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h e m e  Problems 10 (1994) 817435. Printed in the UK 

Integrable (l+l)-dimensional systems and the Riemann 
problem with a shift 

L V Bogdanov and V E Zakharov 
International Institute for Nonlinear Sciences. GSP-I 117940.2 Kosygina. Moscow "-334, 
Russia 

Received 22 March 1993 

Abstract. We study (l+l)-dimensional integrable systems considering them 3s special cases 
of the more general (2+1)-dimension~l systems. Using the non-local ;)-problem approach in 
(2+1) dimensions, we show that the a-problem with a shift and (for the decreasing solutions) 
the Riemann problem with a shift arise naturally in ( I+ l )  dimensions. The Boussinesq equation 
and the first-order relativistically-invan'ant systems are investigated; The approach developed 
also allows us to investigate the structure of the continuous s p e c "  and the inverse scattering 
problem f o r m  arbitmy-order ordinary differentia operaror on the infinite line. 

1. Introduction 

The starting point of our work is the dressing method based on the non-local %problem 
[ 1-51, This is a powerful method of constructing (Z+l)-dimensional integrable equations 
together with a broad class of their solutions. Removing the dependence on one variable, we 
go to the one-dimensional case. In terms of the $-problem this leads us to the problem with 
a special kind of non-locality-the %problem with a shift and the Riemann problem with 
a shift. It appears that these scalar non-local problems are a general and natural technical 
tool in the (l+l)-dimensional case. 

The main objects of our investigation are the KP equation and the system of equations of 
N-wave type [4]. Slightly modifying the KP equation and descending to (1+1) dimensions, 
one obtains the Boussinesq equation. The  approach developed enables us to construct the 
small non-singular decreasing solutions of this equation and to investigate the continuous 
spectrum of its L-operator. The geometry of this spectrum is rather interesting; the spectral 
data are localized on a hyperbola in the complex plane and on a segment of the real axis 
and the decreasing solutions a ~ e  given by the Riemann problem with a shift on this curve 
(see another approach in [6]) .  

Using the N-wave type equations in (2+1) dimensions, we obtain the relativistically- 
invariant systems in (1+1) dimensions. These systems were first integrated by Zakharov 
and Mikhailov [7], using the matrix local Riemann problem. In our work we use the scalar 
non-local problem and obtain some new spectral information about these equations. 

Finally, we use the developed technique to study the inverse scattering piabler11 for the 
differential operators of arbitrary order on the line. A special case of this problem was 
considered in detail in [8] . Our investigation is not so detailed. We use the ideology of the 
dressing method and do not treat the direct scattering problem at all. The dressing method 
yields the structure of the continuous spectrum, which is quite non-trivial. The spectral 
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data are localized on certain algebraic curves in the complex plane, and the inverse problem 
reduces to Riemann problem with a shift on these curves. 

We would like to emphasize that the calculations in this work are based on the 8- 
dressing technique and they are mainly formal. A rigorous investigation of the underlying 
analysis is beyond the scope of this paper. The integral operators are supposed to be 'small' 
in some sense, so that the integral equations are uniquely solvable. But we hope that this 
work produces a link between the formal technique and the spectral theory. 

L V Bogdanov and V E Zakharov 

2. The 8-problem and its special cases~ 

The main idea of thiq paper is the following. We consider (I+])-dimensional systems as 
special cases of the more general (2+1)-dimensional systems. For instance, the Boussinesq 
equation is a special case of the more general Kadomtsev-Petviashvili (KP) equation. We 
will show that, in this case, the Riemann problem with a shift naturally arises. 

In some sense the technique of constructing (2il)-dimensional integrable systems is not 
in the least more complicated than the (l+l)-dimensional case 11-51, We briefly outline 
it in this paper, restricting ourselves to the scalar case as the simplest. We would like to 
emphasize that the contents of this section are not original and are in the main described in 
the papers mentioned above. The dressing method uses the non-local ;-problem with the 
special dependence of the kernel on additional (space and time) variables 

%@(I. A) - V ( G  A)) = A) (1) 

= // W.)R(A.  LC) exp(#ixi)dp A dF #i = - KdAL 1 < i 6 3 

(2) 

where A E C, 2 = 3/81 and q(z, A) is a rational function of A (normalization), K;(A) are 
rational functions, the choice of which determines the equation that can be solved using 
(1). We suppose that the kernel R(A, p )  equals zero in a neighbourhood of A and LL, which 
appear in the divisor of the poles of the functions K,(A), tends to zero as h,  /L + 00 and that 
for the chosen kernel R(A, p) the problem (1) is uniquely solvable (at least for sufficiently 
small I). The solution of (1) normalized by q is the function 

@(I, N = ~ ( 2 .  A) + d z ,  A) 

where q(z, A) is a rational function of A (normalization), 9(z, A) decreases as A + 60 and 
is analytic in a neighbourhood of the poles of Ki(A). 

The problem (1) reduces to the integral equation for the function rp 

V(I, A) = 3- '&9(~,  A) + q(z, 1)) (3) 

here 
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which is supposed to be uniquely solvable for the given R. Solvability is guaranteed if the 
operator 8-’R is ‘small enough’ (i.e. the norm of this operator is less than one for some 
properly chosen space of functions). 

Let us introduce p(A, h) = %p. Now 

Substituting (4) into (3), we can get another form of the basic integral equation, resolving 
the non-local %problem 

p(r, h)  = R(7 + 3- ’p) .  (5) 

In the most important cases the kemel R(A. p)  is a singular function localized on some 
manifold in C2. This means that the kernel contains the &function localized on the 
corresponding manifold, or, in other words, that the measure of integration in the operator 
$- ’ r?.  is localized on this manifold. The operator $-’R in this case is still well defined. 
In a typical situation this manifold is a covering of the complex A-plane, defined by the 
equation 

f@, h, @, !z) = 0 (6) 

where f is some function in C*. Equation (6) defines a multi-valued shift function 
p = pLi(h. x). The kernel of the problem ( I )  in this case reads 

R = Ri(A, h)b’(p - pi(A, x)). 
We will call this case a $-problem with a shift. 

Another special case of the problem (1) is a non-local Riemann problem. Let y = A([), 
( E R be an oriented cnrve in a complex plane (which need not be connected), and the 
kernel of the problem (1) be concentrated on the product of two of these curves in the h 
and p planes. In other words 

R(A, PI = 6y(h)Ry(A, P)&(P) (7) 

where &(A) is a &function picking out points on y .  The solution @ of the problem (1) 
with the kernel (7) is rational outside y and has boundary values @+, @- on y .  After 
regularizing 6,  we obtain from the problem (1) with the kernel (7) the non-local Riemann 
problem 

@+ - @- = (@+ + @-)Ry(A, p ) d p  (8) 4 
the integration in (8) goes along the curve y .  

A combination of these two special cases leads to the Riemann problem with a shift 
(or Carleman’s problem). The shift function p = pi@) is now defined on the curve y 
(A, p E y) .  In this case 

R y ( L  = R~(A)&AI.L - I* .~(A))  
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and 
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@+ - @- 4 C ( @ + ( P i ( A ) )  + @-(Pi(A)))Rb(A) (9) 

where pi@) is a multi-valued shift function on the curve Ut). We will write the problem 
(9) symbolically in the form 

A(@@.(O)) R y &  PL(A))lCI(IL(A(C))) (10) 

where y = A(:) (e E R) is a curve in the complex plane, A is a jump of the function 
across the curve, the value of the function on the curve is the half-sum of the boundary 
values and ~ ( h )  is the shift function (which' may be multi-valued). 

In all these three cases the problem is equivalent to a certain integral equation which 
can be obtained by a proper reduction of equations (3), (5). Let us do that for a Riemann 
problem with a shift. Introducing 

&(A) @+ - @-l iey  

we can restore the function @ in a form 

Hence 

and from equation (9) one gets 

Let the curve y consist of n connected branches yj =Ai(() ,  e E R, and p i ( $ )  be the jump 
of the function @ across the corresponding branch. Then the expression for the function @ 
takes the form 

and the integral equation (11) reads 

Thus we have obtained a system of n singular integral equations. 
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3. The KP equation a n d  the N-wave  system of equations 

The non-local $-problem and its special cases (%problem with a shift, non-local Riemann 
problem, Riemann problem with a shift) are powerful tools for constructing integrable 
nonlinear wave equations and their solutions (see [24,9]). 

The algebraic scheme of constructing equations is based on the following property of 
the problem (I): if $(q A) is a solution of the problem (l), then the functions 

w = (a/axi + (14) 

are also solutions. Combining this property with the unique solvability of the problem (I), 
one obtains the differential relations between the coefficients of expansions of the functions 
@(z, A) into powers of (A - A p )  at the poles’of K,(A). Let us outline the basic steps of this 
scheme for the equations which will be used in this work, i.e. for the KP equation and for 
the N-wave type system of equations [4]. 

Let us introduce the solution of the problem (1) normalized by 1 (q = 1) 
For the KP equation DI = a / a x + i h ,  DZ = a/ay+a.-]hZ, (a. = I ,  i), 0 3  = a/at+iA3. 

$ ( A , x , y , t ) ~ + ~ +  I + @ o ( ~ , y . t ) A - l + . . .  . 
It follows from the unique solvability of the problem (1) that this solution satisfies the 
relations 

+ 0: + Z V ( X ,  Y .  t ) ) $  = 0 

(D3 + 0: + g(x, Y. t)Di + h(x. Y .  t ) ) @  = 0. 

The successive use of the coefficients of expansion of these relations as A + CO allows us 
to define the functions U, g, h 

and to derive the KP equation for the first coefficient of expansion of the function $ as 
A+w 

To construct the N-wave type system of equations, we use the functions K; (A) with an 
arbitrary number of simple and distinct poles 

where a; ,  AY E @. 1 < a. < ni, AS # A,”. Let us introduce the solutions $p(z, A) of the 
problem (I), normalized by (A - AY)-’. These solutions satisfy the relations 

Dj$f - Ki(Aj)@, B B  - @?U;$: = 0 

(17) 
@F(z) = $,!(z, AY) 
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where i # j and summation over p is understood. The leading order of expansion of the 
relation (17) as A + Ai, i # j # k yields the equation 
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summation over p is understood. If the different permutations i j k  and substitutions of 
the indices ,¶, y are taken into account, (18) is a closed set of equations for the functions $rp(z). The system of equations (18) is formally Lagrangian with the action density 

summation is over a, ,¶, y as well as over i, j ,  k .  

4. The decreasing solutions 

A solution given by the problem (1) in a general case is defined only locally in a vicinity 
of the point z = 0, where the %problem is uniquely'solvable. Solvability may be lost on 
some manifold in a space (xi, y, x3). where the solution has a singularity. To get 'good 
enough' solutions having no singularities and bounded (decreasing) as 1x1 + 00 one should 
put some restrictions on the kernel R(A, p ) .  These restrictions were discussed in our article 
[SI; the main result of this article can be formulated as follows. Let us choose a unit vector 
n; (Cn? = 1) defining a direction in the z-space. The solution given by the problem (1) 
is regular in a neighbourhood of the saaight line xi = n;.$ and decreases along this line as 
.$ + &too, if the condition 

Rekni (K;(A)  - Ki(p)) = 0 (20) 

is satisfied (this condition is in fact the condition for the kernel R(A, p ) ,  it means that we 
should use the kernel localized on the manifold (ZO)), and the kernel R(A, p )  is 'small 
enough'. 

To get a solution which is 'good enough' in a neighbourhood of some plane, defined 
by two vectors n;, mi, one has to satisfy two conditions 

i = I  

Rekmi(Ki(A)  - Ki(p)) = 0. 
i = I  

In a generic case a pair of conditions (20) define some manifold with real dimension two 
in the space C? of complex variables A. p .  

Let us illustrate this result for the simple example of the KP equation. To obtain the 
small non-singular solution decreasing in the plane ( x ,  y), it is sufficient to use the problem 
(1) with the kernel localized on the manifold defined by the system of conditions (20) 

Im(A - p )  = 0 

Rea-'(A' - p') = 0. 

(21) 

(22) 
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If (Y = i, the system (21), (22) has a solution A ,  p E R, which defines a non-local Riemann 
problem on the real axis. So the small decreasing solutions of the KP1 equation are given 
by the non-local Riemann problem 

@+ - *- = / (@+ + 1 / I - ) R y @ >  IL) exp(hx;) (IP (23) 
Y 

which was originally used by Manakov [lo] to integrate the KPI equation. 

of the KPZ equation are given by the $-problem with a conjugation 
If 01 = 1, the solution of the system (22) is p = -h. Thus the small decreasing solutions 

~ N X ,  Y, t ,  A) = R(A,  -4 exp($ixi)$(x. y, t ,  -9 (24) 

and we reproduce the result of Ablowitz etal  [ l l ] .  
A technique used in the $-problem is flexible enough to constmct solutions with a 

different given type of asymptotic behaviour. For instance, to get a solution, periodic in X 

and decreasing in y ,  one can use the kernel localized on the countable system of manifolds 

h --~r. = 2xnjX - c o < n c c c  

Re(Y-'(hz - pz) = 0. 

If (Y = i, the system (26) has a solution A, p, E R, h - ,U = f k n / X ,  and the solutions 
of the KPI equation, periodic in x and decreasing in y .  are given by the Riemann problem 
with a shift on the real axis with the shift function (25). 

If (Y = 1, the system (26) has a solution ReA, p = h n / X ,  A - p = f2irn/X.  
Thus the solutions of the KP2 equation, periodic in x and decreasing in y, are given by 
the Riemann problem with a shift on the system of lines R e  A, p = h n / X  with the shift 
function p = -l. This interesting problem is quite complicated, but we will not treat it 
here in detail. 

5. The (l+l)-dimensional case 

The solutions independent of the variable xj can be obtained from the problem (1) with the 
kernel localized on the manifold 

Kj(h)  - Kj@) = 0. (27) 

This observation allows us to use the (Z+l)-dimensional dressing method for ( l+ l ) -  
dimensional equations, and leads us naturally to the %problem with a shift and, for 
decreasing solutions, to the Riemann problem with a shift. Let us consider this observation 
in more detail. 

If we have a (2+1)-dimensional integrable equation, defined by the functions &(A), we 
can descend to the (l+l)-dimensional~case, using the condition (27) for some coordinate xi 
in the original or rotated coordinate system. For example, the y-independent KP equation 
gives the KdV equation 

1 
(ut + zuxxx + 3 U d J )  = 0. 
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The condition (27) in this case reads 
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2 2  A - p  = O  

and the solutions of the KdV equation are given by the %problem with a shift [3] 

2 W )  = WI., -1) exP(@ixi)llr(-I.) (28) 

the shift function for this case is quite simple (ji = -I.), and it is easy to transform the 
problem (28) to the local matrix (2 x 2) Riemann problem. 

We may also consider the case of the t-independent KP equation, which corresponds to 
the simplified Boussinesq equation 

(29) 3 2  3 2  p uyy = - ( : U x x  + T U  )zX. 

The condition (27) in this case reads 

A3 - p3 = 0 

and the solutions of the simplified Boussinesq equation (29) are given by the %problem 

3 
= x R i + ~ ( e ; A )  

i=l 

where e? = 1. This simplified variant of the Boussinesq equation was considered in [12]. 
Let us show that for decreasing solutions our approach leads us to the Riemann problem 
with a shift for the functions analytic in sectors (such a geometry for the local matrix 
Riemann problem arose in [12] from the analytic properties of the direct scattering problem). 
Combining the condition (27) with the condition (20) 

Im(h - p)  = 0 

we obtain 

A - q p = O  

A -  p = c  ' e  ER. 
The solution of this system is 

A = ((I - ei)-' 

/L = -((l - ei ) -I -I 

which defines a Riemann problem with a shift on the pair of straight lines with the vectors 
exp(in/6), exp(-in/6), the shift function is p = -h. So we arrive at the problem for the 
function analytic in corresponding sectors. 

For the arbitrary rational function &(A) the condition (27) defines a multi-valued shift 
function pi (A), and the corresponding %problem reads 



Integrable ( I  +I)-dimensional systems 825 

Let us introduce a modification of the KP equation 

The solutions of this equation are given by the problem (I) with the dependence of the 
kernel on the variables x ,  y, I defined by the expressions (compare (2), (14)) 

D, = a/ax + ih 

9 = a/ay + d h 2  (U = 1, i) (32) 

o3 = a j a t  + ih3 + iph 

the derivation of this statement for the KP equation is given in section 2, in this case it is 
completely analogous (or otherwise one may treat equation (31) as the KP equation with 
transformed variables x ,  y. t). 

The timeindependent solutions of equation (31) satisfy the Boussinesq equation 

(33) 3 2  I 3 2  (p Uyy - B U X J  = -(pzx + ) x x .  

Such solutions are given by the problem ( I )  (U = -i(a/ax)@o), if the support of the kernel 
R(A. p) belongs to the manifold defined by the condition (27) 

0.3 + B A  - w3 - ~ p )  = 0 A # w (34) 

or 

hZ + hp + p2 + ,6 = 0. 

This relation defines a $-problem with a shift 

a$r(h, x .  y )  = R(h. ~(A) )exp(~ ;x i )@(p(h ) .  x, y) @ = ;(-A f (48 - 3A2)’/’). 

(35) 

The solutions of the Boussinesq equation, given by the problem (35) (U = -i(i3/ax)@o), 
are defined locally in the neighbourhood of the point x = 0, y = 0. We consider the 
Boussinesq equation as a dynamic equation with respect to the variable y. To obtain 
solutions decreasing as 1x1 + CO, we should investigate the intersection of the manifold 
(27) with the manifold defined by the condition (20) 

Im(h - p) = 0. (36) 

The conditions (34), (36) define the Riemann problem with a shift (Carleman’s problem) 
which is a proper tool for solving Boussinesq’s equation.  introducing 5 = ;(A - p), 
U = -i$ + @), 5 E R, one can obtain 

j3 + t= - 3u2 = 0. (37) 
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\ 
2 

-3 -2 /;------ 

Figure 1. The localization of the continuous spectrum for the 'plus' (broken curve) and 'minus' 
(full curve) Boussinesq equations. 

5.1. The 'plus' Boussinesq equation 

One can see that the properties of the Boussinesq equation depend essentially on the sign of 
p .  Let ,9 = 1, then the corresponding equation (the plus Boussinesq equation) has a form 

(38) 3 2  3 2  4ff uyy - U,, + avxxxx + (TU ) X I  = 0. 
In the case ff2 = 1 this is a nonlinear wave equation, having an approximate linear 
monochromatic solution 

ei(w+W oz =-$(k2 + ik4). 

In the case ffz = -1 it is a nonlinear elliptic equation. In both cases equation (38) can be 
solved by the following shifted Riemann problem 

- 3vz + c* + 1 = 0 

A=-/l!  (39) 

A = c + i v  p = - f + i u  

Equation (39) defines a hyperbola with branches belonging to the upper and the lower half- 
planes, respectively (figure 1, broken curve). The shift is the change of the sign of the real 
part of A. Let us introduce 

p i ( 0  = A P  I* 
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to denote the jumps of the function q ( A )  across the upper and lower branches of the 
hyperbola. The function $ can be represented in the form 

where 

h+(g)  = e i i G .  1 + 5  

The Riemann problem with a shift (39) is equivalent to the system of two integral 
equations (13) 

x exp ( ' ( m y  - 2it.x) 

The solution of the Boussinesq equation is given by the formula 

5.2. The 'minus' Boussinesq equation 

This equation 

3 2  I 3 2  p uyy + urr + aU.rxxx + ( T u  )xx = 0 

arises after putting ,9 = -1. The reduced 8 problem for this equation is described by the 
conditions 

A 2 + A p + p 2 = 1  (40) 

(time independence) and 

Im(A - p) = 0 
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(decreasing in the x direction). There are two possibilities to satisfy these conditions. 
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First, h and p are real (A2 c $, pz c 4) and 

Ir. = -ik i m. (42) 

We have a Riemann problem on the cut -4 c R e h  < 4 with the twofold shift (42). 
Second, A and p are complex, h = U + i t ,  p = -U + i(, e ,  v E W 

v 2 - 3 ( 2 = 1 .  (43) 

Both h and p are placed on the hyperbola (see figure 1, full curve). The shift, as for the 
'plus' Boussinesq equation, is the reflection with respect to the imaginary axis. 

Let us parameterize the curves, on which the solution, 9, of the Riemann problem with 
a shift has a discontinuity, in the following way 

y+ =A+(() = i t  + - 00 e e c oo 
y - = ~ ( c ) = i : - w  -00ct < 0 0  

YO =ho(C) = 6 ( 2  < $ 

~~ 

and introduce the jumps p+([ ) ,  ~ ~ ( 6 ) .  PO(()  of the function $I across the corresponding 
curves. Then the function $I can be represented in the form 

- G' 

The Riemann problem in this case is equivalent to the system of three integral equations 

- d(' 
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where 

p* = &m 

In this case the spectral data R, split into two paits; the short-wave part of the continuous 
spectrum is localized on the hyperbola (43), and the long-wave part of the spectrum is 
localized on the segment of the real axis (in fact on the covering of this segment); see 
figure 1, full curve. For 01 = 1 the hyperbola corresponds to the stable part of the spectrum 
(where the exponent (2) for y is imaginary) and the segment to the unstable part (where the 
exponent is real), for 01 = i the situation is reversed, i.e. for 01 = 1 the long-wave instability 
takes place, and for 01 = i the short-wave instability occurs. 

Let us make a remark about the reduction. For 01 = 1, u(x ,  y )  is real if the kernel of 
the problem (1) satisfies the condition 

R(h,  p) = i(-i, -b) 

R(h, p) = R ( F ,  i). 
and, for 01 = i, it is real if 

6. The relativistically-invariant systems 

The systems considered in this part were integrated first by Zakharov and Mikhailov 171, 
using the matrix local Riemann problem. In our work we use the scalar non-local problem 
and obtain some new spectral information about these equations. 

Let us consider the solutions of the N-wave type system of equations (IS) independent 
of the variable X I .  Such solutions are given by the %problem with a shift defined by the 
condition (27) and obey the relation 

@? = (KI(A;)  - KI(A~))- 1 Qj, 4 a, B @lr  BY 
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where j # k, j ,  k = 2.3. Substituting this relation into equations (18) with the derivatives 
82 and a3 we obtain the closed set of equations for the functions *;:, @, @;:, 

L V Bogdanov and V E Zakharov 

B -1 BU 01 YU' a' dB = - (KI (A:) - KI Chj 1) @ji ai *ki ai *lj  

k # j ,  k, j = 2,3,  summation is over B, a'. We consider the case iai, hi E R. In this case 
the system (44) admits a reduction 

(45) -YU @zy = -@ki 

which corresponds to the following condition for the kernel of the problem (1) 

R(h,  p )  = E ( &  i). 

*UY i x  - - exP(Kj(1Y)Xj f Kk(.hY)Xk - Kj(h;)Xj)$;y 

VY - Y CI 1/2 

The linear part of equation (44) can be cancelled preserving the reduction by the substitution 

(46) 

and the coefficients ay can be made equal to one by the change 

(47) Ik - *lk ( - 'kaI )  

if h a p  > 0. We inEoduce the notation~p' for the function 4;: and pa@ for the function 
&f. The set of equations (44) in this case reads 

summation is over B,a' in the first equation and over y. a' in 
Lagrangian density for this system is 

c (x~,  x3) = i ( p Y a z p '  - * v a z p y  -~gaBa3p@ + ,pa3gaB 
+ 2(Kl(h;) - K1 (h3Y))-i~"BILdY*"YIpU'B) 

: second equation. The 

(49) 

where summation is over a. p, y. a'. In the special case where K2 and K3 have one pole, 
the system (48) reduces to the relativistically-invariant Nambu system [7] 

B 
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where = A+;: and 
A = Im(KI(h3) - Kl(h2))1/2 (without loss of generality we suggest that Im(Kl(h3) - 
K I ( h 2 ) )  > 0). In the general case the complete relativistic invariance of the system (48) 
can be obtained if K2 and K3 have an equal number of poles. 

= x2 and c = -x3 are the light cone variables, qa = A@?:, 

With an extra symmetry 

K*(h) = -Kz(-h) 

K3@) = -K3@) 

K ]  (A) = i K ]  (-A) 

(51) 

the system (48) admits a reduction 

* y  = -q:'Y' 
ck dk 

= -A?' h; = -AY' 

which conesponds to the condition 

R(h.  LL) = R(-1, -b). (53) 

For the Nambu system the symmetry (51) implies a special choice Kz = a2h, K3 = a3/h, 
K I  (A) = K I  (-1) and leads to the reduction 

Thus we obtain the Gross-Neveu equations 

The Lagrangian density for the systems (50) and (55) is given by the expression (49). 

asymptotic behaviour resulting from the transform (46). (47); we find 
Now let us investigate the problem allowing us to construct the solutions with the 

+I ai3 2 + (A[ - ?%:)-I (56) 

(57) @"' + A ~ ~ e x p ( ( M h ~ )  - M A : ) ) x 3  - &(~P)xz)  
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for the systems (44). (48). (50), (55), respectively, as 
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-+ 00 and where 

has a solution h,  p E lR (which is unique in a generic case). Thus the Riemann problem 
with a shift is set on the real axis. The shift function is defined by the condition (27) 

Ki@) - K I ( ~ )  = O  # @ (61) 

and it can be rather complicated. This problem gives the solutions of the Nambu equations 
with the asymptotic behaviour (58). 

In the presence of the extra symmetry (51) the equations (60) also have a solution 

A =  -@. (63) 

The substitution of this solution into the relation (62) gives the equation of an algebraic 
curve in the complex plane 

~- 
K l ( h ) i K 1 ( L )  = o  K1(L)=-K, (A) .  (64) 

So in this case the Riemann problem with a shift is set on the curve consisting of the 
real axis and the algebraic curve (64), the shift functions are given by (62) and (63), 
respectively. This problem gives the solutions of the Gross-Neveu equations with the 
asymptotic behaviour (59). 

7. Inverse problems for the differential operator of arbitrary order on the line 

The developed method allows us to find a productive approach to a classic problem of 
analysis-the inverse problem for the differential operator of arbitrary order (see [6, 81). 
We consider the spectral problem 

L@ = <* 

00 < x c CO, satisfying the condition 

Ui(X) --f ai x -+ i o 0  
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where ai are given complex constants. In other words, L + Lo, x + f m  

"-1 

LO = an + Caiai. 
i = O  

The problem is to restore potentials U;  through some properly defined 'scattering data'. 
One can construct potentials with the corresponding wave functions, using non-local 

problems in the complex plane. Though we work in the frame of the dressing method 
and do not treat the direct scattering problem, we obtain information (which may be not 
complete) about the structure of the continuous spectrum. In fact we define the inverse 
scattering transform from the kernel of the Riemann problem with a shift to the small 
decreasing potentials cf the corresponding operators, the wave functions are also given by 
this procedure. 

Let us consider the non-local $-problem (1) with K ,  = h. K? = A"+C:=;' a;hi, ai E C, 
normalized by 1. This choice leads us to the relation 

As usual, we can go from the 'prolonged' derivatives Di to partial derivatives by the 
transform 

@ -+ $exp(k;x,), 

The potentials ui in the operator (65) can easily be expressed through the coefficients of 
expansion of the function @(A,  x ,  y) as A + m. For the case ai E R the potentials are real 
if the kernel of the problem (1) satisfies the condition 

m, IL) = R ( L  f i )  

Now let us go to the one-dimensional case. To cancel the dependence on y ,  we should 
use the $-problem (1) with the kernel R(h,  @) localized on the manifold (27) 

K2W) - Kz(IL) = 0 

or 

i = l  

In this case we can solve the inverse scattering problem for the operator on the line 

where 
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Condition (66) defines a $-problem with a shift 
n 

S@@) CRi(A)@(Pi(A)). (68) 

The problem (68) gives the potentials with the wave functions locally near the point x = 0. 
To constmct the decreasing potentials defined on all the line we should observe the condition 

(6% 
This condition together with (66) defines a Riemann problem with a shift (10). The equation 
of the curve A($), $ E R for this problem is given by the substitution of the expression 
p = A - i t  (compare (69)) into equation (66). the shift function is given by equation (66) 
(it is also useful to note that A and p have identical real parts). 

Thus, small decreasing potentials for the operator (67), together with the corresponding 
wave functions, are given by the Riemann problem with a shift 

which reduces to the integral equations (13); this problem defines the transform from 
the kernel R to the potentials u i ( x )  (the inverse scattering transform for the continuous 
spectrum). 

Let us consider a simple example, Kz = I". In this case the operator (67) takes the 
form 

i=I 

(20) 
Re(h - p )  = 0. 

I 

N@(%9)) = R Y ( L  P ( A ) ) @ ( P ( A ( O ) )  

n -2 

a ; @ @ , x )  = E: r (~ )a f@(Lx) .  (70) 
i = I  

This class of operators was investigated in detail in [PI. We will show now how our 
technique works in this case. The shift function (66) for this case is 

and the problem (68) reads 
A" - pn = 0 . .  ~, (71) 

" 
3@(A) = CRi(A)@(eiA) e; = 1. 

i = l  

If we take into account the condition (69), we obtain 
A-eip.0 

A - p = i $  $ER. 

A = i$(l -e{)-' := i$ai 

p = -i$(l -e,:])-' := -i$rii 

The solution of this system is 

ei # 1. 
In this case @ has a discontinuity on (n - 1) lines with an angle a/n between them. Thus 
we have arrived at the Riemann problem with a shift for the function analytic in sectors, 
the shift function is p = ,i. The integral equations (13) for this case take the form 

where pk is the jump of the function @ across the corresponding line. In the general case 
the Riemann problem with a shift may be defined on quite a general analytic curve in the 
complex plane. The symmetries of the function Kz(A) can simplify the investigation. 
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