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INTEGRATION OF THE GAUSS–CODAZZI EQUATIONS

V. E. Zakharov1

The Gauss–Codazzi equations imposed on the elements of the first and the second quadratic forms of a

surface embedded in R
3 are integrable by the dressing method. This method allows constructing classes of

Combescure-equivalent surfaces with the same “rotation coefficients.” Each equivalence class is defined by

a function of two variables (“master function of a surface”). Each class of Combescure-equivalent surfaces

includes the sphere. Different classes of surfaces define different systems of orthogonal coordinates of

the sphere. The simplest class (with the master function zero) corresponds to the standard spherical

coordinates.

1. Introduction

Bonnet’s theorem asserts that a surface in three-dimensional Euclidean space is defined up to Euclidean
motions if the components of the first and second quadratic forms are known. However, these components
cannot be chosen arbitrarily. Indeed, the first quadratic form defines a metric on the surface, and the second
quadratic form determines the field of normal vectors at any point on the surface. Given the components
of both forms, we can construct the three-dimensional metric in a vanishingly thin layer near the surface.
Insofar as the surface is embedded in an Euclidean space, the metric is flat, and the components of the
curvature tensor in a neighborhood of the surface must be identically zero. This requirement imposes a set
of differential relations (known as the Gauss–Codazzi equations (GCE)) on the components of the quadratic
forms.

We show that the inverse scattering method can be used to integrate the GCE. Exactly speaking,
we show that the components of both quadratic forms can be expressed through only one function of two
variables, which we call the master function of the surface. Actually, the master function defines not a
single surface but a whole class of Combescure-equivalent surfaces. This function is the kernel of a certain
linear integral equation. To express the components of quadratic forms in terms of the master function, we
must solve this equation. Given its solution, we can construct all Combescure-equivalent surfaces explicitly.
The integral equation can be effectively solved only in some special cases where the kernel is generated by
and can be represented as a superposition of binary products of functions of one variable. This “solitonic”
case certainly deserves very serious attention because it allows the efficient study of some new classes of
surfaces.

Moreover, we can hope that the results of this article could be more important. We actually reduce the
problem of classifying surfaces to the problem of classifying their master functions and then subclassifying
a given Combescure class. All previously known classes of surfaces have master functions satisfying some
special conditions. To find these conditions, and also new conditions defining new special classes of surfaces,
is an interesting program for future research. This article shows how deeply the theory of surfaces is
connected with the theory of solitons.
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2. Formulation of the problem

Let Γ be a surface in R3. We can introduce coordinates x1 and x2 on Γ such that the first and second
quadratic forms are diagonal,

Ω1 = p2 dx2
1 + q2 dx2

2, Ω2 = pAdx2
1 + qB dx2

2,

where the coordinates x1 and x2 are defined up to trivial transformations x1 = x1(u1) and x2 = x2(u2).
We say that these two surfaces are Combescure equivalent if they have the same A and B for different p
and q.

The coefficients of Ω1 and Ω2 cannot be chosen independently. The four functions p, q, A, and B are
connected by three nonlinear PDEs known as the GCE. To find the GCE, we should embed the surface Γ
in a special system of three-dimensional orthogonal curvilinear coordinates in R3 in the vicinity of Γ. The
metric in this system is defined as

ds2 = H2
1 dx

2
1 +H2

2 dx
2
2 + dx2

3, (2.1)

where H1 and H2 are the Lamé coefficients H1 = p+Ax3 and H2 = q+Bx3 and the third Lamé coefficient
is H3 = 1.

The GCE appear from the condition

Rijlm = 0, (2.2)

where Rijlm is the Riemann curvature tensor for metric (2.1). Equation (2.2) takes a simple form in terms
of the matrix given by Qij = (1/Hj)(∂Hi/∂xj), i �= j. In the literature,

βij =
1
Hi

∂Hj

∂xi
= Qij

are usually called rotation coefficients. By definition, we have

Q13 =
1
H3

∂H1

∂x3
= A, Q23 =

1
H3

∂H2

∂x3
= B,

Q31 =
1
H1

∂H3

∂x1
= 0, Q32 =

1
H2

∂H3

∂x2
= 0,

and for the remaining elements of Q, Eq. (2.2) becomes

∂Q12

∂x3
=
∂Q21

∂x3
= 0,

∂Q13

∂x2
= Q12Q23,

∂Q23

∂x2
= Q21Q13, (2.3)

∂Q12

∂x2
+
∂Q21

∂x1
+Q13Q23 = 0. (2.4)
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Obviously, some elements of Q are independent of the variable x3, and we can set

Q12 = α(x1, x2), Q21 = β(x1, x2).

Then system (2.3), (2.4) can be written as

∂α

∂x2
+

∂β

∂x1
+AB = 0,

∂A

∂x2
= αB,

∂B

∂x2
= βA. (2.5)

To express α and β in terms of the elements of the first quadratic form p and q, we use the definition of
Q12 and Q21. By definition,

∂

∂x2
(p+Ax3) = Q12(q +Bx3) = α(q +Bx3),

∂

∂x1
(q +Bx3) = Q21(p+Ax3) = β(p+Ax3).

(2.6)

Setting x3 = 0 in (2.6), we obtain

∂p

∂x2
= αq,

∂q

∂x1
= βp, (2.7)

and finally

∂

∂x2

(1
q

∂p

∂x2

)
+

∂

∂x1

(1
p

∂q

∂x1

)
+AB = 0, q

∂A

∂x2
= B

∂p

∂x2
, p

∂B

∂x1
= A

∂q

∂x1
. (2.8)

System (2.8) of three equations imposed on the four functions A, B, p, and q is the Gauss–Codazzi sys-
tem. It is suitable to study a simpler system of first-order equations (2.5), which form a system of three
equations imposed on the four functions A, B, α, and β. Solving this system, we define a surface up to
Combescure equivalence. To solve the GCE, we must solve linear system (2.7) for the components of the
first quadratic form. Splitting Gauss–Codazzi system (2.8) into simpler systems (2.5) and (2.7) was done
by Konopelchenko [1].

3. n-Dimensional orthogonal coordinate systems

Our approach to solving the GCE is based on the fact that they are a special degenerate case of Gauss–
Lamé equations describing three-dimensional orthogonal curvilinear coordinate systems in R3. A method
for solving Gauss–Lamé equations in a Euclidean space of arbitrary dimension was presented in [2]. Here,
we give a different, but essentially equivalent, method for solving this problem.

Given a domain S in Rn, the problem is to find all the orthogonal curvilinear coordinate systems in S.
Let x = (x1, . . . , xn) be these coordinates. In this coordinate system, the metric tensor is diagonal,

ds2 =
∑

H2
i dx

2
i .

The coefficients Hi = Hi(x) are the Lamé coefficients and are to be determined. They satisfy a heavily
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overdetermined system of nonlinear PDEs, the Gauss–Lamé equations,

∂Qij

∂xk
= QikQkj , i �= j �= k, (3.1)

∂Qij

∂xj
+
∂Qjk

∂xi
+

∑
k �=i,j

QikQkj = 0, i �= j, (3.2)

where, as before, we have

Qij =
1
Hj

∂Hi

∂xj
. (3.3)

We can verify that Eqs. (3.1)–(3.3) are equivalent to the condition Rijkl = 0, where Rijkl is the Riemann
curvature tensor. To solve (3.1)–(3.3), we introduce a family of projection operators Ii in Rn satisfying the
conditions I2

i = Ii and IiIj = 0, i �= j, and define

Φ =
n∑

i=1

xiIi.

Let λ be a point on the complex plane C and χ with the elements χij(λ, λ̄, x), i = 1, . . . , n, j = 1, . . . , n,
be a matrix-valued function on C that also depends on the coordinate x. We suppose that χ(λ, λ̄, x) is a
solution of the nonlocal ∂̄-problem

∂χ

∂λ̄
= χ ∗R =

∫
χ(ν, ν̄, x)R(ν, ν̄, λ, λ̄, x) dν dν̄ (3.4)

normalized by the condition χ→ δij as λ→ ∞.
In (3.4),

R(ν, ν̄, λ, λ̄) = eνΦTe−λΦ, (3.5)

where T (ν, ν̄, λ, λ̄) is a matrix that is independent of x. We impose the restrictions

T (ν̄, ν, λ̄, λ) = T (ν, ν̄, λ, λ̄), T tr(−ν,−ν̄,−λ,−λ̄) = µ

λ
T (ν, ν̄, λ, λ̄) (3.6)

on T . Then ∂̄-problem (3.4) is equivalent to the integral equation

χ(λ, λ̄, x) = δij +
1
π

∫
χ(ν, ν̄, x)R(ν, ν̄, µ, µ̄, x)

λ− µ
dν dν̄ dµ dµ̄. (3.7)

We chose a matrix function T (ν, ν̄, λ, λ̄) satisfying conditions (3.6) such that Eq. (3.7) has a unique regular
solution. Then χ can be expanded at λ→ ∞ in the asymptotic series

χ→ 1 +
Q

λ
+
P

λ2
+ . . . , (3.8)

where

Q =
1
π

∫
χ(ν, ν̄, x)R(ν, ν̄, µ, µ̄, x) dλ dλ̄ dµ dµ̄. (3.9)

We note that the function χ satisfies the condition

χ̄(ν̄, ν, x) = χ(ν, ν̄, x) (3.10)
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by virtue of (3.6) and that Q is a real matrix function on x. Using ∂̄-problem (3.4) and the equivalent
integral equation (3.8) to integrate the Gauss–Lamé system is based on the following two facts:

1. If conditions (3.6) are satisfied, then the matrix Q(x) given by formula (3.10) satisfies the system
of equations (3.1) and (3.2).

2. The matrix function φ(λ, λ̄, x) = χ(λ, λ̄, x)e+λΦ(x) satisfies the linear system

∂φik

∂xj
= Qijφjk , i �= 0. (3.11)

Let ξi(λ, λ̄) = ξ̄i(λ̄, λ) be an arbitrarily chosen family of functions on λ, λ̄, and let

Hi =
∫ ∑

χij(λ, λ̄, x)ξi(λ, λ̄) dλ dλ̄. (3.12)

The function Hi(x) satisfies the linear system

∂Hi

∂xj
= QijHj (3.13)

and can be chosen as the Lamé coefficients for some n-dimensional orthogonal coordinate system. Choosing
different sets of ξi(λ, λ̄), we obtain different sets of the Lamé coefficients corresponding to the same matrix
Q. These sets are the so-called Combescure equivalents. The method for solving nonlinear equations via
∂̄-problem (3.4) is called the dressing method, and the function T (ν, ν̄, λ, λ̄) is a dressing function. The
dressing procedure allows automatically finding all sets of Lamé coefficients associated with a given matrix
function Q.

To prove the statements formulated above, we construct a family of operators Lij(i �= j) acting on χ
as

Lijχ = Ii

( ∂χ

∂xj
+ λχIj −QIjχ

)
, i �= j.

Here, Q is given by (3.9), and we can easily verify that Lijχ are solutions of the ∂̄-problem

∂

∂λ̄
Lijχ = Lijχ ∗R

with zero normalization at infinity, Lijχ → 0 as λ → ∞. Each function Lijχ satisfies the linear integral
equation

Lijχ(λ, λ̄) =
1
π

∫
Lijχ(ν, ν̄)R(ν, ν̄, µ, µ̄, x)

λ− µ
dν dν̄ dµ dµ̄. (3.14)

Because Eq. (3.7) has a unique (regular) solution, homogeneous equation (3.14) has only the zero solution.
Hence,

Lijχ = 0 (3.15)

and

LijχIk = 0. (3.16)
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Linear system (3.13) is equivalent to system (3.16). We substitute asymptotic approximation (3.8) in (3.15)
and expand the result in an asymptotic series. All terms of the resulting asymptotic expansion should be
identically zero. Setting the first nonvanishing term of the order 1/λ to zero yields system (3.1).

The proof of the validity of Eq. (3.2) is a little more difficult and is given in [3].

4. Integration of the GCE

In R3, system (3.1) is

∂Q12

∂x3
= Q13Q32, (4.1)

∂Q21

∂x3
= Q23Q31, (4.2)

∂Q13

∂x2
= Q12Q23, (4.3)

∂Q23

∂x1
= Q21Q13, (4.4)

∂Q31

∂x2
= Q32Q21, (4.5)

∂Q32

∂x1
= Q31Q12. (4.6)

To go to the Gauss–Codazzi system, we use the fact that the Qij are independent of x3. Equations (4.1)
and (4.2) then become

Q13Q32 = 0, Q23Q31 = 0. (4.7)

We impose an additional condition compatible with (4.7),

Q31 = Q32 = 0. (4.8)

Now, Eqs. (4.5) and (4.6) are satisfied automatically, and only Eqs. (4.3) and (4.4) survive in system (3.1).
System (3.2) for n = 3 consists of three equations:

∂Q12

∂x2
+
∂Q21

∂x1
+Q13Q23 = 0,

∂Q13

∂x3
+
∂Q31

∂x1
+Q12Q32 = 0, (4.9)

∂Q23

∂x3
+
∂Q32

∂x2
+Q21Q31 = 0. (4.10)

By virtue of (4.7), Eqs. (4.9) and (4.10) are satisfied. Hence, the total system of equations resolving this
special type of Gauss–Lamé system is reduced to the equations

∂Q12

∂x2
= Q23Q31,

∂Q23

∂x1
= Q21Q23,

∂Q12

∂x2
+
∂Q21

∂x1
+Q13Q23 = 0. (4.11)

This system should be satisfied by virtue of the equations for the Lamé coefficients

∂H1

∂x2
= Q12H2,

∂H2

∂x1
= Q21H1. (4.12)
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System (4.11), (4.12) coincides with Gauss–Lamé equations (2.5) and (2.7). To solve this system, we
choose the dressing function Tij(ν, ν̄, λ, λ̄) in a very special way. According to (3.5), we have

Rij(ν, ν̄, λ, λ̄) = eνxi−λxjTij(ν, ν̄, λ, λ̄). (4.13)

To eliminate the dependence of Qij on the coordinate x3, we eliminate this dependence in Rij(ν, ν̄, λ, λ̄).
Hence, we must set T3i � δ(ν)δ(ν̄) and Ti3 � δ(λ)δ(λ̄). Taking the second condition in (3.6) into account,
we can construct Tij uniquely,

T12 = µF (µ, µ̄, λ, λ̄), T21 = −µF (−λ,−λ̄,−µ,−µ̄),

T13 = −µf1(−µ,−µ̄) δ(λ)δ(λ̄), T23 = −µf2(−µ,−µ̄) δ(λ)δ(λ̄),

T31 = µδ(µ)δ(µ̄) f1(λ, λ̄), T32 = µδ(µ)δ(µ̄) f2(λ, λ̄).

(4.14)

To satisfy the first condition in (3.6), we must set

f1(λ, λ̄) = f̄1(λ̄, λ), f2(λ, λ̄) = f̄2(λ̄, λ), R(µ, µ̄, λ, λ̄) = R(µ̄, µ, λ̄, λ). (4.15)

Without loss of generality, we can set diagonal elements to zero,

T11 = T22 = T33 = 0.

The formulas for T31 and T32 include the product µδ(µ)δ(µ̄). Normally, we must set this expression to zero.
Actually, this is true for integration with a continuous test function,

∫
f(µ, µ̄)µδ(µ)δ(µ̄) dµ dµ̄ = 0,

but sometimes the test function has a simple pole at µ = 0, and then f(µ) = g(µ, µ̄)/µ at µ ∼ 0, where g
is a continuous function. In this case,

∫
f(µ, µ̄)µδ(µ)δ(µ̄) dµ dµ̄ =

∫
g(µ, µ̄)δ(µ)δ(µ̄) dµ dµ̄ = g(0, 0).

Integral equation (3.7) consists of a family of independent equations imposed separately on each row of the
matrix χ (rows are indexed by the first subscript). We consider a system of equations for elements of the
third row, χ31, χ32, and χ33. By virtue of (4.13) and (4.14), χ33 drops out of the equations for χ31 and
χ32. As a result, these elements of χij satisfy a homogeneous linear system with only the zero solution.
Therefore,

χ31 ≡ 0, χ32 ≡ 0, (4.16)

and χ33 ≡ 1.
Hence, in accordance with (4.8), we have

Q31 = Q32 = 0, Q33 = 0. (4.17)
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To find expressions for χ13 and χ23, we must use formulas (4.14) and (4.15). We have

χ13 =
A

λ
=
Q13

λ
, χ23 =

B

λ
=
Q23

λ
,

A = Q13 = − 1
π

∫
ν
[
χ11(ν, ν̄, x) f1(−ν,−ν̄)eνx1 + χ12(ν, ν̄, x)eνx2f2(−ν,−ν̄)

]
dν dν̄,

B = Q23 = − 1
π

∫
ν
[
χ21(ν, ν̄, x) f1(−ν,−ν̄)eνx1 + χ22(ν, ν̄, x)eνx2f2(−ν,−ν̄)

]
dν dν̄.

We can use (4.16) and (4.17) to reduce system (3.4) to a system of equations imposed on the 2×2 matrix
given by Xij = χij , i, j = 1, 2,

Xij(λ, λ̄, x) = δij +
1
π

∫
Xik(ν, ν̄, x)eνxk−µxjSkj(ν, ν̄, µ, µ̄)

λ− µ
dν dν̄ dµ dµ̄, (4.18)

where the matrix S is a sum of two components,

S = U + V,

U =

∣∣∣∣∣
0 µF (µ, µ̄, λ, λ̄)

−µF (−λ,−λ̄,−µ,−µ̄) 0

∣∣∣∣∣ ,

Vij(µ, µ̄, λ, λ̄) = −µ
π
fi(−µ,−µ̄)fj(λ, λ̄).

(4.19)

We note that U(µ, µ̄, λ, λ̄) satisfies standard relation (3.7), and

V tr(−λ,−λ̄,−µ,−µ̄) = −µ
λ
V (µ, µ̄, λ, λ̄).

If the Xij are known, we can find the Lamé coefficients (the elements of the first quadratic form) from

p(x1, x2) = H1(x1, x2) =
∫ [

χ11(ν, ν̄, x)eνx1g1(ν, ν̄) + χ12(ν, ν̄, x)eνx2g2(ν, ν̄)
]
dν dν̄,

q(x1, x2) = H2(x1, x2) =
∫ [

χ21(ν, ν̄, x)eνx1g1(ν, ν̄) + χ22(ν, ν̄, x)eνx2g2(ν, ν̄)
]
dν dν̄.

Different choices of g1 and g2 define different representatives of the same class of Combescure-equivalent
surfaces. In particular, we can set

g1(ν, ν̄) = − ν
π
f1(−ν,−ν̄), g2(ν, ν̄) = − ν

π
f2(−ν,−ν̄). (4.20)

In this case, p = A and q = B.
We note that k1 = A/p and k2 = B/q are the main curvatures of the surface at a given point.

In case (4.20), k1 = k2 = 1, and the surface is a sphere. We have an interesting fact: each class of
Combescure-equivalent surfaces includes a sphere. Different classes just define different coordinate systems
on the sphere.
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5. Surfaces of type zero

We call the function F (µ, µ̄, λ, λ̄) the master function of the surface. The surface belongs to a finite
type N if its master function can be written in the form

F (µ, µ̄, λ, λ̄) =
N∑

k=1

ak(µ, µ̄)bk(λ, λ̄).

In this case, a solution of the GCE can be found in a closed form. Surfaces of a finite type can also be
called solitonic surfaces. In this paper, we describe surfaces of type zero where F ≡ 0. In this case,

Sij = Vij = −µ
π
fi(−µ,−µ̄) fj(λ, λ̄).

We can set

χij = δij + λi(x1, x2)hj(λ, λ̄, xj), (5.1)

where

hj(λ, λ̄, xj) =
1
π

∫
fj(−µ,−µ̄)eµxj

λ+ µ
dµ dµ̄.

We introduce the functions

ci(xi) =
1√
2π

∫
fi(−µ,−µ̄)eµxi dµ dµ̄.

We can verify that

λi = −
√
2πc′i(x

′
i)

∆
, ∆ = 1 + c21(x1) + c22(x2).

From (5.1), we easily obtain

α = Q12 = − 2c′1(x1)c2(x2)
1 + c21(x1) + c22(x2)

, β = Q21 = − 2c1(x1)c′2(x2)
1 + c21(x1) + c22(x2)

. (5.2)

Substituting (5.1) in (4.18), we obtain

A = Q13 = − 2c′1(x1)
1 + c21(x1) + c22(x2)

, B = Q23 = − 2c′2(x2)
1 + c21(x1) + c22(x2)

. (5.3)

We can verify that formulas (5.2) and (5.3) define the solution of the GCE.
For the elements of the matrix φ in (3.11), we have

φ11 = (1 + λ1h1)eλx1 , φ21 = λ2h1e
λx1 ,

φ12 = λ1h2e
λx2 , φ22 = (1 + λ2h2)eλx2 .

To solve the GCE and find all possible sets of p and q compatible with (5.2) and (5.3), we introduce two
arbitrary functions

ξi(λ, λ̄) = ξ̄i(λ̄, λ), i = 1, 2.
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Then p and q are given by the formulas

p = 〈ξ1eλx1〉+ λ1

[
〈h1e

λx1ξ1〉+ 〈h2e
λx2ξ2〉

]
,

q = 〈ξ2eλx2〉+ λ2

[
〈h2e

λx1ξ1〉+ 〈h2e
λx2ξ2〉

]
.

(5.4)

In (5.4), the brackets mean that we integrate with respect to λ and λ̄.
Formulas (5.4) can be rewritten as

p = a(x1) + λ1(x1, x2)F, q = b(x2) + λ(x1, x2)F,

F =
∫ x1

ξ1

c1(x1)a(x1) dx1 +
∫ x2

ξ2

c2(x2)b(x2) dx2,

where a(x1) = 〈ξ1eλx1〉 and b(x2) = 〈ξ2eλx3〉 are arbitrary functions of one variable.

6. Orthogonal coordinates on the sphere

Integrating the GCE is closely connected to another classical problem in differential geometry, classi-
fying orthogonal coordinate systems on the sphere. This problem can be formulated as follows: find all the
coordinate systems on the unit sphere in R3 such that the metric tensor is diagonal.

Let x1 and x2 be some coordinates on the sphere, and let the metric be given by the formula

ds2 = p2(x1, x2) dx2
1 + q2(x1, x2) dx2

2.

The curvature tensor on the sphere has the form

Rij,lm = gilgjm − gimgjl. (6.1)

We can introduce α and β as

α =
1
q

∂p

∂x2
, β =

1
p

∂q

∂x2
. (6.2)

Equation (6.1) becomes

∂α

∂x2
+

∂β

∂x1
+ pq = 0. (6.3)

Equations (6.2) and (6.3) are equivalent to “reduced” GCE (2.5). This equivalence leads to the following
conclusions:

1. Each surface (at least locally) is Combescure equivalent to the sphere.

2. Each solution of “reduced” GCE (2.5) generates an orthogonal coordinate system on the sphere.

3. Each orthogonal coordinate system on the sphere generates a class of Combescure-equivalent
surfaces given by the solution of “complete” GCE (2.5)–(2.7).

It is interesting to consider what kind of coordinate system corresponds to surfaces of type zero.
Performing the change of variables

y1 = c1(x), y2 = c2(x)

in formulas (5.2) and (5.3), we obtain

A = B = − 2
1 + y2

1 + y2
2

, α = − 2y2
1 + y2

1 + y2
2

, β = − 2y1
1 + y2

1 + y2
2

. (6.4)
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Assuming that p = A and q = B, we can see that (6.4) corresponds to the coordinate system given by the
stereographic projection of the sphere in the standard spherical coordinates.

The general expressions for p and q are

p = a(y1)−
2

1 + y2
1 + y2

2

[∫ y1

ξ1

y1a(y1) dy1 +
∫ y2

ξ2

y2b(y2) dy2

]
,

q = b(y2)−
2

1 + y2
1 + y2

2

[∫ y1

ξ1

y1a(y1) dy1 +
∫ y2

ξ2

y2b(y2) dy2

]
.

We can see that the classification of surfaces given by the classification of solutions of the GCE is quite
different from all traditional classifications of the surfaces. Of course, the problem of classifying orthogonal
coordinates on the sphere can be solved by elementary methods. We can construct such coordinates on the
plane and perform the stereographic projection. But this way of constructing of orthogonal coordinates
does not lead to a further construction of the classes of Combescure-equivalent surfaces.
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