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Abstract

Using a combination of the canonical formalism for free-surface hydrody-
namics and conformal mapping to a horizontal strip we obtain a simple system
of pseudo-differential equations for the surface shape and hydrodynamic ve-
locity potential. The system is well-suited for numerical simulation. It can be
effectively studied in the case when the Jacobian of the conformal mapping
takes very high values in the vicinity of some point on the surface. At first
order in an expansion in inverse powers of the Jacobian one can reduce the
whole system of equations to a single equation which coincides with the well-
known Laplacian Growth Equation (LGE). In the framework of this model
one can construct remarkable special solutions of the system describing such
physical phenomena as formation of finger-type configurations or changing of
the surface topology – generation of separate droplets.
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1 Introduction

Two-dimensional irrotational motion of an ideal fluid in a domain confined between
a free surface and a flat bottom is one of the classical subjects of investigation
in hydrodynamics. The method of conformal mapping is the traditional approach
to its study. The first important result in this area dates from the middle of the
last century and belongs to Stokes [1]. Since the classic works of Nekrasov [2] and
Levi-Civita [3] performed in the 1920s, many publications have been devoted to this
subject. (See, for instance, the beautiful book of Stoker [4] and references therein.)
The mathematical aspects of these works gave a powerful impulse to the development
of certain branches in the theory of integral equations and in functional analysis.

For the nonstationary surface phenomena studied in the 1960s and later, the
Lagrangian description was more common [5, 6]. Some authors (see [7] and the
review [8] and references therein) tried to perform an analytical continuation with
respect to Lagrangian coordinates. However, these coordinates do not allow a proper
conformal mapping, since their analytical continuation has singularities in both half-
planes. Recently Tanveer [9, 10] suggested applying the conformal mapping to the
nonstationary problem directly in the Euler description. He applied for the periodic
deep water case the mapping of the fluid region into the interior of the unit circle.
The equations obtained are quite complicated and therefore are difficult for both
analytical and numerical analysis.

A convenient approach to the description of the potential flow of a fluid with a
free surface in any dimension may be obtained by using of the Canonical Formalism
known since 1968 (see [11]). For 2 − D geometry a combination of the Canonical
Formalism and the conformal mapping appears to be the most natural approach
to the problem. This approach was implemented for the deep fluid in the recent
paper [12]. Both gravity and surface tension were taken into consideration. The
equations obtained in the paper [12] can be written in two different forms - implicit
(not resolved with respect to time derivatives of surface shape and surface potential)
and explicit (resolved with respect to time derivatives). The implicit equations are
simple and symmetric. In the absence of surface tension they contain only quadratic
nonlinearity. The explicit equations, though not as simple as the implicit ones, are
perfectly suited for numerical simulation.

The most interesting unresolved problems in free-surface hydrodynamics are as-
sociated with formation of singularities (wave breaking) and essential modification of
the surface geometry – wave generation, sprays, plumes, and droplets. Only in very
special cases [13] they can be solved by using a traditional perturbation technique
against the background of the flat surface. In these cases the Jacobian J of the con-
formal mapping remains close to unity. However, in many typical cases the Jacobian
takes very large values in some piece of the surface. In this situation one can treat
the inverse Jacobian 1/J as a small parameter and expand the solution in its pow-
ers. The first step in this direction was done in our paper [12]. Due to the essential
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nonlocality of the basic equation, the whole procedure of expansion in powers of 1/J
is tricky, but a first approximation can be found easily. It is interesting that in this
case the system of two equations for surface shape and surface potential reduces to
a single equation, coinciding for some mysterious reason with the well-known La-
grangian Growth Equation (LGE). This equation is completely integrable, it has an
infinite set of special solutions expressed in elementary functions. Among them are
the solutions describing formation of finger-type configurations (quite similar to the
Saffman-Taylor fingers [14]) as well as the solutions describing formation of droplets.

In the present paper we shall present a more detailed description of the results,
briefly announced in the short letter [12]. We also extend most of our previous results
to the case of a fluid of a finite depth.

The paper is organized as follows. In the second section we introduce the La-
grangian description of a free-surface fluid of a finite depth, combining Canonical
Formalism and conformal mapping, and derive the implicit equation as the corre-
sponding Euler-Lagrange equation. In section 3 we find the explicit equation. In
section 4 we consider stationary waves and calculate the dependence of their disper-
sion relation on the wave amplitude. The first approximation in the high-Jacobian
expansion is introduced in the section 5. In sections 6 and 7 we study finger-type
and droplet-type solutions, respectively.

Checking analyticity violation is the most sensitive tool for studying that set of
collapses. Loss of analyticity of vortex sheets at the nonlinear stage of the Kelvin-
Helmholz instability [23] is such an example. Various aspects of the singularity
formation for vortex sheet motion have so far been studied in a number of papers,
both numerically and analytically [23, 24, 25, 26]. The recent paper [26] should be
mentioned in particular, which provides a considerable numerical evidence of arising
of the infinite surface curvature in a finite time. The root (in space) character of
the arising singularity has been checked in [26] too. As for analytical consideration,
though showing the existence of singularities, it is still lacking, in our opinion, demon-
stration of explicit collapsing solutions. The question also remains open, whether root
singularities are generic for the Cauchy problem in this system.

In this paper we will consider how the singularities appear as a result of the
analyticity breaking on the interface between two ideal liquids in the absence of both
gravity and surface tension. This question is very important, also, for understanding
the evolution of the boundary between two fluids while studying sea surface waves
and the nonlinear stage of the Rayleigh-Taylor instability resulting in the finger
structure (see, for instance, [27] and references therein). We present the analytical
solution of the problem based both on the perturbation approach, assuming small
angles of the interface variations, and on using the Hamiltonian formalism for the
description of the interface motion. For the case of liquid with a free surface, the
problem was formulated [28] by one of the authors (V.Z.) of the present paper. It
is supposed that the singularity formation on a free surface of an ideal fluid or in
more general case, for the boundary between two ideal fluids, is mainly connected
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with inertial forces, other factors give minor correction. This means that if one
considers, for instance, motion of the ideal liquid drop ( without both gravity and
surface tension) then on the surface of the drop there will appear a singularity of
the wedge type. This idea was later confirmed by direct numerical integration of the
Euler equation for the case of the deep water [29].

Adopting only the small slope approximation, we give the solution of the Cauchy
problem for the motion of the boundary between two liquids.

The main conjecture of this paper is as follows. The formation of singularities
on the interface for small angle approximation can be considered as the process of
the wave breaking in the complex plane where the solution can be extended to.
This results in the motion of both branch points of the analytical continuation of
the velocity potential and singular points of the analytical extension of the surface
elevation. When for the first time the most ”rapid” singular point will reach the
real axis it will be just the singularity appearance. Respectively three kinds of
singularities are possible. For the first kind at the touching moment the tangent
velocity on the interface has the infinite first derivative and simultaneously the second
space derivative of the interface coordinate z = η(x, t), i.e. ηxx, also turns into
infinity. These are weak singularities of the root character ( ηxx ∼| x |−1/2) which
can be assumed to serve as an origin of more powerful singularities, observed in
the numerical experiments [29], or to represent the separate type of singularities.
This kind of singularities turns out to be consistent with an assumption about small
surface angles. It is shown that the interaction of two movable branch points of
the tangent velocity can lead under some definite conditions to the formation of the
second type of singularities - wedges on the surface shape . Close to the collapse
time the self-similar solution for such singularities occurs to be compatible with the
complete system of equations describing arbitrary angle values. The third type is
caused by the initial analytical properties of η0(x) resulting in the formation of strong
singular interface profile.

2 Lagrangian description of a finite depth fluid

Let an incompressible fluid fill a domain on the (x, y)-plane bounded by the free
surface,

y = η(x, t), −∞ < x <∞, (2.1)

and the bottom,
y = −h̄ .

The fluid flow in −h̄ < y < η is potential,

V = ∇Φ , ∆Φ = 0. (2.2)
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The Laplace equation (2.2) must be considered together with the following boundary
conditions,

∂η

∂t
+
∂Φ

∂x

∂η

∂x
=
∂Φ

∂y

∣

∣

∣

∣

∣

y=η

, (2.3)

∂Φ

∂t
+

1

2

(∂Φ

∂x

)2
+

1

2

(∂Φ

∂x

)2
∣

∣

∣

∣

∣

y=η

+ gη = 0 , (2.4)

∂Φ

∂y

∣

∣

∣

∣

∣

y=−h̄

= 0 . (2.5)

In (2.4) g is gravity acceleration. Let us introduce the quantity

Ψ(x, t) = Φ(x, y, t)|y=η = Φ(x, η(x, t), t) . (2.6)

As found in [11], η(x, t) and Ψ(x, t) are canonically conjugate variables,

∂η

∂t
=

δH

δΨ
,

∂Ψ

∂t
= −δH

δη
, (2.7)

where the Hamiltonian H is the total energy of the fluid,

H = T + U ,

T =
1

2

∫

∞

−∞

dx
∫ η

−η
(∇Φ)2dy , (2.8)

U =
g

2

∫

η2dx . (2.9)

Equations (2.7) and (2.8) extremize the action,

δS = 0 , S =
∫

Ldt , (2.10)

L =
∫

Ψ
∂η

∂t
dx−H . (2.11)

Let us apply the conformal mapping of the domain on the plane z = x+ iy,

−∞ < x <∞, −h̄ ≤ y ≤ η(x, t) , (2.12)

to the strip,
−∞ < u <∞, −h ≤ v ≤ 0 , (2.13)

on the plane ω = u+ iv1. After this transformation, the shape of the surface is given
parametrically by

y = y(u, t), x = u+ x̃(u, t) . (2.14)

1If η → 0 at |x| → ∞, then h̄ = h. In the periodical case h̄ and h are different.
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Functions y and x̃ are connected by the relation,

y = R̂x̃ . (2.15)

Here R̂ is the operator,

R̂f(u) =
1

2h
P.V.

∫

∞

−∞

f(u′)

sinh π/2h(u′ − u)
du′ . (2.16)

Taking Fourier transforms gives

yk = Rkxk Rk = i tanh kh . (2.17)

In the limiting case of infinitely deep water h→ ∞ and R̂ goes over to the Hilbert
transformation,

lim
h→∞

R̂ = Ĥ , (2.18)

Ĥf =
1

π
P.V.

∫

∞

−∞

f(u′)du′

u′ − u
. (2.19)

One can introduce also the inverse operator T̂ ,

x̃ = T̂ y, with R̂T̂ = T̂ R̂ = 1 , (2.20)

in which

T̂ f =
1

h
P.V.

∫

∞

−∞

f(u′)

1 − e−π/h(u−u′)
du′ . (2.21)

Asymptotically as h→ ∞,

T̂ → −R̂ , but T̂−1 6= −R̂ .

Both operators R̂, T̂ are anti-self-adjoint,

R̂+ = −R̂ and T̂+ = −T̂ , (2.22)

with Fourier transforms,

x̃k = Tkyk and Tk = −i coth kh . (2.23)

With the help of the operator R̂ for any real smooth function φ(w) vanishing at
the infinity, u → ∞, one can construct a complex function θ, given at the real axis
v = 0,

θ = φ+ iR̂φ, (2.24)

which can be analytically extended into the strip 0 ≤ v ≤ −h. The real part of this
function automatically will be satisfied to the boundary condition

∂φ

∂v

∣

∣

∣

∣

∣

v=−h

= 0.
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After the conformal mapping, the velocity potential Φ = Φ(u, v) remains har-
monic, i.e., it obeys the Laplace equation,

∂2Φ

∂u2
+
∂2Φ

∂v2
= 0 , (2.25)

with boundary conditions,

∂Φ

∂v

∣

∣

∣

∣

∣

v=−h

= 0 and Φ|v=0 = Ψ(u, t) . (2.26)

Applying the procedure (2.24) to the function Ψ we arrive at the complex potential

Θ = Φ + iΞ,

where Φ and stream function Ξ are harmonic functions in the strip and satisfy at the
bottom to the corresponding boundary conditions. On the real axis Θ = Ψ + iR̂Ψ
and therefore

∂Φ

∂v

∣

∣

∣

∣

∣

v=0

= − ∂

∂u
R̂Ψ = −R̂Ψu , (2.27)

so that the kinetic energy is

T = −1

2

∫

∞

−∞

ΨR̂Ψudu . (2.28)

Then,
dx = xudu ,

ηtdx = (ytxu − xtyu)du , (2.29)

and the Lagrangian can be expressed as follows,

L =
∫

∞

−∞

Ψ(ytxu − xtyu)du+
1

2

∫

∞

−∞

ΨR̂Ψudu−
g

2

∫

∞

−∞

y2xudu+
∫

∞

−∞

f(y − R̂x̃)du .

(2.30)
Here f is the Lagrange multiplier which imposes the relation (2.20). Hamilton’s
principle,

δS

δΨ
= 0 ,

gives the following equation,

ytxu − xtyu = −R̂Ψu , (2.31)

or
(1 + x̃u)yt − x̃tyu = −R̂Ψu .
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The mean level of fluid is constant, so
∫

∞

−∞

(ytxu − xtyu)du = 0 . (2.32)

From (2.31) one finds,

Ψ = −T̂ ∂−1
u (ytxu − xtyu) + C(t) . (2.33)

Substituting (2.33) to (2.30) and using the identity (2.32) implies,

L = T − U +
∫

∞

−∞

f(y − R̂x̃)du . (2.34)

If y = y(u, t) is chosen as the set of coordinates, one can drop the last term in (2.34).
Consequently,

L = T − U . (2.35)

Consider now the conditions,

δS

δy
= 0 and

δS

δx
= 0 .

These conditions imply the equations,

Ψtxu − Ψuxt + gyxu = f , (2.36)

Ψtyu − Ψuxt + gyyu = −R̂f , (2.37)

which are equivalent to the equation,

Ψtyu − Ψuyt + gyyu + R̂(Ψtxu − Ψuxt + gyxu) = 0 . (2.38)

Equations (2.31) and (2.38) constitute the complete system of equations describ-
ing the potential flow of a free-surface fluid. They are not resolved with respect to
time-derivatives, rather they are written in implicit form.

3 Explicit form of the motion equations

Now we show that the system (2.31), (2.36) and (2.37) can be resolved with respect
to time derivatives of Ψ and z given at v = 0.

Since z = x + iy, we have x = 1
2
(z + z∗) and y = 1

2i
(z − z∗). So equation (2.34)

can be rewritten as
ztz

∗

u − z∗t zu = −2iR̂Ψu ,

or,

Im
[

zt

zu

]

=
R̂Ψu

|zu|2
∣

∣

∣

∣

v=0
. (3.1)
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Hence the function zt

zu

, being analytical in the strip, can be restored completely by
means of (2.24):

zt = −zu(T̂ + i)
R̂Ψu

|zu|2
, (3.2)

or,

yt = −(yuT̂ + xu)
R̂Ψu

|zu|2
, (3.3)

xt = (yu − xuT̂ )
R̂Ψ

|zu|2
. (3.4)

Subtracting (2.35) multiplied by xu from (2.36) multiplied by yu and using (2.34)
yields

−ΨuR̂Ψu = yuf + xuĤf . (3.5)

Both sides of this equation can be represented as imaginary parts of analytical func-
tions in the strip:

−1

2
Im(Ψu + iR̂Ψu)

2 = Im[zu(f + iR̂f)].

Hence due to the analyticity we conclude that analytical functions coincide, i.e.,

−1

2
(Ψu + iR̂Ψu)

2 = zu(f + iR̂f)

or

f + iR̂f = − 1

2zu

(Ψu + iR̂Ψu)
2. (3.6)

We now subtract equation (2.35) multiplied by xt from equation (2.36) multiplied
by yt to find

(Ψt + gy)(ytxu − xtyu) = ytf + xtR̂f = Im[zt(f + iR̂f)] . (3.7)

Time-derivatives xt, yt, zt can be excluded by using (2.34), (3.2). Hence, after simple
algebra we finally get

Ψt + gy = −(Ψu)
2 − (R̂Ψu)

2

2J
− ΨuT̂ (

R̂Ψu

J
) (3.8)

where J = |zu|2. Using the identity

(Ψu)
2 − (R̂Ψu)

2 = 2T̂ (ΨuR̂Ψu)

which follows from the analyticity of the function (Ψu + iR̂Ψu)
2 the last equation

can be rewritten as

Ψt + gy = − T̂ (ΨuR̂Ψu)

J
− ΨuT̂ (

R̂Ψu

J
) . (3.9)
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Thus, we have coupled equations (3.2) and (3.8) or (3.9) for z and Ψ resolved
relative their time derivatives. It is easy to show that the kinematic condition (2.3)
after the conformal mapping transforms at first into the form (2.34) and then into
Eq. (3.2). Respectively, the dynamic condition (2.4) on the free surface transforms
with the help of Eq.(3.2) into the equation (3.8) or into its equivalent form (3.9).

In the case of the deep water (h→ ∞) Eqs. (3.2), (3.8) and (3.9) have the form,

zt = zu(Ĥ − i)
ĤΨu

|zu|2
, (3.10)

Ψt + gy = −(Ψu)
2 − (ĤΨu)

2

2J
+ ΨuĤ(

ĤΨu

J
) , (3.11)

Ψt + gy =
Ĥ(ΨuĤΨu)

J
+ ΨuĤ(

ĤΨu

J
) . (3.12)

4 Stationary waves

We rewrite the implicit equations for surface shape and hydrodynamic potential as

yt(1 + x̃u) − xtyu = −R̂Ψu , (4.1)

Ψtyu − Ψuyt + gyyu + R̂ (Ψt(1 + x̃u) − xtΨu + gy(1 + x̃u)) = 0 . (4.2)

The last equation has a particular solution,

y = y(u− ct), x̃ = x̃(u− ct) ,

Ψ = Ψ(u− ct) − gb0t , (4.3)

which describes stationary waves propagating with a constant velocity c.
Plugging (4.3) into (4.1) yields

cyu = R̂Ψu . (4.4)

Substituting (4.3) into (4.2) and using the relation (4.4) leads to

−(c2 + 2gb0)yu + gyu + gR̂(y(1 + x̃u)) = 0 . (4.5)

Hereafter, we assume that all functions are periodic with period L = 2π
k

. We
assume further that the total amount of fluid is conserved,

< y(1 + x̂u) >= 0 . (4.6)

One can then find a solution of equation (4.5) in the form

y = a0 +
∞
∑

n=1

an cosnku . (4.7)
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It is convenient to introduce the operator

Ŝ = R̂∂−1 ,

satisfying

Ŝ−1y =
∞
∑

n=1

an

Sn
cosnku ,

where

Sn =
tanh knh

kn
.

From (4.6) one can define a0 as

a0 = −1

2

∞
∑

n=1

a2
n

Sn

= h̄− h . (4.8)

For b0 there is the relation following from (3.8),

b0 = a0 −
c2

g
< 1 − 1

|zu|2
> (4.9)

The other coefficients an satisfy the following system of equations,

(c̃2 − gS1)a1 =
g

2

∞
∑

m=1

(

1 +
S1(Sm + Sm+1)

SmSm+1

)

amam+1 , (4.10)

(c̃2 − gSn)an =
g

2

∞
∑

m=1

(

1 +
Sn(Sm + Sn+m)

SmSn+m

)

aman+m

+
g

4

n−1
∑

m=1

(

1 +
Sn(Sm + Sn−m)

SmSn−m

)

aman−m . (4.11)

Here c̃2 = c2 − 2g(a0 − b0). In these equations the amplitude of the first harmonic,
a1, is arbitrary. It must be treated as small. In a zero approximation,

a0 = 0, b0 = 0 and c2 = c̃2 =
g

k
tanh kh , (4.12)

in accordance with the linear theory. In the first nontrivial approximation,

a2 = a2
1k

3 + tanh2 kh

4 tanh3 kh
,

c2 =
g

k
tanh kh

(

1 +

[

9 − 6 tanh2 kh + 5 tanh4 kh

8 tanh4 kh

]

(ka1)
2

)

. (4.13)

If we get back to the physical depth h̄ the dispersion relation (4.13) exactly coincides
with that of in [15],

c2 =
g

k
tanh kh̄

(

1 +

[

9 − 10 tanh2 kh̄+ 9 tanh4 kh̄

8 tanh4 kh̄

]

(ka1)
2

)

. (4.14)

11



In the limiting case of deep water one gets

c2 =
g

k
(1 + (ka1)

2) . (4.15)

This result was first obtained by Stokes [1]. For shallow water,

Ŝ ' h(1 − h2

3

∂2

∂x2
) ,

and equation (4.5) goes over to a differential equation describing KdV-type solitons.

5 Small-angle approximation

In this section we study the free surface dynamics in the approximation of small
surface angles for fluids of a finite depth in the case when the gravity is absent.
As we mentioned in the Introduction for the deep water case the system can be
effectively analyzed [13]. The trick which was used in these papers was connected
with a possibility of analytical continuation of solution into the lower (physical) half-
plane of z, where the the complex velocity potential obeys the differential equation
in time and z. Moreover, in this approximation the equation for Θ occurs to be
splitted from that for the free surface shape.

As we show in this section, the construction is the same as for the deep water
case works for a finite depth also. The difference is connected only with a change of
the analyticity region. In the given case this is the strip 0 ≤ x ≤ −h. Therefore we
will drop many details which one-to-one can be rewritten from the deep water case
to this one considering only the main points.

First of all, make a reduction to small surface angles in the equations of motion
(3.8) ( with g = 0) and (2.31). Small angles means that the Jacobian J is close to
unity, J ≈ 1 + 2xu, and therefore in the leading approximation Eq. (3.8) reads

Ψt =
1

2
(R̂Ψu)

2 − 3(Ψu)
2). (5.1)

Let us return in this equation from conformal variables to the physical ones. As a
result in the leading order one can get

Ψt =
1

2
(R̂Ψx)

2 − (Ψx)
2). (5.2)

The equation for η taking account quadratic nonlinearity transforms as follows

∂η

∂t
= k̂Ψ −

[

k̂(ηk̂Ψ) + ∇(η∇Ψ)
]

, (5.3)

∂Ψ

∂t
=

1

2

[

(k̂Ψ)2 − (∇Ψ)2
]

(5.4)
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The remarkable property of these equations is the splitting off equation (5.4), which
involves only variable Ψ, from that of (5.3), which governs the behavior of elevation
η. Such a separation is a peculiarity of the used perturbation order and is being lost
in next orders, when η appears in equation (5.4) as well. Since we assume |∇η| � 1,
it is possible to omit the second term in the r.h.s. of equation (5.3):

∂η

∂t
= k̂Ψ. (5.5)

H =
1

2

∫

Ψk̂Ψd~r⊥ +
1

2

∫

[

(∇Ψ)2 − (k̂Ψ)2
]

ηd~r⊥, (5.6)

To study the dynamics of this system and for the sake of simplicity we will
consider the one-dimensional case when functions Ψ and η depend only on x (and t)
and the operator k̂ may be presented in the form

k̂ = − ∂

∂x
Ĥ,

where

(Ĥf)(x) =
1

π
V.P.

∫ +∞

−∞

f(x′)

x′ − x
dx′.

is the Hilbert transform. By introducing a new function v = ∂Ψ
∂x

, which has a meaning
of the tangent velocity on the interface, equations (5.4), (5.5) can be rewritten as

∂v

∂t
=

1

2

∂

∂x

[

(Ĥv)2 − v2
]

, (5.7)

∂η

∂t
= − Ĥv. (5.8)

We exploit further that property of the Hilbert transform Ĥ, that two operators
P̂± = 1

2
(1 ∓ iĤ), are the projection operators. Namely, they decompose a function

into the sum of two ones, v = v(+) + v(−), with v(±) = P̂±v being a function,
analytically continued into the upper (lower) complex half-plane. Then, the Hilbert
transform acts as follows,

Ĥv = i(v(+) − v(−)). (5.9)

Relation (5.9) should be substituted into both equations (5.8) for η and (5.7) for v.
As a result, the latter decomposes into separate equations for the upper (v(+)) and
lower (v(−)) analytical parts of v:

∂v(±)

∂t
+ 2v(±)∂v

(±)

∂x
= 0. (5.10)

Equations (5.10) look like those for motion of a free particle and can be solved
by the standard method of characteristics :

v(±) = F (±)(x0), (5.11)
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x = x0 + 2F (±)(x0)t, (5.12)

where functions F (±) are defined from initial conditions. On the real axis functions
v(±) are complex conjugate, so it is enough to find a solution only for v(+), for
example.

2. General Solution. Let in (5.10) F (+)(x0) be some analytical function in the
upper half-plane of complex x0 with its singularities in lower half-plane. To find the
solution of equations (5.10) one needs to resolve at first equation (5.12) with respect
to x0 . The mapping: x→ x0 becomes ambiguous in the points, where

∂x

∂x0

= 1 + 2F (+)′(x0)t = 0. (5.13)

Solution of (5.13) gives some trajectory on the complex plane x0: x0 = x0(t). The
roots of (5.13) together with (5.11) define the corresponding movable branch points
of the function v(+)(x, t)

zbr(t) = x0(t) + 2F (+)(x0(t))t. (5.14)

These points should be connected with a set of cuts, providing for the uniqueness
of the function v(+)(x, t). The choice of these cuts has to be made in such a way
that at the moment t = 0 v(+)(x, t) would have the initial singularities. These
movable branch points originate from the singularities of the function F (+)(z0). At
the moment when the most ’rapid’ branch touches the real axis, the analyticity of
V (+)(x, t) breaks, and, respectively, a singularity appears in the solution of system
(5.10).

At first define the touching time t0 from the requirement zbr to be real, zbr = xbr.
Assuming τ = t0 − t � t0, and considering a small vicinity of z = xbr, expansion of
(5.12) up to the leading orders gives

F ′′t0(δx0)
2 − 2F ′τδx0 − 2F0τ − x′ = 0. (5.15)

where F ′′ = F ′′(x0(t0)), δx0 = x0 − x0(t0), x
′ = x− xbr, F0 = F (+)(z0(t0)).

From this equation we find

x0 = x0(t0) +
F ′τ

F ′′t0
+

√

(
F ′τ

F ′′t0
)2 +

2F0τ + x′

F ′′t0
. (5.16)

If F0 6= 0 the leading term under square root is the linear one with respect to τ .
Therefore with the needed accuracy

x0 = x0(t0) + C(x′ + 2F0τ)
1/2. (5.17)

where C = [F (+)′′(x0(t0))]
−1/2.

At the vicinity of x = xbr and t = t0, such a general form of x0 provides the
self-similar singular dependences for ∂v/∂x and ηxx which follow after substitution

14



(5.17) into (5.11) and forthcoming integration of equation (5.8). The first step gives
for the tangent velocity with the same accuracy as for (5.17)

v = 2Re[F0 −
1

t0
C(x′ + 2F0τ)

1/2]. (5.18)

Hence we get for the first derivative of v

∂v

∂x
= − 1

t0
Re

[

C√
x′ + 2F0τ

]

. (5.19)

So, close to the touching time t0 vx behaves in a self-similar way, x′ ∼ τ , increasing
as τ−1/2. In the limit ξ = x′/τ → ∞ this function does not depend on τ ,

∂v

∂x
∼ |x′|−1/2. (5.20)

It means this profile is formed at first at the periphery and then propagates to the
center (x′ = 0, resulting in a singularity at τ = 0.

The curvature ηxx demonstrates the same self-similar behavior. In fact, the ele-
vation η+, governed by equation (5.8), can be presented in the following form:

η(+) = −i[tF (x0) −
∫ x0(x,t)

x

(x− x0)

2F (+)(x0)
F ′(+)(x0)dx0],

where the dependence x0(x, t) is defined by means of (5.12). Thereafter, differentia-
tion η(+) with respect to x yields the explicit expression for ηx:

ηx = Im log
F (+)(x)

F (+)(x0)
. (5.21)

This formula together with (5.17) leads to the same answer which we have got for
vx: ηxx becomes infinite while approaching the singularity,

ηxx =
1

τ 1/2
h(
x′

τ
), (5.22)

where

h(ξ) = −
√

2

[

1 +
√

1 + 2ξ2

1 + 2ξ2

]1/2

At the critical moment of τ = 0, ηxx looks like

ηxx ∼ −|x|−1/2 (5.23)

that gives after integration the following behavior of η ∼ 4
3
|x|3/2+regular terms. In so

doing both functions η and ηx remain finite at the singular point. The singularities,
thus obtained, are the general ones for system (5.7) and (5.8).
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Now, let us show how the general formulas work for a simple example when
F (+)(x0) is a rational function with one simple pole in the lower half-plane,

F (+)(x0) =
A

x0 + ia
,

where Rea > 0. Then the dependence x0 = x0(x, t) can be readily found by means
of (5.12),

x0 + ia =
1

2
(x+ ia) +

√

1

4
(x+ ia)2 − 2At. (5.24)

Thus, instead of the initial pole at the point x = −ia there appears a cut, connecting
two moving branch points x1,2 = −ia± 2

√
2At.

The points x1,2(t) move (except of positive A) under some angle to the real axis.
If, for instance, A = −1/8 and a = 1, the cut spreads in the vertical direction axis
and reaches the real axis at the break moment of time t = t0 = 1 at the point xbr = 0.
At the vicinity of τ = 0 and x = 0 expressions for ∂v

∂x
and ηxx can be represented in

the form:

2ηxx =
∂v

∂x
≈ − 1√

4x2 + τ 2

[

1

2

(

τ +
√

4x2 + τ 2
)

]1/2

. (5.25)

Thus, at the critical moment of τ = 0 velocity derivative looks like

∂v

∂x
≈ −1

2
|x|−1/2. (5.26)

Evidently, formulas (5.25), (5.26) are in a full correspondence with general ones,
(5.19), (5.22).

3. Wedges. Let us show that the system (5.7), (5.8) has a special solution
which describes an another type of singularity. This solution arises if F0 = 0. For
this particular case formulae (5.16) transforms into

x0 = z0(t0) +
F ′τ

F ′′t0
+

√

√

√

√

(

F ′τ

F ′′t0

)2

+
x′

F ′′t0

and, as a sequence, v can be approximately written in the form

v ≈ (x0 − z0(t0))F
′. (5.27)

Such dependence gives a new kind of self-similar behavior, x ∼ τ 2, that provides the
surface singularity of the wedge type. Indeed, when substituting (5.21) into (5.27)
and considering the asymptotics of ηx for x′/τ 2 → ∞, one gets

ηx → −π
4
sign(x′),
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that corresponds to the wedge surface profile with the angle α = 2 arctan 4
π
≈ 103, 7◦.

This angle is far from π and our assumption about small surface angles breaks close
to the singularity. However, the solution obtained above appears to be meaningful,
because, first, the angle α is close to that calculated by Stokes for the critical sta-
tionary gravity surface wave on a deep water and, second, the self-similarity of the
type x ∼ τ 2 is retained even by the complete system of equations (2.7). It is worth
noting that F0 = 0 can be got from the initial conditions with two poles:

F (+)(z) = iµ
[

a

z + ia
− a∗

z + ia∗

]

where Rea < 0, Imµ = 0.
The dynamics of the branch points generated by these two poles is also interesting:

at the initial moment of time the poles produce two pairs of branch points, two of
which move towards imaginary axis and collide; after collision points move along
imaginary axis in opposite directions; the touching of the real axis by one of them
produces the singularity appearance.

4.Floating Singularities The new type of singularities is associated with a
possibility of exact integration of equation (5.3) taking into account the second term
in its r.h.s.. For this aim let us separate from (5.3) the equation for η(+)(x, t):

∂η(+)

∂t
+ 2P̂ (+)(v(−)η(+))x = −iΨ(+)

x , (5.28)

Introducing instead of η(+) a new function ξ(+) by means of η(+) = ∂ξ(+)

∂x
and inte-

grating (5.28) once one can get

P̂ (+)[
∂ξ

∂t
+ 2v(−) ∂ξ

∂x
] = −iΨ(+). (5.29)

Here ξ is a function, for which P̂ (+)ξ = ξ(+). Omitting then in both sides of (5.29)
the operator P̂ (+), we arrive to the equation for ξ

∂ξ

∂t
+ 2v(−) ∂ξ

∂x
= −iΨ(+) + Φ(−), (5.30)

where Φ(−) is some lower analytical function (for which P̂ (+)Φ(−) = 0). This equation
can be integrated along the characteristics, defined by (5.12). General solution to
(5.30) consists of two parts, ξ = ξ1 + ξ2, where

ξ1 = −i
∫ t

0
ψ(+)(x(x0, t

′), t′)dt′ +
∫ t

0
Φ(−)(x(x0, t

′), t′)dt′ (5.31)

is the solution of the inhomogeneous equation with zero initial condition, and ξ2 =
f(x0) is that of homogeneous one, presenting simply the initial shape of ξ. The
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effect of ξ1 is defined by the analytical properties of the tangent velocity only, while
that of ξ2 results from the interference of the the tangent velocity effect and intrinsic
peculiarities of the initial elevation η0(x).

Analyzing the first term, ξ1, we first underline that the integration of the function
Φ(−) along characteristics (5.12) with forthcoming application of the operator P̂ (+)

gives zero. It is enough, therefore, to integrate only Ψ(+) in (5.30). In fact, the
situation is even simpler, because we are interested in the solution behavior only
close to the moment of t0. Omitting details, we note only that taking into account
the convective term in (5.28), as compared with simplified equation (5.5), though
giving rise to some additional motion, does not change, in fact, the character of
singularity in elevation (ηxx ∼ |x′|−1/2).

It is very important that the singularities obtained belong to the weak ones (see
(5.23)), which do not destroy our basic assumption about small values of angles,
|∇η| � 1. Note also, that the self-similar asymptotics of the form (5.22) is admitted
by the complete set of equations (2.7).

Of greater interest now is the homogeneous part of the solution ξ2 = f(x0) (not
considered in the previous sections at all). The corresponding upper analytical part
of elevation η(+) is defined as,

η
(+)
2 (x, t) = (

∂ξ2
∂x

)(+) = P̂+(
∂x0

∂x

df

dx0
)

Since at the initial moment of t = 0, x = x0,
∂x0

∂x
= 1, the function df

dx0
) coincides

with η
(+)
0 (x0), where η0(x) is the initial form of the interface. The exact form of η

(+)
2

may be written down as follows

η
(+)
2 (x, t) =

1

2πi

∫

∞

−∞

dx′

x′ − x− i0

∂x0(x
′, t)

∂x′
η

(+)
0 (x0).

Passing to x0 as a new variable of integration, this integral reduces to the form

η
(+)
2 (x, t) =

1

2πi

∫

C

dx0

x′(x0, t) − x− i0
η

(+)
0 (x0) (5.32)

with x′ and contour C, both defined from (5.12). The contour C initially coincides
with the real axis, then, during the time, it is being deformed so that it is going
partially in the lower half-plane. The motion of contour C towards singular points of
η(+)(x0) will define obviously the behavior and the singularity formation of function
η(x, t) for real x. To clarify this situation let us assume that η(+)(x0) has one pole
in the lower half-plane,

η(+)(x0) =
iB

x0 − b

where B is real, and Imb < 0. Then integral (5.32) is found explicitly,

η
(+)
2 (x, t) =

iB

x− x′(b, t)
=

iB

x− b− 2F (−)(b)t
.
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It is clear from this expression that the pole of η(+) is movable with the ”velocity”
2F (−)(b), being some regular function. Therefore if F2 = ImF (−)(b) > 0 then there
exists such a moment of time tc when η2(x, t) becomes infinite. Evidently that
tc = − b2

2F2(b)
, where b2 = Imb. Close to this time η(x, t) has the Lorenz form,

η(x, t) = − B(b2 + 2F2t)

(x− b1 − 2F1(b)t)2 + (b2 + 2F2t)2
,

which transforms at t = tc into the δ−function:

η(x, t) = Bπδ(x− b1 + b2
F1

F2
).

Thus, the proper singularities of the analytical function η(+), not generated by the
velocity field and existed initially, remain during the time and occur to be movable.
This statement can be readily checked for an arbitrary case, not only for poles.) It
gives a new type of singularities of the free surface, generally speaking, of arbitrary
kind appearing due to the proper analytical properties of the initial profile of the
elevation. What kinds of the singularities will appear first depends on the initial
conditions. If, for instance, the initial elevation is equal to zero then we get the
first kind of singularities of the root character. One should pay attention to the fact
that for the second kind of singularities our assumption about small surface angles
breaks. Close to the time t = tc one should use the complete system (2.7) rather
than reduced equations (5.3), (5.4).

5.Conclusion. In this paper we did not touch such a question as the stability
problem of the collapsing regimes. According to the analysis performed in Section 3,
the first regime of the root character is obviously stable in the framework of truncated
system (5.7), (5.8). For the complete system, however, this is an open question as well
as for two other regimes. It should be emphasized again, that from the very beginning
we assumed the angle of the surface (|∇η|) to be small, and therefore, we can not
pretend to the full description of all types of possible singularities, as described by
the complete system of equations (2.7). However, the solutions corresponding to the
weak singularity regime turn out to be consistent with the applicability condition of
the truncated equations (5.4), (5.5).

In our opinion, there exist two possibilities of what role may play the root sin-
gularities in the general dynamics; either the singularities serve as an origin of more
powerful ones observed in numerical experiments or represent new type of singular-
ities. One should note also that the self-similar asymptotics for the wedge type of
singularities are allowed by the exact system of equations. We believe therefore that
just this type of singularity was observed in numerical experiments [29] (see also
[28]).
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6 High-Jacobian approximations

Let us suppose that the function z = z(ω) has a singularity in the upper half-plane on
the imaginary axis close to zero. In the vicinity of zero the quantity J = J(u) is a very
singular function. But it might happen that 1/J is in this region a smooth function
close locally to zero. In this case one can develop a new type of an approximate
theory. We will discuss only the case of infinite depth. We will seek a solution of
equation (3.10) in the form

Ψ = −1

2

∫

λ2dt+ λ(t)y + Ψ̃ . (6.1)

Here
λ̇ = −g (6.2)

and λ = λ(t) = λ0 − gt is a linear function of time.
The idea of separating Ψ̃ from Ψ is the following. Let the singularity in Ψ be

posed at a distance δ � 1 from the real axis. Then the functions Ψ(u) and y(u) are
sharp, they change their value essentially in a region u ' δ. Our central assumption
is that in (6.1) Ψ̃ is a “smooth” function. It varies on a scale of order of unity.

To justify this assumption we must write the equation for Ψ̃. To obtain this
equation we exploit the identities,

(1 − iĤ)(x̃u + iyu)
2 = 0 , (6.3)

(1 + iĤ)(
1

z∗u
− 1) = 0 . (6.4)

These imply

Ĥ(yuĤyu) =
1

2

[

(x̃u)
2 − y2

u

]

(6.5)

and
yu

J
+ Ĥ(

xu

J
− 1) = 0 . (6.6)

After a simple transformation one finds

∂Ψ̃

∂t
=

λ2

2J
+ λ

(

1

J
ĤΨ̃u + Ψ̃uĤ(

1

J
− 1)

)

+
1

2J

(

(ĤΨ̃u)
2 − Ψ̃2

u

)

+ Ψ̃uĤ
ĤΨ̃u

J
. (6.7)

Equation (6.7) is an exact relation. All information about the shape of surface is
hidden in the function 1/J , which according to our assumption is smooth and “large
scale”. Therefore, we may consider Ψ̃ smooth and large scale as well.

In the first approximation, we put

Ψ̃ = 0 . (6.8)
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The corresponding equation for the surface shape looks very simple in its implicit
form,

yt(1 + x̃u) − x̃tyu = λx̃u . (6.9)

Let us denote
z̃ = x̃+ iy .

In terms of z̃ equation (6.9) can be rewritten as follows,

z̃t − z̃∗t + z̃tz̃
∗

u − z̃∗t z̃u = iλ(z̃u + z̃∗u) . (6.10)

By introducing a new function

z = z̃ + u− i
∫

λdt ,

one transforms (6.10) to the form

=(ztz
∗

u) = −λ . (6.11)

In the simplest case λ = const, this equation has been known in the literature since
1945 [16, 17]. It is usually called the Laplacian Growth Equation (LGE) and is used
widely in the theory of interfaces and dendrite growth.

7 Finger-type solutions

Equation (6.10) is an integrable system. One can find a general solution of this
equation starting from a very wide class of special solutions (N-finger solutions),

z̃ =
N
∑

n=1

qn log(u− an(t)) . (7.1)

Here N is any positive integer (including N = ∞), qn are complex constants and
=an > 0. Strictly speaking, to satisfy the condition z̃ → 0 at |u| → ∞, one must
demand

N
∑

n=1

qn = 0 . (7.2)

However, the constraint (7.2) is not significant from the physical view-point. For
arbitrary choice of qn it can be satisfied by adding to (7.1) one more term,

−
(

N
∑

n=1

qn

)

log(u− aN+1(t)), =aN+1 → +∞.
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Substituting (7.1) to (6.10) and using an expansion in the sum of elementary frac-
tions, one obtains a system of ODE for an,

ȧn +
∑

m

q∗m
ȧn − ȧ∗m
an − a∗m

= −iλ(t) . (7.3)

Integration by t gives the following system of transcendental equations,

an +
∑

m

q∗m log(an − a∗m) = −
∫

λ(t)dt+ Cn , (7.4)

where Cn are arbitrary complex constants. The simplest possible solution (one-finger
solution) of this type is

z̃ = −i log(u− ib(t)), where b is real . (7.5)

Now
b+ log b = −

∫

λdt+ log r, where r is a real constant . (7.6)

If
∫

λdt→ +∞, one finds the asymptotic behavior of b,

b ' r exp (−
∫

λdt) → 0, t→ ∞ . (7.7)

In our case, we find

y = − log
√

u2 + b2(t) ,

x̃ = arctan
u

b(t)
,

1

J
=

u2 + b2(t)

(1 + b(t))2 + u2
. (7.8)

Let
∫

λdt be positive and large. Then

1

J
→ u2

1 + u2
. (7.9)

This expression is small for u ' b, and is indeed smooth and large scale. From (6.2)
one gets

∫

λdt = −1

2
gt2 + Ct . (7.10)

For positive g (stable case),
∫

λdt can be large only during a finite time (if C is
positive and large). For g ≤ 0 (neutrally stable or unstable cases) the approximation
improves as t→ ∞.

In the one-finger solution,

y(0, t) = −2 log b(t) '
∫

λdt, as t→ ∞. (7.11)
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At the same time, the curvature tends to a constant,

1/R = ηxx → −const, as t→ ∞ . (7.12)

The one-finger solution was found by Saffman and Taylor [14]. N-finger solution
were studied in the articles [18, 19]. A general solution of the equation (6.10) can
be obtained from (7.1) by a kind of transition to the limit N → ∞. We will discuss
this procedure elsewhere.

8 Droplet-type solutions

Let us consider the simplest case of rational solution for LGE, namely

z̃ =
α

u− ib
. (8.1)

Here α and b both are positive. Substituting (8.1) into (6.11) and using an expansion
in the sum of elementary fractions leads to a system of ODE for α and b,

α̇b+ αḃ+ λα = 0 ,
α̇b3 + αα̇b− αb2ḃ− α2ḃ− λαb2 = 0 . (8.2)

This set of equations has a solution which is valid until some final time t0. Asymp-
totically, when t→ t0 the solution approaches

α ⇒ δb ,

b ⇒ λ

2
(t0 − t) , (8.3)

where δ is a constant. This solution describes formation of a droplet which separates
from the fluid at t = t0. Again, this solution is valid provided ĤΨu is small compared
to x̃u. To study the validity of this assumption one must estimate the solution of
(6.7) where J is calculated from (8.1) and (8.3). Here we are able to solve only the
linear (with respect to Ψ̃) part of (6.7),

Φ̃t + iUΦ̃u =
λ2

2
U . (8.4)

This is a linear complex transport equation which can be solved by the method of
characteristics. Here,

U(u, t) =
1

J
+ iĤ

1

J
,

Φ̃(u, t) = Ψ̃ + iĤΨ̃ . (8.5)
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All functions in the equation (8.4) are analytic in the lower half-plane. The equation
for the characteristic is

u̇ = iU(u, t) . (8.6)

In the vicinity of t0 the complex velocity U is given by

U ⇒ − i

2

δu

u2 − δb
. (8.7)

In this case the characteristic equation can be solved exactly, namely

u

u2 + δb
= C , (8.8)

and the general solution of equation (8.4) is

Φ̃ = Φ̃(
u

u2 + δb
) − i

u

2
, (8.9)

where Φ̃ is arbitrary function.
Let us impose zero initial condition for Φ̃ at δb = 1. Then the solution acquires

the form,

Φ̃ =
1

4





i
u2 + δb

u
+

√

√

√

√4 −
(

u2 + δb

u

)2

− i
u

2





 . (8.10)

The behavior of ĤΨ̃u = =Φ̃u at u = 0 is proportional to C/b and is similar to that
for x̃u.

9 Self-Similar Solutions for Deep Water

In this section we shall consider the case of deep water without gravity. The equations
(2.31) and (2.38) read now:

ytxu − xtyu = −ĤΨu , (9.1)

Ψtxu − Ψuxt = Ĥ(Ψtyu − Ψuyt) . (9.2)

The system (9.1), (9.2) has a rich family of self-similar solutions. First we mention
that it is invariant with respect to the transformation:

u→ u

a(t)
(9.3)

a(t) - is an arbitrary function of time. This invariance has aa very simple origin - it
steams from a possibility to rescale u in arbitrary way at any moment of time.
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Then, we can seek for solutions of (9.1), (9.2) in a form:

y = f(t)y0(u) ,

x = f(t)x0(u) , (9.4)

Ψ = g(t)Ψ0(u) .

From (9.1) one gets
g(t) = ff ′ , (9.5)

and from (9.2) one can obtain

(ff ′)′ = qf ′2 q - is a constant. (9.6)

The equation (9.6) has a powerlike solution

f(t) = c(t0 − t)s, s =
1

(2 − q)
, if q 6= 2 , (9.7)

and an exponential one
f(t) = ceλt if q = 2 . (9.8)

y0, x0 and Ψ0 satisfy the following equations:

y0x
′

0 − x0y
′

0 = −ĤΨ′

0 , (9.9)

qΨ0x
′

0 − x0Ψ
′

0 = Ĥ(qΨ′

0y0′ − Ψ′

0y0) ,

In natural variables (9.4) is a self-similar solution:

η = f(t)η0(
x

f(t)
,

φ = f(t)f ′(t)φ0(
x

f(t)
,
y

f(t)
) . (9.10)

If s > 0 (q < 2), this solution describes formation of singularity in a finite time.
This is a wedge-type singularity, similar to that found in Section 5. One can find a
limitations imposed on s by conservation of energy. From (9.10) one gets for kinetic
energy

T = f 2f ′2
∫

(∇φ0(~ξ))
2d~ξ, ~ξ = (

x

f(t)
,
y

f(t)
) .

The self-similar solution can loose energy to a neighbour “background” or preserve
it. But the energy can not grow. As far as

T ' (t0 − t)4s−2,

and ∞ > s ≥ 1
2
, q must be in the limits 2 ≤ q ≤ 0. For q = 2, s = ∞, collapse is

reached in infinite time.
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The case q = s = 1 is very special. Now one can find the exact solution of (9.1),
(9.2) in a following form:

x = x0t+ x1 ,

y = y0t+ y1 , (9.11)

Ψ = Ψ0t+ Ψ1

In (9.11) x0, y0 and Ψ0 present the self-similar solution, satisfying the equations

y0x
′

0 − x0y
′

0 = −ĤΨ′

0 , (9.12)

Ψ0x
′

0 − x0Ψ
′

0 = Ĥ(Ψ′

0y0′ − Ψ′

0y0) ,

while x1, y1 and Ψ1 obey the linear equations

y0x
′

1 − x0y
′

1 = −ĤΨ′

1 , (9.13)

Ψ0x
′

1 − x0Ψ
′

1 = Ĥ(Ψ′

0y1′ − Ψ′

1y0) .

Starting from the self-similar solution (9.11), one can construct a general solution of
the system (9.1), (9.2). It has to be found in the form of the infinite series:

x = x0t+ x1 +
∞
∑

k=1

x−k

tk
,

y = y0t+ y1 +
∞
∑

k=1

y−k

tk
, (9.14)

Ψ = Ψ0t+ Ψ1 +
∞
∑

k=1

Ψ−k

tk
.

First two terms of the expansion (9.14) satisfy the equations (9.12), (9.13) and fur-
ther:

y0x
′

−n − y′
−nx0 + ĤΨ′

−n = Fn , (9.15)

Ψ0x
′

−n − Ψ−n′x0 + Ĥ(y0Ψ−n − Ψ0y
′

−n) = Gn ,

Fn, Gn are some expressions depending only on x−k, y−k, Ψ−k (k < n). In particulary

F2 = y−1x
′

1 − x−1y
′

1 ,

G2 = Ψ−1x
′

1 − x−1Ψ
′

1 − Ĥ(Ψ−1y
′

1 − y−1Ψ
′

1) .

Suppose that the equations (9.12), (9.13) are solved and, moreover, one can solve
explicitly linear, time-independent nonuniform equations (9.15) at any given Fn, Gn.
Then one can find recurrently all terms in the seria (9.14). In this sense the system
(9.1), (9.2) is exactly solvable.
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So far, solutions of (9.12), (9.13) as well as an algorythm for solution of (9.15) are
unknown. At the moment we don’t know anything about existense of any solution
of the equations (9.9) and can’t offer any recipe for definition of s. We just remind,
that in the small-angle approximation s = 2.

This work was supported by ONR Contract No.N00014-92-J-1343, RBRF Grant
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