Theor. Comput. Fluid Dyn. (2010) 24:377-382
DOI 10.1007/s00162-009-0164-z

ORIGINAL ARTICLE

Vladimir E. Zakharov

Dynamics of vortex line in presence of stationary vortex

Received: 24 November 2008 / Accepted: 2 June 2009 / Published online: 24 October 2009
© Springer-Verlag 2009

Abstract The motion of a thin vortex with infinitesimally small vorticity in the velocity field created by a
steady straight vortex is studied. The motion is governed by non-integrable PDE generalizing the Nonlinear
Schrodinger equation (NLSE). Situation is essentially different in a co-rotating case, which is analog of the
defocusing NLSE and a counter-rotating case, which can be compared with the focusing NLSE. The governing
equation has special solutions shaped as rotating helixes. In the counter-rotating case all helixes are unstable,
while in the co-rotating case they could be both stable and unstable. Growth of instability of counter-rotating
helix ends up with formation of singularity and merging of vortices. The process of merging goes in a self-
similar regime. The basic equation has a rich family of solitonic solutions. Analytic calculations are supported
by numerical experiment.

Keywords Vortex - Helix - Instability - Soliton

PACS 47.15.ki - 47.32.C- - 47.32.cb

1 Basic equations

One of the most important and unresolved questions in Hydrodynamics is formation of singularity for velocity
and vorticity in a finite time. The most perspective candidate for this blow-up solution is the non-linear stage
of antiparallel vortex pair instability, first studied by Crow [1]. It was shown [2,3], see also [4—6] that in the
limit, when sizes of vortex cores are much less than distance between them, this instability leads to formation
of singularity and reconnection of vortices in a finite time. However, this approximation fails as soon as the
distance between vortices becomes comparable with core sizes. The scenario of further evolution for the vortex
pair is disputable [7,8].

In the study presented in [2,3], we considered approximate solutions of the Euler equation. Now, we study
the exact solution of Euler equation, up to logarithmic accuracy. Our consideration has its own weak point:
the solutions are singular from the beginning, however, we believe that the model offered in this article is
interesting by itself.
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Let the stationary vortex of intensity g be posed at x = 0, y = 0 along the z-axis. It creates the velocity
field

qy qx
Vi=—myr W are =0 M
Another vortex of intensity I" and core width a moves in this field. We assume that ' — 0, a — 0, but the
local induction parameter is
r R
r=-—1log— =1. ()
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In the limit I' — 0, the moving vortex does not disturb the stationary vortex. Let ¢ = x + iy, then ¢ satisfies
the equation
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In the limit || — 0, Eq. 3 goes to the NLSE with an exotic nonlinearity (this question was discussed in

[3-6]):
do (%Y 1\ (P Y
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Here, y = z|q|2, T = |q|t.Signof g is crucial: if g > 0, we have co-rotating case, if ¢ < 0, the counter-rotating
case takes place.
Equation 3 is a Hamiltonian system
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We assume that at z — oo, [¥|? — [y, [¢/]> — 2.

Hamiltonian H is a constant of motion. Other constants of motion are the following:
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In the degenerate case g = 0, Eq. 5 is completely integrable. It is just another version of the Landau—Lifshitz
(or local induction) equation. By the Hashimoto transformation [9], see also [10], it can be transformed to the
focusing NLSE. The Lax pair for Eq. 3 exists if ¢ = 0; it is presented in Appendix.

After separation of amplitude and phase
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Equation 3 takes form
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In the long wave semiclassical limit
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the second of Eq. 7 simplifies up to the form

b v?
A ©

Now (7), (9) is a system of hydrodynamic type. In the NLSE limit R = 1 and these equations turn to the gas
dynamic equations with an exotic dependance of pressure on density:

P =gqlogn.

2 Helix solutions and their stability
Equation 3 has an exact helix solution
V=g = Aeikz—iﬂt

k2 q
/ 212 _
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It is a rotating helix. If

k2 A2
q < —/—=,
1+ kZAZ

the helix rotates in positive direction (€2 > 0). In the opposite case the helix rotates in negative direction
(2 < 0). In the marginal case

k2A2
qg=——=<1,
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the helix is stationary. If ¢ = 0, the Hashimoto transformation converts the rotating helix to a stationary
monochromatic wave that is an exact solution of NLSE.
Studying the rotating helix stability, let us assume

Y= Yo(l + sye'Peien), LVARSS!

and linearize the equations. After solving the linearized equations, we end up with formula
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If ¢ < 0, the helix is unstable. In the case g = 0, the helix is unstable if p2 < k* A2, Now

(In
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This is just modulational instability of monochromatic wave in the focusing NLSE.
For g > 0, the co-rotating helix is stable if A> < x/k>, where x is the solution of equation

x2

— =2q.
(1+x2)2
In this case helixes, which are close to the steady vortex, are stable, while the “remote” helixes are unstable.
If Kk = 0 and ¢ < O, the instability of helix is a generalization of Crow instability for two antiparallel
vortices.
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3 Self-similar collapse of counter-rotating vortices

One can look for self-similar solutions of Eq. 3

w=m—0ﬁ%<ﬂ§j) (12)

where & is some unknown real constant. Here, we implicitly state that in this system the Leray scaling takes

place, i.e., the domain of vortices interaction shrinks proportionally to (o — 7)2, where £y is the time of
singularity formation.

Let us denote self-similar variable n = \/#j We obtain the following equation for the self-similar
solution:
1 s f q
—if—s(f-n) =i\ —F——=+3)- 13)
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Here, £ is an eigenvalue of the nonlinear boundary problem with
f'©0) =0, fa)— ' at p - 0.

Equation 13 has reasonable solutions in the counter-rotating case ¢ < 0. The eigenvalue & is a func-
tion on ¢. This is a subject of determination from the numerical experiment. We applied periodic boundary
conditions ¥ (0, t) = ¥ (2w, t) and used the Strang splitting algorithm to solve Eq. 3 numerically. We took

k=0,v%(z,0) =1.25-— 0.05¢— (=) cos(z — ). With this choice of parameters,
wp=p4+2qp2, p=12,...

we studied development of instability for ¢ < —1/2. The case ¢ = —1/2 is a marginal one, however, the
instability develops even in this case. On Fig. 1 are presented different shapes of instability development for
q=-—1.

The instability ends up with merging of the vortices at the moment of time t = T = 1.4721.

4 Solitonic solutions

Solitons are the following solutions of Eq. 3:
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Fig. 1 Development of instability at g = —1
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Here ¢ and A are constants. One can use hydrodynamic version of Eq. 3. Then Eq. 7 can be integrated

novo

nv
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One can find v and R
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and we end up with a pretty complicated second order nonlinear equation for A(z):
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This equation can be integrated as follows
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Here, E is a constant of integration. If the soliton is steady (¢ = 0) and asymptotic is not a helix but a straight
vortex (Q = 0), we get

A A
log — — E(AZ — AP + 1.
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“Free” soliton (¢ = 0) is given by equation

2
1
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A =0,ifA=0o0r A =o0,if A= @ In this case Ag = 0.
The total, very rich family of solutions depends on three parameters: ¢, Q, and . Detailed description of
solitons and their stability will be published separately.
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Appendix

Equation 13 atg = 0 is a compatibility condition for the following overdeterminated linear system of equations
imposed on a complex 2 x 2 matrix function ®

D, =1AD, (19)
2 A
b, =2 )\E—}-)\B P (20)
Here, A is a spectral parameter
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v —
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Equations 19 and 20 form the "Lax pair" for (13). Equation 13 is the first non-trivial term in the infinite
integrable hierarchy, generated by Eq. 19. This equation is the Gauge equivalent to the Nonlinear Schrodinger
equation.
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