
Turbulence in Integrable Systems

By Vladimir E. Zakharov

Nonlinear wave systems integrable by Inverse Scattering Method (ISM) could
demonstrate a complex behavior that demands the statistical description. The
theory of this description composes a new chapter in the theory of wave
turbulence—Turbulence in Integrable Systems. All systems integrable by ISM
are separated in two classes: strongly and weakly integrable. Systems of both
classes have infinite array of motion constants but only for strongly integrable
systems this array is complete. As a result, the scattering is trivial in these
systems. It means that all the collision terms in kinetic equations of arbitrary
high order are identically zero. The examples of strongly integrable systems
are: KdV, NLSE, and KP-2 equations. In strongly integrable systems one can
choose as initial data a statistically homogenous random field with a given
pair correlation function such that this function is invariant in time. The
spatial spectrum of an equilibrium state can be chosen in an arbitrary way. In
weakly integrable systems (KP-1, three-wave system, etc) the kinetic equations
are nontrivial. They have infinite but incomplete set of motion constants.
These kinetic equations have infinite amount of Rayley–Jeans-type stationary
solutions, though their general stationary solutions are not explored yet.

1. Introduction

In this talk, we will discuss statistical properties of integrable wave systems.
To make the formulation of the problem clear, we start with the focusing
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Nonlinear Schrodinger equations:

i �t + �xx + |�|2 � = 0, ∞ < x < ∞. (1)

Equation (1) is well studied in two cases:
1. |�| → 0, x → ∞.

In this case the classical Inverse Scattering Method is applicable.
2. � is a quasiperiodic function and the corresponding Lax operator L has

only finite number of lacunaes. In this case the solution is formulated in
terms of Riemann theta-functions on a certain hyperelliptic algebraic curve.

The connection between these two approaches is not properly traced so far.
Let us go outside these two frameworks and assume that in the initial moment
of time t = 0, function � = �0(x) is a representative of a certain spatially
homogeneous random field such that the correlation function〈

�0(x) �∗
0 (x − ξ )

〉 = F(ξ ) (2)

do exist. It means that we define a certain probabilistic measure on the class of
bounded smooth complex functions �(x). If such measure is fixed, it does not
depend on time. For a generic choice of measure, function F(ξ ) will change in
time, “adjusting” itself to a given measure. However, we can try to choose the
measure by such a special way, that F(ξ ) is invariant in time, and for any value
of t get

〈�(x, t) �∗(x − ξ, t)〉 = F(ξ ),
d F

dt
= 0 (3)

Such measure is called invariant. Can we do this and how?
Let us reformulate the question in terms of Fourier transforms. Let

�(x, t) =
∫ ∞

−∞
�(k, t) ei k x dk. (4)

For any homogeneous random field

〈�(k, t) �∗(k ′, t)〉 = N (k, t) δ(k − k ′). (5)

In the initial moment of time〈
�0(k) �∗

0 (k ′)
〉 = N0(k) δ(k − k ′). (6)

Let us note that

F(ξ ) =
∫ ∞

−∞
N (k) ei k ξ dk.

Brackets in (3)–(4) mean averaging over the measure. Can we choose it such
that N (k, t) = N 0(k)? To approach to the solution of this problem, first we
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consider the linearized Schrodinger equation

i �t + �xx = 0. (7)

In this case, existence of invariant measure for any F(ξ ) is an obvious fact.
This measure is Gaussian. It means that all higher correlation functions can be
expressed through a special density N(k). For any homogeneous random field

〈�∗(k) �∗(k1) �(k2) �(k3)〉
= Nk Nk1 (δk−k2 δk1−k3 + δk−k3 δk1−k2 ) + Ikk1k2k3 δk+k1−k2−k3 . (8)

Here Ikk1k2k3 is a cumulant. For a Gaussian field the cumulant is zero. It is
clear that for Nonlinear Schrodinger equation the invariant measure must be
non-Gaussian. Can we construct the cumulant in the fourth-order correlation
function (7) and all higher-order cumulants as series in power of N k? The
answer is positive. In the first order of nonlinearity

Ikk1k2k3 = 2
R(kk1k2k3)

�(kk1k2k3)

Rkk1k2k3 = Nk1 Nk2 Nk3 + Nk Nk2 Nk3 − Nk Nk1 Nk2 − Nk Nk1 Nk3

�kk1k2k3 = k2 + k2
1 − k2

2 − k2
3 . (9)

The denominator in (9) is zero if

k = k2, k1 = k3 or k = k3, k1 = k2. (10)

However, the numerator on the manifold is zero also. It is announced that this
process can be confirmed to infinity. All cumulants could be found: all of them
are finite and real as (9).

Certainly, this is a consequence of integrability of the NSLE. The same
statement is correct for all equations of focusing and defocusing NSLE
hierarchy, as well as for equations that belong to the KdV hierarchy. However,
for three-wave resonant system this nice and elegant statement fails! In a sense
it behaves like a non-integrable system.

In non-integrable weakly nonlinear systems, the spectral function N (k, t)
depends on time obeying the kinetic equation

d N

dt
= Snl (11)

and all invariant measures are generated by stationary spectra, which are
solutions of equation

Snl = 0. (12)

The same might happen with an integrable system. As a result, the integrable
systems are separated in two essentially different classes: strongly and weakly
integrable.
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The strongly integrable systems are similar to NLSE. They have infinite
amount of invariant measures preserving all arbitrary spectral functions. All
collision terms in the wave kinetic equations are cancelled in any order.
Moreover, they have one more fundamental property (see [1–6]).

Let us study Equation (1) in the class of fast decaying functions and tend
time to ±∞. The Fourier transform will tend to some limiting values

�(k) → �± (k).

It is easy to prove that

|�+ (k)|2 = |�− (k)|2. (13)

A similar statement is correct for all strongly integrable systems.
All other so called “integrable” systems are weakly integrable. The simplest

example is a three-wave resonant system. In this case scattering is nontrivial and
asymptotic squared amplitudes of the fields do not coincide. The three-wave
kinetic equation is nontrivial. The system still has infinite amount of invariant
measures, but they are parameterized by functions of only one variable.

The difference between strongly and weakly integrable systems is pretty
delicate. For instance, KP-2 equation is a strongly integrable system, while KP-1
equation is only weakly integrable [3–5]. Thereafter we demonstrate difference
between weakly and strongly integrable systems on some basic examples.

2. Statistical description of weakly nonlinear systems

We will discuss the weakly nonlinear wave systems homogenous in space.
There is a standard way to develop statistical description of such systems that
leads to kinetic equation for waves (see, for instance [7]). First, we start from
the following question: what happens with kinetic equation, if the primitive
dynamic equations are in some sense “integrable”? Let us study the following
dynamic equation:

∂�j (k)

∂t
= i

δH

δ�∗
j (k)

j = 1, . . . , N . (14)

Here H is a Hamiltonian and k belongs to K-space, which is different for
different systems. The dimension of this space d = 1, 2. We can consider
several examples.

1.

H = H2 + H4 N = 1

H2 =
∫

ω(k)|�k |2dk

H4 = 1

2

∫
Tkk1k2k3�

∗
k �∗

k1
�k2�k3 δk+k1+k2+k3dk dk1 dk2 dk3.

(15)
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In this case Equation (14) reads:

∂�

∂t
= i ω(k) �k + i

∫
Tk k1 k2 k3 �∗

k1
�k2�k3 δk+k1−k2−k3 dk dk1 dk2 dk3. (16)

Term Tk k1 k2 k3 satisfies symmetry conditions

Tkk1, k2k3 = Tk1k, k2k3 = Tkk1, k3k2 = T ∗
k2k3, kk1

(17)

and k is either the whole real axis −∞ < k < ∞ or is k = (p, q) that
represents a real plane

−∞ < p < ∞ −∞ < q < ∞.

For d = 1 Equation (14) is integrable, if

H = H (1) + aH (2).

Here a is an arbitrary constant, and

ω
(1)
k = k2 ω

(2)
k = k3

T (1)
k k1 k2 k3

= α

T (2)
k k1 k2 k3

= 3α

4
(k + k1 + k2 + k3).

Thus:

H (1) =
∫

k2|�k |2dk + α

2

∫
�∗

k �∗
k1

�k2 �k3 δk+k1−k2−k3 dk dk1 dk2 dk3

H (2) =
∫

k3|�k |2dk + 3α

4

∫
(k + k1 + k2 + k3) �∗

k �∗
k1

�k2 �k3

× δk+k1−k2−k3 dk dk1 dk2 dk3.

(18)

For Equation (14):

ω(k) = k2 + a k3 (19)

T (k k1 k2 k3) = α

[
1 + 3a

4
(k + k1 + k2 + k3)

]
. (20)

After Fourier transformation, it takes form:

∂�

∂t
= −i �xx + a �xxx − i α|�|2� + 3 a α|�|2 �x . (21)

If a = 0 and α = −1, this is a focusing Nonlinear Schrodinger equations. If
a = 0 and α = 1, this is a defocusing Nonlinear Schrodinger equations. For
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d = 2 Equation (16) is integrable if k = (p, q), ω(k) = p2 − q2, and

T (k k1 k2 k3) = α

4

{
(p1 − p2)2 − (q1 − q2)2

(p1 − p2)2 + (q1 − q2)2
+ (p1 − p3)2 − (q1 − q3)2

(p1 − p3)2 + (q1 − q3)2

}
.

(22)
The coupling coefficient T is not yet properly symmetrized. Actually, it can be
replaced by

Tk k1 k2 k3 → 1

2
[T (kk1, k2k3) + T (k1k, k2, k3)] .

After the Fourier transformation, Equation (16) becomes the Davey-Stewarson
equation

∂�

∂t
= î

(
− ∂2

∂x2
+ ∂2

∂y2

)
� + α U �

(
∂2

∂x2
+ ∂2

∂y2

)
U =

(
∂2

∂x2
− ∂2

∂y2

)
|�|2.

(23)

Here α is an arbitrary constant. One can put α = ±1.
2.

H = H2 + H3 N = 1

H2 =
∫

ω(k) |�k |2 dk

H3 =
∫

Vkk1k3

(
�∗

k �k1�k2 + �k�
∗
k1
�∗

k2

)
δ(k − k1 − k2) dk dk1 dk2.

(24)

Equation (14) now reads:

∂�k

∂t
= i ωk �k + i

∫ {
Vkk1k2�k �k2 δk−k1+k2

+ 2Vk1k, k2 �k1 �∗
k2

δk−k1+k2

}
dk1 dk2.

(25)

Integrable versions of Equation (26) are well known in d = 1. In this case k =
p, 0 < p < ∞ and

Vkk1k2 = ( pp1 p2)1/2. (26)

For ω(k) one can choose:

ω(p) = p3 KdV equation

ω(p) = p2 Benjamen–Ono equation

ω(p) = p2 coth pa Intermediate wave equation.

If d = 2, the K-space should be half-plane: p > 0, −∞ < q < ∞. Again,
we have to assume that Vkk1k2 is given by Equation (27). As for ω(k), it can be
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chosen by two essentially different ways:

1. ω(p, q) = p3 + 3q2

p
. (27)

2. ω(p, q) = p3 − 3q2

p
. (28)

By transformation

U =
∫ ∞

0
dp

∫ ∞

−∞
dq

√
p

(
�p,q + �∗

−p,−q

)
ei(px+qy)dp dq

equation (26) can be derived to the KP-equation:

3.
∂

∂x

(
∂u

∂t
+ ∂3u

∂x3
+ u

∂u

∂x

)
= α

∂2u

∂y2
(α = ±1). (29)

Let N = 3 and Hamiltonian H is:

H = H2 + H3

H2 =
∑ ∫

ωi (k) |�i (k)|2 dk

H3 =
∫

Vkk1k2

[
�∗

1 (k1) �(k2) �(k3)

+ �1(k1) �∗(k2) �∗(k3)
]
δk1−k2−k3 dk1 dk2 dk3.

(30)

Equation (14) turns now to:

∂�1

∂t
= i ω1(k)�1 + i

∫
Vkk1k2 �(k1) �(k2) δk−k1−k2 dk1 dk2

∂�2

∂t
= i ω2(k)�2 + i

∫
Vk1,k,k2 �1(k1) �∗

3 (k2) δk+k1−k2 dk1 dk2

∂�3

∂t
= i ω3(k)�3 + i

∫
Vk1,k,k2 �1(k1) �∗

2 (k2) δk−k1+k2 dk1 dk2.

(31)

Equations (31) are known as three-wave equations. They are integrable in
dimensions d = 1, 2 if Vkk1k2 = V = const and ωi (k) are linear functions.
Without loosing of generality, one can assume:

ω1(k) = 0 ω2(k) = ( �A �k) ω3(k) = ( �B �k)

where �A, �B are two-dimensional vectors. If they are not collinear, one can
make the change of variables and put

ω2(u) = p ω3(u) = q.
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If A, B are collinear, properties of three-wave system depend on the sign of
(AB). If (AB) = −1, we can put ω2 = p, ω3 = −p. If (AB) = 1, we can put
ω2 = ap, ω3 = p/a, a �= 1. The case a = 1 is degenerative, and the three-wave
system can be solved without use of Inverse Scattering Transform.

3. Derivation of kinetic equation

Equation (30) is the KP-1 equation if α = 1, and is KP-2 equation if α = −1.
Since this moment we assume that u(x , y, t) at any given t is a representative
of homogeneous random field and 〈u2〉 = I 1(t) �= 0. It means that �(p, q) is a
generalized function, such that

〈�(k) �∗(k ′)〉 = N (k) δk−k ′ (32)

〈�(k1) �∗(k2) �∗(k3)〉 = I (k1, k2, k3) δk1−k2−k3 . (33)

As for the fourth-order correlations, we will assume

〈�(k) �∗(k1) �∗(k2) �∗(k3)〉 = 0

〈�(k) �(k1) �∗(k2) �∗(k3)〉 = N (k) N (k1)
[
δk−k3 δk1−k3 + δk−k2 δk1−k3

]
.

(34)
Truncation (34) makes possible to construct a closed system of equations for
Nk, Ikk1k2 . They are

∂ Nk

∂t
= 2

∫
Vkk1k2 I m Ik,k1k2 δk−k1−k2 dk1 dk2

− 4
∫

Vk1,k,k2 I m Ik1,k,k2 δk−k1+k2 dk1 dk2 (35)

∂

∂t
Ik k1 k2 = i(ωk − ωk1 − ωk2 ) Ik k1 k2

+ 2 i Vk k1 k2 (Nk1 Nk2 − Nk Nk1 − Nk Nk2 ).
(36)

Equation (36) is linear and inhomogeneous. If we assume that

Ikk1k2

∣∣∣
t=0

= I 0
kk1k2

N (k)
∣∣
t=0

= N0(k),

then

Ikk1k2 = 2 i Vkk1k2

∫ t

0
ei �kk1k2 (τ−t) Rkk1k2 (τ ) dτ + I 0

kk1k2

Rkk1k2 = Nk1 Nk2 − Nk Nk1 − Nk Nk2

�kk1k2 = ωk − ωk1 − ωk2 (37)
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Let t → ∞. Then everything depends on the following fundamental question:
can we find a real solution of equations?

�kk1k2 = ωk − ωk1 − ωk2 = 0, �k = �k1 + �k2 (38)

One can see that for KP-2, where ωk = p3 − 3 q2/p, this is impossible. Then,
if t → ∞, N k tends to some asymptotic value

Nk → N∞(k),

where

I ∞
kk1k2

→ 2π
2 Vkk1k2

[N∞(k1) N∞(k2) − N∞(k) N∞(k1) − N∞(k) N∞(k2)]

ω(k) − ω(k1) − ω(k2)
(39)

Notice, that I ∞
kk1k2

is real. As for N∞(k), we can make a conjecture that by a
proper choice of N 0(k), function N∞(k) can become an arbitrary positive
function on k.

4. Kinetic equation for KP-1 equation

The small amplitude waves in KP-1 equation are described by the standard
3-wave kinetic equation:

∂ Nk

∂t
= 4π

{ ∫
|Vkk1k2 |2 δk−k1−k2 δωk−ωk1 −ωk2

(Nk1 Nk2 − Nk Nk1 − Nk Nk2 )dk1 dk2

+ 2
∫

|Vk1, k, k2 |2 δk−k1+k2 δωk−ωk1 +ωk2

× (
Nk−1 Nk2 − Nk Nk2 + Nk Nk1

)
dk1dk2

}
= Snl. (40)

However, this equation has some peculiar features that makes it completely
different from similar equations in genetic nonintegrable systems. To trace
these peculiarities, we should notice that the dispersion relation

ω(p, q) = p3 + 3q2

p

can be presented in the following parametric form [1, 3–6]:

p = ξ − η η < ξ

q = ξ 2 − η2

ω = 4(ξ 3 − η3).

(41)



228 V. E. Zakharov

In variables ξ , η the resonant conditions

k = k1 + k2

ωk = ωk1 + ωk2

have the following form:

ξ1 − η1 + ξ2 − η2 = ξ − η

ξ 2
1 − η2

1 + ξ 2
2 − η2

2 = ξ 2 − η2

ξ 3
1 − η3

1 + ξ 3
2 − η3

2 = ξ 3 − η3.

(42)

Equations (42) have nontrivial solutions:

ξ1 = η2 ξ2 = ξ η1 = η

ξ2 = η1 ξ1 = η η2 = η.
(43)

In these variables Equation (40) reads:

∂

∂t
N (ξ, η) = Snl

= π

3

{ ∫ ξ

η

(ξ − λ)(λ − η)[N (ξ, λ) N (λ, η) − N (ξ, η) N (ξ, λ)

− N (ξ, η)N (λ, η)]dλ +
∫ η

−∞
(η − λ)(ξ − λ)[N (ξ, λ) N (η, λ)

+ N (ξ, η) N (ξ, λ) − N (ξ, η) N (λ, η)]

+
∫ ∞

ξ

(λ−η)(λ − ξ )[N (λ, ξ ) N (λ, η)+N (ξ, η) N (λ, η)

− N (ξ, η) N (λ, ξ )]dλ

}
. (44)

Equation (44) has infinite number of motion constants I n

dIn

dt
= 0, In =

∫ ∞

−∞
dξ

∫ ξ

∞
(ξ n − ηn)(ξ − η) N (ξ, η) dη. (45)

Stationary equation

Snl = 0 (46)

has infinite amount of exact solutions. One can check that the function

N (ξ, η) = T

f (ξ ) − f (η)
(47)

where T is a constant, satisfies Equation (46). Solution (47) has a clear physical
meaning: KP-1 equation is a member of a certain hierarchy of integrable
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equations. The linear part of each equation is:

∂�k

∂t
= i ω(k) �k + · · ·

Dispersion law ω(k) = ω(p, q) can be presented in parametric form as follow
[1, 3–6]:

p = ξ − η

q = ξ 2 − η2

ω(p, q) = f (ξ ) − f (η)

(48)

Solution (48) is the Rayley–Jeans solution corresponding to the dispersion
relation (49). It has singularity on the diagonal ξ = η; on this diagonal p =
0, q = 0. This solution has no other singularities if F(ξ ) is a monotonically
growing function on the axis−∞<ξ <∞, and represents a thermodynamic-type
solution. As a rule, kinetic equation for waves has also Kolmogorov-type
solutions, describing redistribution of energy along the spectrum. Solutions of
this type for Equation (45) are not found yet. Higher members of the KP-1
hierarchy also have reasonable three-wave kinetic equations. They have the same
set of motion constant (45) and the same exact solutions (48) as Equation (44).

Three-wave system (30) in the generic integrable case

ω1 = 0 ω2 = p ω3 = q V = 1

also admits the statistical description in terms of kinetic equation. Assuming that

〈�i (k) �∗
i (k ′)〉 = Ni (k) δ(k − k ′),

after some calculation we will end up with the following system of equations:

∂ N1(k)

∂t
= 4π

∫
{N2(k1) N3(k2) − N1(k) N2(k1)

− N1(k) N3(k2)}δk−k1−k2δ(p1 + q2)dk1dk2

∂ N2(k)

∂t
= 4π

∫
{N1(k1) N3(k2) − N2(k1) N1(k1)

− N2(k1) N3(k2)}δk−k1−k2δ(p − q2)dk1dk2

∂ N3(k)

∂t
= 4π

∫
{N1(k1) N2(k2) − N3(k) N1(k1)

− N3(k) N2(k2)}δk−k1−k2δ(q − p1)dk1dk2. (49)

As Equations (44) and (49) have infinite amount of exact thermodynamic
solutions. In a given presentation we don’t have enough time to discuss these
solutions in details.
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5. Absence of higher-order kinetic equations

In the previous chapter we have seen that the statistical properties of some
integrable systems (KP-1, 3-wave equation) can be described by three-wave
kinetic equation. If for some reason three-wave resonances are forbidden and
we will try to construct high-order kinetic equation, we will inevitably fail.
Again, let us start with examples.

Let us consider Equation (15). Using a procedure, similar to described in
Chapter 3, we easily can construct a closed system of equations for N k and a
fourth-order cumulant, which can be defined as follows:

Im 〈�∗
k1

�∗
k2

�k3 �k4〉 = Ik1 k2 k3 k4 δk1+k2−k3−k4 . (50)

Equation for Ik1 k2 k3 k4 can be resolved by a standard way, and we will end up
with a standard kinetic equation:

∂ N (k)

∂t
= 4π

∫ |Tk k1 k2 k3 |2 δ(k + k1 − k2 − k3) δ(ωk + ωk1 − ωk2 − ωk3 )

× (Nk1 Nk2 Nk3 + Nk Nk2 Nk3 − Nk Nk1 Nk2 − Nk Nk1 Nk3 ) dk1 dk2 dk3

= Snl. (51)

Let us try to construct the kinetic equation for generalized NSLE (21). In this
case

ωk = k2 + a k3.

The resonant manifold

ωk + ωk−1 = ωk2 + ωk3, k + k1 = k2 + k3 (52)

can be reduced to one algebraic equation. Assuming that

k = P + p, k1 = P − p, k2 = P + q, k3 = P − q (53)

we find that (52) is equivalent to equation

(p2 − q2)(1 + 3 aP) = 0. (54)

For the case q = ±p, we have trivial resonances:

q = p : k2 = k, k1 = k3 q = −p : k3 = k, k1 = k2. (55)

Obviously, for them Snl ≡ 0. Nontrivial inelastic resonances take place if 1 +
3 a P = 0. However, by plugging (53) into (20) we find that

T (k, k1, k2, k3) = α(1 + 3 aP) ≡ 0.

A similar situation takes place for the Davey–Stewardson Equation (23). Now

ω(p, q) = p2 − q2
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and the resonant manifold

ω(p, q) + ω(p1, q1) = ω(p2, q2) + ω(p3, q3)

p + p1 = p2 + p3

q + q1 = q2 + q3
(56)

can be reduced to one equation, if we put

p = P + ξ1, p1 = P − ξ1, p2 = P + ξ2, p3 = P − ξ2

q = Q + η1, q1 = Q − η1, q2 = Q + η2, q3 = Q − η2.
(57)

By plugging (57) into (56), we derive the equation

ξ 2
1 + ξ 2

2 − η2
1 − η2

2 = 0 (58)

Plugging (57) to (22), we find that

Tk k1 k2 k3 ∼ (
ξ 2

1 + ξ 2
2 − η2

1 − η2
2

)2 = 0.

In this case trivial resonances are not separated from nontrivial. They form a
connected manifold, where T (kk1k2k3) � 0.

As we know, for KP-2 equation the three-wave resonances are forbidden.
Of course, four-wave resonances are allowed. One can perform a canonical
transformation, excluding cubic nonlinearity in the Hamiltonian. The four-wave
resonances are described by equation

p2 − 3q2

p
+ p2

1 − 3q2
1

p1
= p2

2 − 3q2
2

p2
+ p2

3 − 3q2
3

p3

p + p1 = p2 + p3

q + q1 = q2 + q3.
(59)

The expression for effective four-wave coupling coefficient T (kk1, k2k3) is
pretty complicated. It can be found in the article [8]. Nevertheless, in the same
article was directly demonstrated that T (kk1k2k3) � 0 on the manifold (59).

For higher-order processes the situation is as bad as for four-wave interaction.
In article [2] was demonstrated that the amplitude of six-order processes on
the resonant manifold is identically zero. For both KdV and Benjamin-Ono
equations, the first nontrivial process is five-wave interaction. It is easy to prove
that this amplitude is identically zero. This result will be published soon [9].

6. Turbulence in strong integrable systems

Let us return to NSLE and treat it as a typical representative of strongly
integrable system. We propose that this equation has infinite number of
statistically stationary states parameterized by an arbitrary positive function of



232 V. E. Zakharov

one variable N(k). The condition

d N

dt
= 0

makes possible, at least in principle, to find all higher-order correlation functions
and reconstruct the invariant measure in the functional space. The stationary
state is spatially uniform. It means that one can introduce a set of constants:

I1 = lim
L→∞

1

L

∫ L/2

−L/2
|�|2 dx

I2 = lim
L→∞

1

L

∫ L/2

−L/2

{
|�x |2 − 1

4
|�|4

}
dx

I3 = . . .
(60)

These constants are densities of commuting motion integrals. Existence of
invariant spectrum N(k) presumes existence of invariant measure. One can
guess that this measure is nothing but the Gibb’s measure:

ρ[�] = 1

z
e− ∑∞

i=1 µi Ii (61)

Here µi are “chemical potentials,” corresponding to given motion constants,
and z is the statistical sum given by functional integral

z =
∫

e− ∑∞
i=1 µi Ii d�(x) d�∗(x). (62)

Each stationary state is characterized by the probability distribution function

ρ(ξ ) = ρ(|�|2),
∫ ∞

0
ρ(ξ ) dξ. (63)

One can guess that any stationary state is completely defined by the set of
constants I 1, I 2, . . . . As far as NLSE is the scale invariant equation, one can put
without violation of generality that I 1 = 1. Then the basic physical properties
of the stationary state are defined in large degree by the value of I2. If I 2 → ∞,
this is a state close to superposition of weakly interacting, almost linear waves.
On the contrary, if I 2 → −∞, this state is the solitonic gas superposition
of well separated weakly interacting solitons. The both cases can be studied
efficiently but they need completely different treatment. In spite of illusory
simplicity of this theory, some important questions are not yet answered.

The most important one is the question about modulational instability. One
of the stationary states in the Bose-condensate

N (k) = δ(k).
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In the defocusing NLSE the condensate is stable, but in the focusing case it
is unstable. Development of this instability generates something intermediate
between weak turbulence and solitonic gas. The theory of condensate instability
is pure dynamical and simple.

Much more difficult is the question of stability of the “broaden” condensate

N (k) = 1

π

γ

(k2 + γ 2)
. (64)

Again we assume that 〈N (k)〉 =1. One can study stability of this distribution in
framework of the mean-field approximation. This approximation can be used
for study of long-scale perturbations with a characteristic wave number much
less than γ . In spite of the fact that the homogeneous kinetic equation does
not exist, the inhomogeneous kinetic equation makes sense. If we suppose
that N is also a function of “slow” variables x, t, we can write the following
“Vlasov-type” equation

∂ N

∂t
+ k

∂ N

∂x
− ∂ N

∂k

∂n

∂x
= 0, n = −

∫ ∞

−∞
N (k) dk. (65)

Now one can assume

N = N (k) + δ N e−iω t+i ρ x

and end up with characteristic equation
∫ ∞

−∞

1

s − k

∂ N

∂k
dk = −1. (66)

where s = ω/p. By plugging (64) to (66) and calculating the integral, one
finds easily

s = −i(γ − 1). (67)

In other words, distribution is stable if γ > 1, and unstable if γ < 1. This
consideration is nice but has a weak point. According to (67)

ω = −i(γ − 1)p. (68)

Thus, Imω → ∞ as p → ∞. It is clear that in reality

I mω = −(1 − γ )p + qp2 + · · ·

q > 0 is some positive constant depending on γ . Determination of this constant
is a question of theoretical and practical importance. Apparently it cannot be
done in framework of the mean-field approximation.



234 V. E. Zakharov

The second fundamental question is the intermittency or structure of higher
momentum

In(y) = |�(x + y) − �(x)|2n.

This question is interesting when

I2 < 0, |I2| � 1.

In this case the stationary case is a solitonic gas defined by a distribution
function on soliton amplitudes. The higher moments, as far as the PDF (63)
should be directly expressed in terms of distribution function for solitons.
Theory of solitonic gas is a very interesting subject deserving a special
consideration [10,11].
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