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The theory of wave turbulence is developed for infi-
nitely large systems. In weakly nonlinear dispersive
media, the turbulence is described by a kinetic equation
for squared wave amplitudes (weak turbulence). How-
ever, all real systems are finite. Computer simulation of
wave turbulence can also be performed only in finite
systems (typically, in a box with periodic boundary
conditions). It is important to know how strong dis-
creteness of a system impacts the physical picture of
wave turbulence.

Let a turbulence be realized in a 

 

Q

 

-dimensional
cube with side 

 

L

 

. Then, wave vectors form a cubic lat-
tice with the lattice constant 

 

∆

 

k

 

 = 2

 

π

 

/

 

L

 

. Suppose that
four-wave resonant conditions are dominating. Exact
resonances satisfy the equations

(1)

(2)

In an infinite medium, Eqs. (1) and (2) define hypersur-
face dimension 3

 

Q

 

 – 1 in 4

 

Q

 

-dimensional space 

 

k
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k
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,

 

k
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3

 

. In a finite system, (1) and (2) are Diophantine
equations, which might have or have no exact solutions.
The Diophantine equations for four-wave resonant pro-
cesses are not studied yet. For three-wave resonant pro-
cesses, they are studied for Rossby waves on the 

 

β

 

plane [1].
However, not only exact resonances are important.

Individual harmonics in the wave ensemble fluctuate
with inverse time 

 

Γ

 

k

 

, dependent on their wavenumbers.
Suppose that all  for waves composing a resonant

quartet are of the same order of magnitude  ~ 

 

Γ

 

.
Then, resonant equation (2) has to be satisfied up to
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, and the resonant surface is blurred into
the layer of thickness 
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k
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. This thickness
should be compared with the lattice constant 

 

∆

 

k

 

. Three
different cases are possible:

(1) 

 

δ

 

k

 

 

 

�

 

 

 

∆

 

k

 

. In this case, the resonant layer is thick
enough to hold many approximate resonant quartets on
a unit of resonant surface square. These resonances are
dense, and the theory is close to the classical weak tur-
bulent theory in infinite media. The weak turbulent the-
ory offers recipes for calculation of 

 

Γ

 

k

 

. The weak-tur-
bulent 

 

Γ

 

k

 

 are the smallest among all the given by theo-
retical models. To be sure that the case is realized, one
has to use weak-turbulent formulas for 

 

Γ

 

k

 

.

(2) 

 

δ

 

k

 

 < 

 

∆

 

k

 

. This is the opposite case. Resonances
are rarefied, and the system consists of a discrete set of
weakly interacting oscillators. A typical regime in this
situation is the “frozen turbulence” [2–4], which is
actually a system of KAM tori accomplished with a
weak Arnold’s diffusion.

(3) The intermediate case 
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k
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k

 

 can be called
“mesoscopic turbulence.” The density of approximate
resonances is high enough to provide the energy trans-
port along the spectrum but low enough to guarantee
“equal rights” for all the harmonics, which is a neces-
sary condition for the applicability of the weak turbu-
lent theory.

In this article, we report results of our numerical
experiments on modeling of turbulence of gravity
waves on the surface of deep ideal incompressible fluid.
The motivation for this work was numerical justifica-
tion of the Hasselmann kinetic equation. The result is
discovery of the mesoscopic turbulence. The fluid
motion is potential and described by the shape of sur-
face 

 

η

 

(

 

r

 

, 

 

t

 

) and the velocity potential 

 

ψ

 

(

 

r

 

, 

 

t

 

) evaluated

 

Mesoscopic Wave Turbulence

 

V. E. Zakharov

 

1, 2, 3

 

, A. O. Korotkevich

 

1

 

, A. N. Pushkarev

 

1, 3

 

, and A. I. Dyachenko

 

1

 

1 

 

Landau Institute for Theoretical Physics, Russian Academy of Sciences, Moscow, 119334 Russia

 

2 

 

Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA

 

3 

 

Waves and Solitons LLC, Gilbert, AZ 85233, USA
e-mail: kao@landau.ac.ru

 

Received August 17, 2005

 

We report results of simulation of wave turbulence. Both inverse and direct cascades are observed. The defini-
tion of “mesoscopic turbulence” is given. This is a regime when the number of modes in a system involved in
turbulence is high enough to qualitatively simulate most of the processes but significantly smaller than the
threshold, which gives us quantitative agreement with the statistical description, such as the kinetic equation.
Such a regime takes place in numerical simulation, in essentially finite systems, etc. 

 

© 2005 Pleiades Publish-
ing, Inc.

 

PACS numbers: 02.60.Cb, 47.11.+j, 47.27.Eq, 47.35.+i



 

488

 

JETP LETTERS

 

      

 

Vol. 82

 

      

 

No. 8

 

      

 

2005

 

ZAKHAROV 

 

et al

 

.

 

on the surface. These variables satisfy the canonical
equations [5]

(3)

Hamiltonian 

 

H

 

 is represented by the first three terms in
expansion of powers of nonlinearity 

 

∇η

 

:

(4)

Thereafter, we put the gravity acceleration equal to 

 

g

 

 =

1. Here,  is a linear integral operator (  = ),
such that, in 

 

k

 

 space, it corresponds to multiplication of

Fourier harmonics 

 

ψ

 

k

 

 = 

 

e

 

i

 

kr

 

dxdy

 

 by

. For gravity waves, this reduced Hamiltonian
describes four-wave interaction. Then, dynamical equa-
tions (3) acquire the form

(5)

Let us introduce the canonical variables 

 

a

 

k

 

 as shown
below:

(6)

where 

 

ω

 

k

 

 = . In these so-called normal variables,
equations (3) take the form

(7)

The physical meaning of these variables is quite clear:
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 is an action spectral density, or 
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k

 

|

 

2
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2

 

 is a number
of particles with the particular wavenumber 

 

k

 

.
We solved equations (5) numerically in a box 2
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×
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π

 

 using a spectral code on a rectangular grid with dou-
ble periodic boundary conditions. The implicit energy-
preserving scheme is similar to that used in [6–8] was
implemented. We studied the evolution of freely propa-
gating waves (swell) in the absence of wind in the spirit
of paper [9]. Different grids (512 
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256 × 2048) with different initial data were tried. In all
the cases, we observed mesoscopic wave turbulence.
The most spectacular results are achieved on the grid
256 × 2048.

As initial conditions, we used a Gauss-shaped distri-
bution on a long axis of the wavenumbers plane

(8)

The initial phases of all the harmonics were random.
The average steepness is µ = 〈|∇η|〉  � 0.115. To stabi-
lize the computations in the high-frequency region
[10], we introduced artificial damping, mimicking vis-
cosity at small scales, and an artificial smoothing term
to the equation for the surface evolution

(9)

With the time step τ, these calculations took about two
months on an AMD Athlon 64 3500+ computer. During
this time, we reached 1500 periods of the wave in the
initial spectral maximum.

The process of waves evolution can be separated in
two steps. On the first stage (about fifty initial wave
periods), we observe fast loss of energy and wave
action. This effect can be explained by formation of
“slave” harmonics taking their part of motion con-
stants. Initially, the smooth spectrum becomes very
rough. The spectral maximum demonstrates a fast
downshift.

In the second stage, the downshift continues but all
the processes slow down. Plots of the energy, wave
action, mean frequency, and mean steepness are pre-
sented in Figs. 1–4.

One can see a clear tendency to downshift of the
spectral maximum corresponding to inverse cascade;
however, this process is more slow than predicted by
weak turbulence theory. The self-similar downshift in
this theory gives [11, 12]

ω ~ t–1/11.

In our experiments,

ω ~ t–α,
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where α decreases with time from 1/16 to 1/20. Evolu-

tion of angle-averaged spectra Nk = kdkdϑ  is

presented in Fig. 5. Their tails (Fig. 6) are Zakharov–
Filonenko weak-turbulent Kolmogorov spectra [13]
corresponding to direct cascade

(10)

This result is robust; it was observed in similar calcula-
tions [7–9].

ak
2

0

2π∫

ak
2〈 〉 1/k4.∼

Two-dimensional spectra in the initial and in the last
moments of the calculations are presented in Fig. 7.
One can see formation of small-intensity “jets” posed
on the Phillips resonant curve [14]

(11)

The spectra are very rough and sharp. The slice of
spectra along the line (0; ky) at the end of the computa-
tions is presented in Fig. 8. Evolution of squared wave

2ω k0( ) ω k0 k+( ) ω k0 k–( ).+=

Fig. 1. Total energy of the system. Fig. 2. Total action of the system.

Fig. 3. Frequency of the spectral maximum. Fig. 4. Mean steepness of fluid surface.

Fig. 5. Averaged with angle spectra. Downshift of spectral
maximum is clearly observable.

Fig. 6. Tails of angle-averaged spectrum in double logarith-
mic scale. T = 648 = 1263T0. Powerlike tail and front slope
are close to predicted by weak turbulent theory.
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amplitudes for a cluster of neighboring harmonics is
presented in Fig. 9.

Results presented in Fig. 9 show that what we mod-
eled is mesoscopic turbulence. Indeed, the characteris-
tic time of the amplitude evolution in the figure is a hun-
dred or more of their periods; thus, Γ/ωk is comparable
with ∆k/k. In the same figure, we can see the most
remarkable features of such turbulence.

The weak turbulence in the first approximation
obeys the Gaussian statistics. The neighboring harmon-
ics are uncorrelated and statistically independent
(〈ak 〉  = 0). However, their averaged characteristics
are close to each other. This is a “democratic society.”
On the contrary, mesoscopic turbulence is an “oligar-
chic society.” The Phillips curve (11) has a genus of 2.
After Faltings’ proof [15] of Mordell’s hypothesis [16],

ak 1+*

we know that the number of solutions of the Diophan-
tine equation

(12)

is at most finite and most probably, except for a few
trivial solutions, equals zero. The same statement is
very plausible for more general resonances. Approxi-
mate integer solutions in the case

|∆| < �

do exist, but their number fast tends to zero at �  0.
Classification of these solutions is a hard problem of
number theory. These solutions compose the “elite
society” of the harmonics, which play the most active
role in the mesoscopic turbulence. Almost all the
inverse cascade of wave action is realized within mem-

∆ 2 n2 m2+( )1/4
n x+( )2 m y+( )2+[ ] 1/4

–=

– n x–( )2 m y–( )2+[ ] 1/4
0=

Fig. 7. (a) Level lines of logarithm of initial spectra distribution. T = 0. (b) Level lines of logarithm of spectra distribution at T =
648 = 1263T0.

Fig. 8. Slice of spectrum on axis (0; ky) at T = 648 = 1263T0.
Fig. 9. Evolution of some cluster of harmonics and a distant
large harmonic.
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bers of this “privileged club.” The distribution of the
harmonics exceeding the reference level |ak |2 = 10–11 at
the moment t = 1200T0 is presented in Fig. 10. The
number of such harmonics is not more than 600, while
the total number of harmonics involved into the turbu-
lence is of the order of 104.

Note that a situation with direct cascade is different.
As far as the coupling coefficient for gravity waves
grow as fast as k3 with the wave number, for short
waves, Γk/ωk easily exceeds ∆k/k, and the conditions of
the applicability of the weak turbulent theory for short
waves are satisfied.

Note also that the mesoscopic turbulence is not a
numerical artifact. Simple estimations show that, for
gravity waves, it is realized in some conditions in
basins of a moderate size, like small lakes as well as in
experimental wave tanks. It is also common for long
internal waves in the ocean and for inertial gravity
waves in the atmosphere, for plasma waves in toka-
maks, etc.
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