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Abstract The motion of a thin vortex with infinitesimally small vorticity in the velocity field created by a
steady straight vortex is studied. The motion is governed by non-integrable PDE generalizing the Nonlinear
Schrodinger equation (NLSE). Situation is essentially different in a co-rotating case, which is analog of the
defocusing NLSE and a counter-rotating case, which can be compared with the focusing NLSE. The governing
equation has special solutions shaped as rotating helixes. In the counter-rotating case all helixes are unstable,
while in the co-rotating case they could be both stable and unstable. Growth of instability of counter-rotating
helix ends up with formation of singularity and merging of vortices. The process of merging goes in a self-
similar regime. The basic equation has a rich family of solitonic solutions. Analytic calculations are supported
by numerical experiment.
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1 Basic equations

One of the most important and unresolved questions in Hydrodynamics is formation of singularity for velocity
and vorticity in a finite time. The most perspective candidate for this blow-up solution is the non-linear stage
of antiparallel vortex pair instability, first studied by Crow [1]. It was shown [2,3], see also [4–6] that in the
limit, when sizes of vortex cores are much less than distance between them, this instability leads to formation
of singularity and reconnection of vortices in a finite time. However, this approximation fails as soon as the
distance between vortices becomes comparable with core sizes. The scenario of further evolution for the vortex
pair is disputable [7,8].

In the study presented in [2,3], we considered approximate solutions of the Euler equation. Now, we study
the exact solution of Euler equation, up to logarithmic accuracy. Our consideration has its own weak point:
the solutions are singular from the beginning, however, we believe that the model offered in this article is
interesting by itself.
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Let the stationary vortex of intensity q be posed at x = 0, y = 0 along the z-axis. It creates the velocity
field

Vx = − qy

x2 + y2 , Vy = qx

x2 + y2 , Vz = 0. (1)

Another vortex of intensity � and core width a moves in this field. We assume that � → 0, a → 0, but the
local induction parameter is

λ = �

4π
log

R

a
= 1. (2)

In the limit � → 0, the moving vortex does not disturb the stationary vortex. Let ψ = x + iy, then ψ satisfies
the equation

∂ψ

∂t
= i

(
∂

∂z

ψ ′√
1 + |ψ ′|2 + q

ψ̄

)
. (3)

In the limit |ψ ′| → 0, Eq. 3 goes to the NLSE with an exotic nonlinearity (this question was discussed in
[3–6]):

∂ψ

∂τ
= i

(
∂2ψ

∂y2 ± 1

ψ̄

)
= i

(
∂2ψ

∂y2 ± ψ

|ψ |2
)
. (4)

Here, y = z|q| 1
2 , τ = |q|t . Sign of q is crucial: if q > 0, we have co-rotating case, if q < 0, the counter-rotating

case takes place.
Equation 3 is a Hamiltonian system

∂ψ

∂t
= i

∂H

∂ψ̄
, H =

∞∫
−∞

{
2(

√
1 + |ψ ′|2 −

√
1 + c2)+ q log

|ψ |2
|ψ0|2

}
dz. (5)

We assume that at z → ∞, |ψ |2 → |ψ0|2, |ψ ′|2 → c2.
Hamiltonian H is a constant of motion. Other constants of motion are the following:

N =
∞∫

−∞
|ψ |2dz, P = i

∞∫
−∞

(ψ̄ψ ′ − ψψ̄ ′)dz. (6)

In the degenerate case q = 0, Eq. 5 is completely integrable. It is just another version of the Landau–Lifshitz
(or local induction) equation. By the Hashimoto transformation [9], see also [10], it can be transformed to the
focusing NLSE. The Lax pair for Eq. 3 exists if q = 0; it is presented in Appendix.

After separation of amplitude and phase

ψ = Aei�, n = A2, v = �z

R = √
1 + |ψ ′|2 =

√
1 + A2

z + A2v2

Equation 3 takes form

∂n

∂t
+ 2

∂

∂z

nv

R
= 0, A

(
∂�

∂t
+ v2

R

)
= ∂

∂z

Az

R
+ q

A
(7)

Equation 7 are Hamiltonian

∂n

∂t
= ∂H

∂�
,

∂�

∂t
= −∂H

∂n
. (8)

In the long wave semiclassical limit

Az

A
� v, R →

√
1 + A2v2
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the second of Eq. 7 simplifies up to the form

∂�

∂t
+ v2

A
= q

n
. (9)

Now (7), (9) is a system of hydrodynamic type. In the NLSE limit R = 1 and these equations turn to the gas
dynamic equations with an exotic dependance of pressure on density:

P = q log n.

2 Helix solutions and their stability

Equation 3 has an exact helix solution

ψ = ψ0 = Aeikz−i�t ,

Az = 0, v = k, R =
√

1 + A2k2, � = k2

√
1 + A2k2

− q

A2 . (10)

It is a rotating helix. If

q <
k2 A2

√
1 + k2 A2

,

the helix rotates in positive direction (� > 0). In the opposite case the helix rotates in negative direction
(� < 0). In the marginal case

q = k2 A2

√
1 + k2 A2

< 1,

the helix is stationary. If q = 0, the Hashimoto transformation converts the rotating helix to a stationary
monochromatic wave that is an exact solution of NLSE.

Studying the rotating helix stability, let us assume

ψ = ψ0(1 + δψeipz−iωt ), |δψ | � 1

and linearize the equations. After solving the linearized equations, we end up with formula

ω2
p = p4

(1 + k2 A2)2
+ p2

[
− k4 A2

(1 + k2 A2)2
+ 2q

A2
√

1 + k2 A2

]
. (11)

If q ≤ 0, the helix is unstable. In the case q = 0, the helix is unstable if p2 < k4 A2. Now

ω2
p = p2

(1 + k2 A2)2

[
p2 − k4 A2] .

This is just modulational instability of monochromatic wave in the focusing NLSE.
For q > 0, the co-rotating helix is stable if A2 < x/k2, where x is the solution of equation

x2

(1 + x2)
3
2

= 2q.

In this case helixes, which are close to the steady vortex, are stable, while the “remote” helixes are unstable.
If k = 0 and q < 0, the instability of helix is a generalization of Crow instability for two antiparallel

vortices.
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3 Self-similar collapse of counter-rotating vortices

One can look for self-similar solutions of Eq. 3

ψ = (t0 − t)
1
2 +iξ f

(
z√

t0 − t

)
, (12)

where ξ is some unknown real constant. Here, we implicitly state that in this system the Leray scaling takes

place, i.e., the domain of vortices interaction shrinks proportionally to (t0 − t)
1
2 , where t0 is the time of

singularity formation.
Let us denote self-similar variable η = z√

t0 − t
. We obtain the following equation for the self-similar

solution:

− iξ f − 1

2
( f − η f ) = i

(
∂

∂η

f ′√
1 + | f ′|2 + q

f̄

)
. (13)

Here, ξ is an eigenvalue of the nonlinear boundary problem with

f ′(0) = 0, f (η) → η1+2iξ at η → ∞.

Equation 13 has reasonable solutions in the counter-rotating case q < 0. The eigenvalue ξ is a func-
tion on q . This is a subject of determination from the numerical experiment. We applied periodic boundary
conditions ψ(0, t) = ψ(2π, t) and used the Strang splitting algorithm to solve Eq. 3 numerically. We took
k = 0, ψ(z, 0) = 1.25 − 0.05e−(z−π)2 cos(z − π). With this choice of parameters,

ωp = p4 + 2qp2, p = 1, 2, . . .

we studied development of instability for q < −1/2. The case q = −1/2 is a marginal one, however, the
instability develops even in this case. On Fig. 1 are presented different shapes of instability development for
q = −1.

The instability ends up with merging of the vortices at the moment of time t = T = 1.4721.

4 Solitonic solutions

Solitons are the following solutions of Eq. 3:

ψ = ψ(z − ct)eiλt . (14)

Fig. 1 Development of instability at q = −1
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Here c and λ are constants. One can use hydrodynamic version of Eq. 3. Then Eq. 7 can be integrated

− cn + 2
nv

R
= Q = −cn0 + 2

n0v0

R0
(15)

n → n0, v → v0, R → R0 as |z| → ∞.
One can find v and R

v2 = (1 + A′2)(Q + cn)2

n
(
4n − (Q + cn)2

) R = 2A
√

1 + A′2(
4n − (Q + cn)2

) 1
2

. (16)

and we end up with a pretty complicated second order nonlinear equation for A(z):

∂

∂z

A′

R
+ q

A
− λA = Q2 − c2 A4

2A2

√
1 + A′2(

4A2 − (Q + cA2)2
) 1

2

. (17)

This equation can be integrated as follows

1√
1 + A′2

= 2A

(4A2 − (Q + cA2)2)
1
2

(
q log A − λ

2
A2 + E

)
. (18)

Here, E is a constant of integration. If the soliton is steady (c = 0) and asymptotic is not a helix but a straight
vortex (Q = 0), we get

1√
1 + A′2

= q log
A

A0
− λ

2
(A2 − A0

2)+ 1.

“Free” soliton (q = 0) is given by equation

A′2 =
(

1

1 − λ
2 A2

)2

− 1

A′ = 0, if A = 0 or A′ = ∞, if A =
√

2
λ

. In this case A0 = 0.
The total, very rich family of solutions depends on three parameters: c, Q, and λ. Detailed description of

solitons and their stability will be published separately.
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Appendix

Equation 13 at q = 0 is a compatibility condition for the following overdeterminated linear system of equations
imposed on a complex 2 × 2 matrix function �

�x = λ A�, (19)

�t = 2

(
λ2 A

R
+ λ B

)
� (20)

Here, λ is a spectral parameter

A =
[

i  ′
− ′ −i

]
R =

√
1 + | ′|2 (21)

B =
[

0 v
−v 0

]
v = − i

2

∂

∂z

 ′√
1 + | ′|2 (22)

Equations 19 and 20 form the "Lax pair" for (13). Equation 13 is the first non-trivial term in the infinite
integrable hierarchy, generated by Eq. 19. This equation is the Gauge equivalent to the Nonlinear Schrodinger
equation.
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