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It was demonstrated by direct numerical simulation that, in the case of weakly nonlinear capillary waves, one
can get resonant waves interaction on the discrete grid when resonant conditions are never fulfilled exactly. The
waves’s decay pattern was obtained. The influence of the mismatch of resonant condition was studied as well.
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Nonlinear waves on the surface of a fluid are one of
the most well known and complex phenomena in
nature. Mature ocean waves and ripples on the surface
of the tea in a pot, for example, can be described by
very similar equations. Both these phenomena are sub-
stantially nonlinear, but the wave amplitude is usually
significantly less than the wavelength. Under this con-
dition, waves are weakly nonlinear.

To describe processes of this kind, weak turbulence
theory was proposed [1, 2]. It results in Kolmogorov
spectra as an exact solution of the Hasselman–
Zakharov kinetic equation [3]. Many experimental
results are in great accordance with this theory. In the
case of gravity surface waves, the first confirmation was
obtained by Toba [4], and the most recent data by
Hwang [5] were obtained as a result of lidar scanning
of the ocean surface. Recent experiments with capillary
waves on the surface of liquid hydrogen [6, 7] are also
in good agreement with this theory. On the other hand,
some numerical calculations have been made to check
the validity of the weak turbulent theory [8–10].

In this letter, we study one of the keystones of weak
turbulent theory, the resonant interaction of weakly
nonlinear waves. The question under study is the fol-
lowing:

How does a discrete grid for wavenumbers in
numerical simulations affect the resonant interaction?

Can a nonlinear frequency shift broad resonant
manifold to make discreteness unimportant?

We study this problem for nonlinear capillary waves
on the surface of an infinitely depth incompressible
ideal fluid. Direct numerical simulation can make the
situation clear.

Let us consider a nonrotating flow of an ideal
incompressible fluid of infinite depth. For the sake of
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simplicity, let us suppose fluid density ρ = 1. The veloc-
ity potential φ satisfies the Laplace equation

(1)

in the fluid region bounded by

(2)

with the boundary conditions for the velocity potential

(3)

on z = η and

(4)

on z  –∞. Here η = η(x, y, t) is the surface displace-
ment. In the case of capillary waves, the Hamiltonian
has the form

(5)

(6)

where σ is the surface tension coefficient. In [11], it was
shown that this system is Hamiltonian. The Hamilto-
nian variables are the displacement of the surface η(x,
y, t) and velocity potential on the surface of the fluid
ψ(x, y; t) = φ(x, y, η(x, y; t); t).The Hamiltonian equa-
tions are 

(7)
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Using the weak nonlinearity assumption [3], one can
expand the Hamiltonian in the powers of surface dis-
placement:

(8)

The third order is enough for three-wave interactions.

Here,  is the linear operator corresponding to multi-
plication of Fourier harmonics by the modulus of the
wavenumber k. Using (7), one can get the following
system of dynamical equations:

(9)

The properties of the  operator suggest exploiting the
equations in Fourier space for Fourier components of η
and ψ,

Let us introduce the canonical variables ak as shown
below:

(10)
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With these variables, the Hamiltonian (8) acquires the
form
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The dynamic equations in these variables can be easily
obtained by variation of Hamiltonian:

(14)

Each term in this equation has its own clear physical
meaning. The linear term gives a periodic evolution of
the initial wave. The first nonlinear term describes a
merging of two waves k1 and k2 in k. The second
describes decay of the wave k0 to the waves k and k2.
And the last term corresponds to the second harmonic
generation process. It is useful to eliminate the linear
term with the substitution

(15)

In these variables, the dynamical equations take the
form

(16)

where

(17)

Here we do not consider the harmonic generation term.
The remaining terms give us the following conditions
of resonance:

(18)

All this theory is well known in the literature [3].

Now let us turn to the discrete grid. Also, from this
point we assume periodic boundary conditions in x and
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y with lengths Lx and Ly. One can easily obtain equa-
tions similar to (16):

(19)

where  is the Kronecker delta—the discrete ana-
logue of the Dirac delta function.

Consider the decay of a monochromatic capillary
wave  on two waves

(20)

Let ,  be small (  @ max( , ) at t =
0). In this case, the equations can be linearized. The
solution of linearized (20) has the form (  ~ const)

(21)

where

(22)

In the case of a continuous media, resonant condi-
tions (18) can be satisfied exactly. But on the grid, there

is always a frequency mismatch  ≠ 0 although if
the amplitude of the initial wave is high enough there
are resonances even on a discrete grid. But the width of
this resonance is very important.

System of equations (9) can be solved numerically.
This system is nonlocal in coordinate space due to the

presence of the  operator. The origin of this operator
gives us a hint to solve (9) in wavenumber space
(K space). In this case, we can effectively use the fast
Fourier transform algorithm. Omitting the details of
this numerical scheme, we reproduce only the final
results of calculations.

We have solved system of equations (9) numerically
in the dimensionless periodic domain 2π × 2π (the
wavenumbers kx and ky are integer numbers in this
case). Correspondingly, all other variables also become
dimensionless. It is convenient to use the surface
tension σ = 1. The size of the grid was chosen as

Ȧk
i
2
--- 2π

LxLy

----------- Mkk2

k Ak1
Ak2

e
iΩk1k2

k
t

∆ k1 k2+( ) k–,

k1k2

∑–=

–
i2π
LxLy

----------- Mkk2

k0 Ak2
* Ak0

e
–iΩkk2

k0
t

∆ k k2+( ) k0–, ,
k2k0

∑
∆k1 k2,

Ak0
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512 × 512 points. We have also included damping for
waves with large wavenumbers. In K space, the damp-
ing terms for ηk and ψk, respectively, were the follow-
ing: γkηk and γkψk, where γk was of the form

(23)

where γ0 is some constant.
As an initial condition we used one monochromatic

wave of sufficiently large amplitude with wavenumbers
k0 (k0x = 0, k0y = 68). Along with that, there was a small
random noise in all other harmonics.

Resonant manifold (18) for decaying waves

(24)

is given in Fig. 1. Since the wavenumbers are integers,
the resonant curve never coincides with grid points
exactly. A detailed picture is given in Fig. 2. It is clear
that some points are closer to the resonant manifold
than others. This difference might be important in
numerals.

In the beginning, one can observe exponential
growth of resonant harmonics in accordance with (21)
and (22). This is shown in Figs. 3 and 4. Here one can
clearly see that some harmonics are in resonance and
others are not.

Then almost all harmonics in the resonant manifold
become involved in the decay process (Fig. 5). Later,
the harmonics that are the closest to the resonant mani-
fold (compare with Fig. 2) reach the maximum level,
while the secondary decay process develops. Waves

γk 0, k
1
2
--- kmax ,<=

γk γ0 k
1
2
---kmax– 

 
2

, k–
1
2
--- kmax ,≥=

k0
0

k0 
 
 

,=

k1
kx–

k0 ky– 
 
 

, k2
kx

k0 ky+ 
 
 

= =

Fig. 1. The resonant manifold for k0 = 68.
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Fig. 2. Different mismatch is seen at different grid points.

Fig. 4. Resonant harmonics starting to grow. At the base-
ment there is a contour line for level |ak|2 = 10–22. Time t = 1.4.

Fig. 6. The contour lines for |ak |2 = 10–21. Secondary decays
are clearly seen. Time t = 14.
Fig. 3. Evolution of various harmonics for decaying wave
k0 = (0, 68).

Fig. 5. Secondary decays start. At the basement there is a
contour line for level |ak |2 = 10–22. Time t = 11.

Fig. 7. Wavenumber spectrum at time t = 57. 
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amplitudes become significantly different. The largest
amplitudes are for those waves with the maximum
growth rate. One can see the regular structure generated
by the k0 wave in Fig. 6. After a while, the whole k
space is filled by decaying waves, as shown in Fig. 7.

Direct numerical simulation has demonstrated that
the finite width of the resonance makes the discrete grid
very similar to a continuous one. Of course, this is true
only if the amplitude of the wave is large enough, so
that according to (22)

(25)

As regards numerical simulation of the turbulence,
namely, weak turbulence, condition (25) is very impor-
tant.  has to be treated as the level of turbulence.
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