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Turbulence of Capillary Waves

A. N. Pushkarev and V. E. Zakharov
Department of Mathematics, University of Arizona, Tucson, Arizona 85721

and L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 117940 GSP-1 Mosco
ul. Kosygina 2, Russia

(Received 28 September 1995)

A numerical model for direct simulation of the surface of ideal fluid based on the expansion of th
Hamiltonian of the surface up to terms of fourth order is developed. For the case of capillary wav
we observe the formation of powerlike spectrum of spatial elevations close to one predicted by wea
turbulent theoryIk . k219y4, which previously was not confirmed either experimentally or numerically.
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An ensemble of weakly interacting waves in a dispers
medium can be described statistically even though it m
be very far from the state of thermodynamic equilibriu
Because of the small value of nonlinearity the infin
system of equations for the correlation function in this ca
can be truncated in a consistent way and reduced to
kinetic equation for “wave numbers” (or wave action):

≠n$k

≠t
1 2g$kn$k  stsnd (1)

(see, for instance, [2]). Hereg$k is the wave damping (o
the wave pumping ifg$k , 0) and stsnd is the “collision
term” corresponding to a wave equation.

The collision term describes “cascade” transport
wave energy inK space to the small scale region (dire
cascade) and to the large scale region (inverse casc
The last one exists only if the total number of wav
N 

R
n$k d $k is the integral of motion.

The equation

stsn$kd  0, (2)

besides having a trivial thermodynamic solution, h
Kolmogorov-type solutions describing cascades. In
medium without a characteristic length they are powerl
functions

n$k . k2a . (3)

The theory of weak-turbulent Kolmogorov spectra h
advanced far. But direct experimental confirmation
these spectra is very poor. One can consider, more or
well confirmed existence of the Komogorov spectrum
the direct cascade of gravitational wave on the surface
an incompressible deep fluid

Iv . a
gy

v4 .

[Here Isvd is the spectral density of surface elevation
is the wave frequency,g is the acceleration of gravity,v
is the wind velocity, anda is a dimensionless constant
This spectrum was theoretically derived by Zakhar
and Filonenko [3] and experimentally observed by To
[4]. The confirmation cannot be considered as comp
because the Zakharov-Filonenko spectrum is isotro
while Toba’s spectrum is essentially anisotropic.
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Another way to check the weak-turbulent theory
by numerical simulation. Some valuable results we
obtained by numerical solution of the kinetic equatio
(1) [5,6]. But the kinetic equation (1) is itself a subjec
for careful examination. Its derivation assumes that t
phases of all interacting waves are random and are i
state of chaotic motion. The validity of this assumptio
is not cleara priori.

The correct way to check weak-turbulent theory and
prediction is by numerical simulation using “first princi
ples,” i.e., direct solution of the nonlinear dynamic equ
tion governing propagation and interaction of the waves

In real cases these equations are of two or thr
spatial dimensions, and its numerical solution is not
simple problem. It was done so far for the 2D nonline
Schrödinger equation [8], but in this particular cas
Kolmogorov spectra do not exist.

In this paper we present results of numerical simulati
of capillary waves on the surface of the incompressib
infinitely deep fluid. In this case only a direct cascad
of energy takes place. The corresponding Kolmogor
spectrum for the surface elevation has the formnk .
k217y4. We will show that this theoretical prediction is
confirmed by direct numerical simulation with satisfacto
accuracy. The developed numerical approach can be u
for solving a wide class of problems pertaining to th
interaction of surface waves and—more generally—oth
types of waves in nonlinear media.

Theoretical background.—We study the potential flow
of ideal incompressible deep fluid with the free surfac
Let hs$r, td, $r  sx, yd is the shape of the surface,cs$r, td
is the velocity potentialF  Fs $r , zd, $y  =F, DF 
0, evaluated on the free surface:cs$r, td  Fshs $r , td, $r, td.
It is known [7] that under these assumption the fluid is
Hamiltonian system;

≠h

≠t


dH
dc

, (4)

≠c

≠t
 2

dH
dh

. (5)

Here H is the total energy of the fluid consisting of th
kinetic and the potential components

H  Hpot 1 Hkin , (6)
© 1996 The American Physical Society
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Hpot  s

Z
f1 1 s=hd2g1y2 2 1 d $r,

Hkin 
1
2

Z
d $r'

Z h

2`

dzs=Fd2.

Heres is a coefficient of surface tension.
r

ib

ti
Direct numerical simulation of the system (4) provid
a solution of the boundary problem for the Lapla
equation for every time step. In the full 3D case it is
enormously hard problem. To solve the problem one
use an expansion in powers of nonlinearity. For Fou
transforms this expansion up to the quadratic terms h
form
H  H0 1 H1 1 H2 1 · · · ,

H0 
1
2

Z
fjkjjc $kj2 1 sjkj2jh$kj2g d $k ,

H1  2
1

2 3 2p

Z
L$k1

$k2
c$k1

c$k2
h$k3

ds$k1 1 $k2 1 $k3d d $k1 d $k2 d $k3 ,

H2 
1

4s2pd2

Z
M$k $k1

$k2
$k3

c$kc$k1
h$k2

h$k3
ds$k 1 $k1 1 $k2 1 $k3d d $k d $k1 d $k2 d $k3 ,

L$k1
$k2

 $k1
$k2 1 j $k1jj$k2j ,

M$k1
$k2

$k3
$k4

 j $k1jj$k2j

∑
1
2

sj $k1 1 $k3j 1 j $k1 1 $k4j 1 j $k2 1 $k3j 1 j $k2 1 $k4jd 2 j $k1j 2 j $k2j

∏
.

The corresponding dynamic equations are

≠h$r

≠t
 fjk̂jcg$r 2 divsh=cd 2 jk̂jffffjk̂jcg$r 3 h$rggg$r 1 jk̂jfjk̂jffffjk̂jcg$r 3 h$rggg$r 3 h$r g$r

1
1
2 D$rffffjk̂jcg$r 3 h

2
$r ggg$r 1

1
2 jk̂jfD$rc 3 h

2
$r g (7)

≠c$r

≠t
 sD$rh$r 1

1
2 fff 2 s=cd2 1 fjk̂jcg2

$rggg 2 jk̂jffffjk̂jcg$r 3 h$r ggg$r 3 fjk̂jcg$r

2 Dc 3 fjk̂jcg$r 3 h$r 1 D$r 1 F$r (8)
on
We added to Eq. (8) a phenomenological damping te
D$r and the external forceF$rstd.

In the linear approximation Eqs. (7) and (8) descr
capillary waves with the dispersion relation

vk  ssk3d1y2.
m

e

One can introduce normal amplitudes

a$k 

s
sk2

2vk
h$k 2 i

s
k

2vk
c$k .

According to weak-turbulent theory the pair correlati
function

ka$kap
$k0

l  n$kds $k 2 $k0d
satisfies the kinetic equation (1), where
stsnd 
Z

fR$k $k1
$k2

2 R$k1
$k $k2

2 R$k2
$k $k1

g d $k1 d $k2 ,

R$k $k1
$k2

 4pjV$k $k1
$k2

j2ds$k 2 $k1 2 $k2ddsv$k 2 v$k1
2 v$k2

d 3 fn$k1
n$k2

2 n$kn$k1
2 n$kn$k2

g ,

V$k $k1
$k2


1

8p
p

2s
svkvk1 vk2d

1y2

"
L$k1,$k2

sk1k2d1y2k
2

L$k,2$k1

skk1d1y2k2
2

L$k,2$k2

skk2d1y2k1

∏
.

a
ux

t.
In an isotropic medium containing no characteris
length the dispersion relation is a powerlike function

vk . ka

as long asV$k $k1
$k2

is a homogeneous function,

Ve $k,e $k1,e $k2
 ebV$k $k1

$k2
.

cIn this case Eq. (2) has an exact powerlike solutionnk 
CP1y2ykb1d (d is the dimension of space), which is
Kolmogorov-type spectrum describing the constant fl
of energy inK space from large to small scales.P is the
value of the energy flux andC is an absolute constan
For capillary wavesa . 3

2 , b 
9
4 , andd  2. Hence

nk  C
P1y2

k17y4
. (9)
3321
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For the correlation function of elevation one gets

Ik  kjhkj2l 
vk

sk2


Cs21y4p1y2

k19y4
.

This result was obtained first by Zakharov and Filonen
[3]. The solution (9) is linearly stable in the framewo
of the kinetic equation (1) (see [9]).

The physical interpretation of the spectrum (9) is t
following. Assume there a pumping of any type at sm
wave numbersk # kp, while strong damping takes plac
at large wave numbersk $ k0, k0 ¿ kp . Then, the
spectrum (9) is realized in the inertial intervalkp ø k ø
k0. A more exact expression for the spectrum in th
window is (see [1])

Ik 
s21y4p1y2

k19y4

"
1 2 C1

µ
kp

k

∂29y4

2 C2

µ
k
k0

∂9y4
#

.

HereC1, C2 are constants.
Numerical simulation.—We have realized a numerica

simulation of the system (7) and (8). In spite of the fa
that the matrix element of the kinetic equationV $k $k1

$k2
is

expressed only through the Hamiltonian coefficientsH0,
H1, we prefer to keep the next termH2 in the expan-
sion of the Hamiltonian. The reason for keeping the n
term of the expansion is the following: it can be show
that the dynamical system generated by the Hamilton
H0 1 H1 becomes ill posed at very low levels of nonlin
earity. Meanwhile, including a consideration of the ne
term of the expansion essentially improves the situat
(details will be published separately). Moreover, the d
veloped scheme after a minor modification can be u
for numerical simulation of gravitational waves.

Equations (7) and (8) are not differential inX space.
Besides taking derivatives they include taking the opera
jkjfs2Dd1y2 in X space].

As such, the system can be reduced to a set of
partial differential equations for variables interconnec
by the consequent application of the operators2Dd1y2.
This allows us to apply a solution to the system (7) a
(8), the spectral code, using the fast Fourier transform
each time step. Omitting the details of this numeric
scheme, we reproduce now only the final result of
calculation.

For numerical integration of Eqs. (7) and (8) we us
the functionsF and D defined in Fourier space throug
the following relations:

F$k  f$keiV $k t ,

D $k  g$kC$k ,

V$k  v$kf1 1 Rstdg ,

g$k 

Ω
2sj $kj 2 j $kjd2 if k . k0 ,
0 if 0 # k # k0 .

The pumping forceFk is “almost” in resonance with
the local linear frequencyvk of the corresponding Fourie
harmonics; i.e., the frequencyVk slightly fluctuates
3322
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around the exact value ofvk due to a small random addi-
tion in timeRstd. The form of the pumping amplitude was
chosen to be axially symmetricfk  f0e2fsj$kj2j$k1jd4yk2g.

The value ofk0 defines a starting point of “hypervis-
cosity” we used in our experiments to provide a wid
enough inertial interval. Calculations were carried out o
a 256 3 256 grid.

The pumping in our experiments was concentrated
small k sk1  10, k2  6d, and sokp . 16. We took
k0 . 40, and so the inertial interval was about half
decade.

In the calculation we examined two basic problem
At a low level of nonlinearityfsH1 1 H2dyH0 # 1023g
we observed no energy flux and formation of KAM
type quasiperiodic regime atk # kp. Apparently, this is
explained through the discreteness of the wave spectr
caused by periodic boundary conditions: One cann
realize all possible resonance conditionsv  v1 1 v2,
$k  $k1 1 $k2 on a discrete grid.

At higher levels of nonlinearity we were confronte
with a short wave instability similar to that observe
by others [10–12]. This instability can be effectivel
suppressed for moderate nonlinearitiesfsH1 1 H2dyH0 #

5 3 1022g by low-pass filtering ink space equivalent to
the smoothing in the real space or extra damping. T
presence of the instability makes, however, the essen
increasing ofk0 and the broadening of the inertial interva
impossible.

However, at moderate levels of nonlinearityfsH1 1

H2dyH0 . 5 3 1022, f0  2 3 1024] we observed fast
formation of the stationary wave spectrum carrying
constant flux of energy to the large-k region (see Fig. 1).
The observed spectrum was angular isotropic. The p
of the logarithmic derivative (Fig. 2) shows that in th
interval 8 , k , 20 the spectrum can be considere
as powerlike sIk . k2xd. The exponential varies in
the limits 25.0 , x , 24.8. The value closest to the
theoreticalsx  4.75d is reached fork . 14.

FIG. 1. The logarithm of the spectrum of spatial elevations
the liquid surface as a function of the logarithm of the wav
number.
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In the neighborhood of this point the spectrum can
presented asss  1d

Ik  qk24.8,

q  CP1y2 . 0.1 .
A direct calculation of the energy flux

P 
≠E
≠t


Z

gkj $kjjCk j2 d $k

givesP . 3 3 1024 which is not a contradiction becaus
the Kolmogorov constantC is so far unknown.

In general, the accuracy achieved in our experime
at the rather narrow (half-decade) interval under the tim
constraints of the calculation (a typical variant took 30
of the Cray C-90) can be considered as relatively good

Summarizing the results we can conclude that t
direct numerical simulation of the dynamic nonlinea
equation confirms the existence, and important role,
the weak-turbulent Kolmogorov spectra at least in t
case of capillary waves. Indirectly this result confirm

FIG. 2. The derivative of the logarithm of the spectrum o
spatial elevations with respect to the logarithm of the wa
number as a function of the logarithm of the wave number (t
local value of the Kolmogorov index).
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the validity of the kinetic equation for a description of
wave turbulence. We hope that the developed effectiv
approach will allow us to study numerically other types of
wave turbulence; first of all, the behavior of a system of
wind-driven gravitational waves on the sea surface.
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