case i;, A; € R. In this case
the system (44) admits a reduction

v =9 | (45)
which corresponds to the following condition for the kernel of the problem (1)
R(x, w) = R(@, 1)
The linear part of equation (44) can be cancelled preserving the reduction by the substitution
1 = exp(K; () + KeOx — KA )T 46)

and the coefficients af* can be made equal to one by the change
VY = Vi (afa))'? (47)

if Inaf > 0. We introduce the notation ¥ for the function gb',3 and ¢°f for the function
1[/1’3 The set of equations (44) in this case reads

] . .
a—xzvf“” = (K1(M) = K1) o g Byoy
(48)

PP IR NG s T

summation is over 8, ¢’ in the first equation and over y, @' in the second equation, The
Lagrangian density for this system is

L{xy, x3) = i 0™ — ¥ 0% — 3% 930% 4 0P 8,5
+ 20K, () — Ky (D) g4 o o By (49)

where summation is over a. 8, ¥, «’. In the special case where K, and K3 have one pole,
the system (48) reduces to the relativistically-invariant Nambu system [7]

T N
8

(50)
Y =ip* Yy yPeP
B



Integrable (I+1)-dimensional systems 831

where 7 = x, and £ = —x3 arc the light cone variables, ¢* = Ay, ¥* = Ay® and
A = Im(K;(A3) — K7(A2))"/? (without loss of generality we snggest that Im(K; (i) —
Ki(}2)) > 0). In the general case the complete relativistic invariance of the system (48)
can be obtained if X» and K3 have an equal number of poles.

With an extra symmetry

Ka(A) = —Ka(=4)
K3(A) = —K3(0) G
K1) = £K1(-4)

the system (48) admits a reduction

W g
(52)
M=o =
which corresponds to the condition
R u) = R(—4, —L). (53)

For the Nambu system the symmetry (51} implies a special choice K7 = azi, K3 = a3/A,
K;{)) = K((~A) and leads to the reduction

W =y
(54)
¢ =g 2= —a
Thus we obtain the Gross—Neveu equations
By =" Y (PP + PP
8
(55)

Xy =ip® > (¥PHF + ¥Pyf).
ﬁ .

The Lagrangian density for the systems (50} and (55) is given by the expression (49).
Now let us investigate the problem allowing us to construct the solutions with the
asymptotic behaviour resulting from the transform (46), (47); we find

W 04—~ (56)

P s AT exp((K3(05) — K3(A0))x3 — K>(A)x2) (57)
} asé an azé

o A - - - 58

v exP(;u;-;g = ;\.2*-}»3) 48

| W — A exp (a;—f —-agnk‘]“) (59)
1
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for the systems (44), (48), (50), (53), respectively, as /£2 4+ n? — oo and where

> . N :
Aaﬂ _ Y -—ag’az A — v -ag’az_ Al _agQZ )
SRV Ay — Af Im(K, (0))

Taking into account that iaf, A} € R, the system of conditions (20)

Re(Ky(A) — Ka(u)) =0
(60
Re(K3(A) — K3(u)) =0 A u

has a solution A, ¢ € R (which is unique in a generic case). Thus the Riemann problem
with a shift is set on the real axis. The shift function is defined by the condition (27)

K10 = Ky(uw)=0 AFE L (61)

BM =) = ©2)
1

o=}

and it can be rather complicated. This problem gives the solutions of the Nambu equations
with the asymptotic behaviour (58).
In the presence of the extra symmetry (51) the equations (60) also have a solution

A= —f. ) — (63)

The substitution of this sclution into the relation (62) gives the equation of an algebraic
curve in the complex plane

K@)y K(3) =0 K1 () = —K1 (). (64)

So in this case the Riemann problem with a shift is set on the curve consisting of the
real axis and the algebraic curve (64), the shift functions are given by (62) and (63),
respectively. This problem gives the solutions of the Gross—Neveu equations with the
asymptotic behaviour (59).

7. Inverse problems for the differential operator of arbitrary order on the line

The developed method allows us to find a productive approach to a classic problem of
analysis—the inverse problem for the differential operator of arbitrary order (see [6, 8]).
We consider the spectral problem )

Ly =gy

n—2
L=23"+a, 3"+ ) u; ()’

i=]
00 < X < 00, satisfying the condition

wi(x) — o x = +oo
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where g; are given complex constants. In other words, L — Lg, x — oo

n—1I
L°=3"+) ad'.

i=0

The problem is to restore potentials «; through some properly defined ‘scattering data’.

One can construct potentials with the corresponding wave functions, using non-local
problems in the complex plane. Though we work in the frame of the dressing method
and do not treat the direct scattering problem, we obtain information (which may be not
complete) about the structure of the continuous spectrum. In fact we define the inverse
scattering transform from the kernel of the Riemann problem with a shift to the small
decreasing potentials of the corresponding operators the wave functions are also given by
this procedure.

Let us consider the non-local 3-problem (1) with K| = A, K2 = A”+Z, T air, e € C,
normalized by 1. This choice leads us to the relation

(Dz—za, ) O %, y) = Z“ (%, Y)DIY (. x, ). (65)

As usual, we can go from the ‘prolonged’ derivatives D; to partial derivatives by the
transform

11&. - llf’ GXP(K;'X,).
The potentials u; in the operator (65) can easily be expressed through the coefficients of
expansion of the function (X, x, y) as A — oo. For the case a; € R the potentials are real
if the kernel of the problem (1) satisfies the condition

R, 1) = R, 2).

Now let us go to the one-dimensional case. To cancel the dependence on y, we should
use the d-problem (1) with the kernel R(X, p) localized on the manifold (27)

Ky(A) — Ka(w) =0

or
r=1 ) n=1 .
MY ek =t =) g =0 (66)
i=] i=1
In this case we can solve the inverse scattering problem for the operator on the line

n—I n—2
(a" + Y @d + Zu,-(x)af)x,b(x, x) =L, x) (67)
i=1

where

n=—1
= (JL” + Za;/\f).
i=I
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Condition (66) defines a §-problem with a shift

Je) =Y RY (W) (68)

=1
The problem (68) gives the potentials with the wave functions locally near the point x = 0.
To construct the decreasing potentials defined on all the line we should observe the condition
(20)
Re(i — ) = 0. (69)
This condition together with (66) defines a Riemann problem with a shift (10}. The equation
of the curve A(§), & € R for this problem is given by the substitution of the expression
w = A — if (compare (69)} into equation (66), the shift function is given by equation (66)
(it is also useful to note that A and p have identical real parts).
Thus, small decreasing potentials for the operator (67), together with the corresponding
wave functions, are given by the Riemann problem with a shift
AP GEN) = R, (h, u() Y (4 EN)
which reduces to the integral equations (13); this problem defines the transform from
the kernel R to the potentials «;(x) (the inverse scattering transform for the continuous
spectrum).
Let us consider a simple example, K; = A". In this case the operator (67) takes the
form ‘

n=2
Y(h, x) = Y- w (X)O}Y (&, x). (70)
i=]
This class of operators was investigated in detail in [8]. 'We will show now how our
technique works in this case. The shift function (66) for this case is

AM—u"=0 : L . (71
and the problem (68) reads

By =Y ROWED) =1 a2
i=1

If we take into account the condition (69), we obtain
A—egu=90

A—p= lg %- e R.
The solution of this system is
A=i(1—¢g)" =ik

p=—ik(l - = iz g # 1.
In this case ¥ has a discontinuity on (z — 1} lines with an angle 7/n between them. Thus

we have arrived at the Riemann problem with a shift for the function analytic in sectors,
the shift function is @ = A. The integral equations (13) for this case take the form

(€)= (1 + — "Z”‘: v.p f°° i@i)—a"df') REE) exp((oy — @)E)
2mi & oo i — i€

where g is the jump of the function v across the cormresponding line. In the general case
the Riemann problem with a shift may be defined on quite a general analytic curve in the
complex plane. The symmetries of the function K3(X) can simplify the investigation.
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