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We show that the propagation of short pulses in optical lines with
strong dispersion management is described by an integrable Hamilto-
nian system. The leading nonlinear effect is the formation of a collec-
tive dispersion which is a result of the interaction of all pulses propa-
gating along the line. ©1999 American Institute of Physics.
@S0021-3640~99!00421-1#

PACS numbers: 42.65.Tg, 42.81.Dp

One of the most important practical applications of nonlinear optics is the theo
propagation optical pulses in nonlinear optical fibers. Due to dispersion, pulses of
amplitude in such a system suffer chromatic spreading, which limits the transmi
capacity of a fiber. In 1973 Hasegawa and Tappert1 proposed to use a focusing nonlin
earity for compensation of chromatic spreading. The competion between spreadin
nonlinear focusing in a conservative fiber leads to the formation of stationary puls
optical solitons — which can be used as units of information. The theory of op
solitons and their interactions was developed by Zakharov and Shabat in 1971.2 Optical
solitons have now been proposed for use in dozens of planned large-scale telecom
cation systems.

Real optical lines are not conservative. For compensation of the damping one
install a periodic array of amplifiers. Hasegawa and Kodama3 showed that such ‘‘con-
ventional’’ soliton lines inherit the basic features of conservative lines.

A more advanced~see Ref. 4! proposal is to design a line that includes a perio
system of fiber legs with opposite signs of the dispersion in addition to a periodic
of amplifiers. If such a line were linear, the designer could achieve compensatio
chromatic spreading. This makes such lines the most promising systems for ult
communication. However, to suppress the noise and provide a low-error transmiss
information, one should use optical pulses of relatively high amplitude. As a result, i
process of long-distance pulse propagation the nonlinear effects inevitably becom
portant.

The theory of pulse propagation in long periodic structures is a new and intere
chapter of nonlinear physics. In many aspects periodic fibers differ from homogen
ones. In the latter the dispersion is a smooth function of frequency which can be ap
mated inside a narrow spectral band by a low-order polynomial. As a result, a
5780021-3640/99/70(9)/5/$15.00 © 1999 American Institute of Physics
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envelope can be described by a partial differential equation of the second or third
and the pulse interaction is local in time. In this situation, optical solitons propaga
without chromatic distortion are the basic objects. Because of the locality of the int
tion, the shape of an individual soliton does not depend on the presence of other pu
the system. We will show in this letter that this is not necessarily true in periodic syst

We will consider lines in which the local nonlinearity and mean dispersion are m
less than the local dispersion. Such lines are characterized by a timet0 . This is the
duration of a pulse that broadens by a factor of two in passing through a fiber leg
constant dispersion. If the pulse is short (t!t0 , wheret is the pulse duration!, one can
speak of strong dispersion management~SDM!. In this letter we show that in this limit
the line is described approximately by a completely integrable Hamiltonian system

The leading nonlinear effect is the appearance of a collective average dispe
formed by a whole ensemble of pulses propagating through the line. Since this disp
is very nonlocal, the pulse envelopes cannot be described by any partial differ
equation in coordinate space. The pulses pass through each other without interacti
the rate of chromatic spreading of an individual pulse depends on the presence of
boring pulses.

THE THEORY OF SHORT-PULSE PROPAGATION

The basic model for describing dispersion managed fibers is the nonlinear Sc¨d-
inger equation with periodic coefficients,

i
]C

]x
1@d1F8~x!#C tt1R~x!uC2uC50. ~1!

HereC(x,t) is the envelope of a wave pulse, andF(x) andR(x) are periodic functions
of x with the same period 2p. Insofar aŝ F8(x)&50, d is the average dispersion of th
fiber. We assume that

uR~x!u!ud1F8~x!u. ~2!

In real transmission lines, this condition is usually satisfied.

Under the assumption~2!, Eq. ~1! can be replaced with the approximate Gabito
Turitzyn ~GT! model5–7

i
]x

]x
5dv2xv2E G~D!xv1

* xv2
xv3

dv1v12v22v3
dv1dv2dv3 . ~3!

Here

xv5CveiF(x)v2
, D5v21v1

22v2
22v3

2 ,

G~D!5
1

2pE0

2p

R~x!eiF(x)Ddx5J~Dt0
2!. ~4!

Heret0 is a characteristic parameter of the line,J(j) is a function of the dimensionles
variablej;1, andCv(x) is the Fourier transform ofC(x,t). In general

J~2j!5J* ~j!.
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In the special case of constant nonlinearity (R5const) and piecewise constant dispersio
one hasJ(j)5sinj/j.

Taking the inverse Fourier transform of~3! leads to the equation

i
]x

]x
1d

]2x

]t2
1

1

t0
2E FS pq

t0
2 D x* ~ t1p1q! x~ t1p! x~ t1q! dpdq50. ~5!

If s5pq/t0
2.0, thenF(s) is given by the expression.

F~s!5
1

2pE0

`

$2J* ~z!K0~A2sz!2pJ~z!N0~A2sz!%ds. ~6!

Here K0(q) is the Bessel function of imaginary argument, andN0(q) is the Neumann
function. For negatives, F(2s)5F* (s). In the case of strong dispersions!1, one can
use asymptotic expansions of the Bessel function at small values of the argument

Expansion in powers ofs leads to the result

F5F01F11F21•••, ~7!

F05
2

pE0

`F ln
2

usuz
2CGReJ~z!dz, ~8!

F15
2is

p E
2`

`

zF ln
2

usuz
112CG Im J~z!dz, ~9!

F25
s2

4pE0

`

z2F ln
2

usuz
1

3

2
2CGReJ~z!dz. ~10!

HereC is the Euler constant. Letx5AeiF. PluggingF5F0 in ~5! and performing the
Fourier transform, one obtains a system of equations forA andF:

]A

]x
50,

]F

]x
52dv21K̂~A!. ~11!

Here ~see Ref. 8!

K̂~A!5
4

t0
2 F f A21E

2`

` A2~v8!2A2~v!

uv82vu
dv8G , ~12!

f 5~2 lnt01C! a1b,

a5E
0

`

J~z!dz, b5E
0

`

ln
2

z
J~z!dz. ~13!

In order of magnitude

K~A!.
4

t0
2

ln
t0

t
A2~v!. ~14!
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In the limit lnt0 /t→` formula ~14! is exact. Equations~11! mean that the system~4! is
integrable in the limitt0 /t→0.

The leading nonlinear effect is the formation of an additional collective disper
K̂(A). Let the signalx(t) be a superposition of a large number of identical pulses w
random phases, separated by arbitrary intervals of time:

x~ t !5 (
n51

N

x0~ t2tn!, N@1. ~15!

Then

x~v!5x0~v! (
n51

N

e2 i (vtn2fn),

A2~v!5NuA0~v!u25ux~v!u2. ~16!

According to~11! all the pulses in the system suffer the same chromatic spreading
remain identical. The value of spreading is determined by all the pulses present
line. This is a result of the strong dispersional spreading of each pulse in the fibe
constant dispersion. Due to nonlinearity, this spreading cannot be completely com
sated in the next fibers. As a result, each pulse generates long ‘‘tails’’ that influenc
shapes of the other pulses. In the model developed here, the pulse interaction i
nonlocal — the pulses ‘‘feel’’ each other when separated by an arbitrarily long dista
This ultimate nonlocality is a weak point of the simple model developed.

Another weak point of the model is the plethora of soliton solutions. To find su
solution, one can put

F~v,x!5lx1F0~v!,

whereF0(v) is an arbitrary function ofv andl is an arbitrary constant.

The amplitudeA(v) is an arbitrary positive solution of the equation

A~v!@l1dv22K̂~A!#50. ~17!

One can arbitrarily separate the axis2`,v,` into two setsV1øV2 and put

A~v!50, vPV1 , l1dv22K̂~A!50, vPV2 . ~18!

Here ~18! is the Fredholm integral equation of the first kind. The system~18! has an
infinite number of solutions. To improve the model, one should take into account h
orders of the expansion~7!. This is beyond the scope of this article.

We have shown that the propagation of short optical pulses in strong dispe
managed nonlinear systems is quite different from the propagation in ‘‘conventio
lines with constant dispersion. The interaction of the pulses is very nonlocal — even
distant pulses interact by the formation of a substantial average dispersion. In the le
order the system of pulses is described by an integrable Hamiltonian system. I
framework of this model, solitons do not have a universal form, and their import
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from the practical standpoint is unclear. One can say that in such systems the nonlin
is purely detrimental. The program for the designer is to make the line as ‘‘linear
possible.

One of the authors~S. V. Manakov! is grateful to the Fellowship of the Italian
Ministry of Foreign Affairs.
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