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We show that the propagation of short pulses in optical lines with
strong dispersion management is described by an integrable Hamilto-
nian system. The leading nonlinear effect is the formation of a collec-
tive dispersion which is a result of the interaction of all pulses propa-
gating along the line. ©1999 American Institute of Physics.
[S0021-364(09)00421-]
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One of the most important practical applications of nonlinear optics is the theory of
propagation optical pulses in nonlinear optical fibers. Due to dispersion, pulses of small
amplitude in such a system suffer chromatic spreading, which limits the transmission
capacity of a fiber. In 1973 Hasegawa and Tapperoposed to use a focusing nonlin-
earity for compensation of chromatic spreading. The competion between spreading and
nonlinear focusing in a conservative fiber leads to the formation of stationary pulses —
optical solitons — which can be used as units of information. The theory of optical
solitons and their interactions was developed by Zakharov and Shabat irf Citical
solitons have now been proposed for use in dozens of planned large-scale telecommuni-
cation systems.

Real optical lines are not conservative. For compensation of the damping one must
install a periodic array of amplifiers. Hasegawa and Kodastwed that such “con-
ventional” soliton lines inherit the basic features of conservative lines.

A more advancedsee Ref. 4 proposal is to design a line that includes a periodic
system of fiber legs with opposite signs of the dispersion in addition to a periodic array
of amplifiers. If such a line were linear, the designer could achieve compensation of
chromatic spreading. This makes such lines the most promising systems for ultrafast
communication. However, to suppress the noise and provide a low-error transmission of
information, one should use optical pulses of relatively high amplitude. As a result, in the
process of long-distance pulse propagation the nonlinear effects inevitably become im-
portant.

The theory of pulse propagation in long periodic structures is a new and interesting
chapter of nonlinear physics. In many aspects periodic fibers differ from homogeneous
ones. In the latter the dispersion is a smooth function of frequency which can be approxi-
mated inside a narrow spectral band by a low-order polynomial. As a result, a pulse
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envelope can be described by a partial differential equation of the second or third order,
and the pulse interaction is local in time. In this situation, optical solitons propagating
without chromatic distortion are the basic objects. Because of the locality of the interac-
tion, the shape of an individual soliton does not depend on the presence of other pulses in
the system. We will show in this letter that this is not necessarily true in periodic systems.

We will consider lines in which the local nonlinearity and mean dispersion are much
less than the local dispersion. Such lines are characterized by argmehis is the
duration of a pulse that broadens by a factor of two in passing through a fiber leg with
constant dispersion. If the pulse is shortqr,, wherer is the pulse durationone can
speak of strong dispersion managemiM). In this letter we show that in this limit
the line is described approximately by a completely integrable Hamiltonian system.

The leading nonlinear effect is the appearance of a collective average dispersion
formed by a whole ensemble of pulses propagating through the line. Since this dispersion
is very nonlocal, the pulse envelopes cannot be described by any partial differential
equation in coordinate space. The pulses pass through each other without interaction, but
the rate of chromatic spreading of an individual pulse depends on the presence of neigh-
boring pulses.

THE THEORY OF SHORT-PULSE PROPAGATION

The basic model for describing dispersion managed fibers is the nonlineadSchro
inger equation with periodic coefficients,

KA
i~ [+’ (0 W+ ROO[ W2 W =0, (1)

HereW (x,t) is the envelope of a wave pulse, afdx) andR(x) are periodic functions
of x with the same period 2. Insofar ag®’(x))=0, d is the average dispersion of the
fiber. We assume that

IROO)[<|d+ D" (x)]. 2
In real transmission lines, this condition is usually satisfied.

Under the assumptio(®), Eq. (1) can be replaced with the approximate Gabitov—
Turitzyn (GT) modeP~’
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Here
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G(A)= ith(x)eiq’(x)Adx=J(ATZ) @)
2 0 0’

Here 74 is a characteristic parameter of the lid¢¢) is a function of the dimensionless
variableé~1, andW¥ ,(x) is the Fourier transform oW (x,t). In general

J(=&)=J*(8).
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In the special case of constant nonlineari®=const) and piecewise constant dispersion,
one hasl(¢)=sinél&.

Taking the inverse Fourier transform (8) leads to the equation

J #x 1
i—X+d—X+—2fF

Pal 5
X g 2 (Z)X(t+P+Q)x(t+p)x(t+q)dpdq—o. (5)
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If s= pq/T§> 0, thenF(s) is given by the expression.

1 )
F(s)=5— JO {23* (2)Ko(\252) = mI(2)No(V2s2)}ds. ©)

Here Ko(q) is the Bessel function of imaginary argument, axg(q) is the Neumann
function. For negative, F(—s)=F*(s). In the case of strong dispersisr 1, one can
use asymptotic expansions of the Bessel function at small values of the argument.

Expansion in powers of leads to the result

F=Fo+F+Fp+---, 7
F—mel 2 C|ReJ(2)d 8
ey n@— elJ(z)dz, 8
F—2iS : | 2 +1-C|ImJ(z)d 9
1= .z n@ —C|ImJ(z)dz 9
|:—‘°'2J062|2+3 C|ReJ(2)d 10
2= Oz n@ 5 eJ(z)dz (10

Here C is the Euler constant. Leg=A€®. PluggingF =F, in (5) and performing the
Fourier transform, one obtains a system of equation#\fand ®:

A o, P dw?+K(A 11
5— , W__ w (A). (11)

Here(see Ref. 8

. 4 = A¥(w')—A?
R(A)=— fA2+f AL ZAT@) 4l (12)
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0 o Z
In order of magnitude
4 To
K(A)z—zln7A2(w). (14
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In the limit In 7y/7— formula (14) is exact. Equation§l1l) mean that the systei®) is
integrable in the limitrq/7—0.

The leading nonlinear effect is the formation of an additional collective dispersion

R(A). Let the signaly(t) be a superposition of a large number of identical pulses with
random phases, separated by arbitrary intervals of time:

N
)((t)=n§:‘,l Xo(t—7), N>1. (15)

Then

N
x(@)=xo(w) Y, e @mn=¢n)
n=1

A¥ (@) =N[Ag(»)|?=|x(w)|?. (16)

According to(11) all the pulses in the system suffer the same chromatic spreading and
remain identical. The value of spreading is determined by all the pulses present in the
line. This is a result of the strong dispersional spreading of each pulse in the fibers of
constant dispersion. Due to nonlinearity, this spreading cannot be completely compen-
sated in the next fibers. As a result, each pulse generates long “tails” that influence the
shapes of the other pulses. In the model developed here, the pulse interaction is very
nonlocal — the pulses “feel” each other when separated by an arbitrarily long distance.
This ultimate nonlocality is a weak point of the simple model developed.

Another weak point of the model is the plethora of soliton solutions. To find such a
solution, one can put
D (w,X)=AX+Py(w),

where®,(w) is an arbitrary function oo and\ is an arbitrary constant.
The amplitudeA(w) is an arbitrary positive solution of the equation

A(w)[\+dw?—K(A)]=0. 17
One can arbitrarily separate the axisc<<w <« into two sets(); U, and put
A(0)=0, weQ;, A+dw’—-K(A)=0, we,. (18

Here (18) is the Fredholm integral equation of the first kind. The systé®) has an
infinite number of solutions. To improve the model, one should take into account higher
orders of the expansiofY). This is beyond the scope of this article.

We have shown that the propagation of short optical pulses in strong dispersion
managed nonlinear systems is quite different from the propagation in “conventional”
lines with constant dispersion. The interaction of the pulses is very nonlocal — even very
distant pulses interact by the formation of a substantial average dispersion. In the leading
order the system of pulses is described by an integrable Hamiltonian system. In the
framework of this model, solitons do not have a universal form, and their importance
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from the practical standpoint is unclear. One can say that in such systems the nonlinearity
is purely detrimental. The program for the designer is to make the line as “linear” as
possible.

One of the authorgS. V. Manakoy is grateful to the Fellowship of the Italian
Ministry of Foreign Affairs.
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