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Rogue waves have been studied in the exact simulation of complete hydrodynamic equations for an ideal fluid
with a free surface. The statistical characteristics of rogue waves such as the occurrence intensity, average
existence time, and maximum energy dissipation at collapse have been obtained in computer experiments.
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Surface waves of anomalously large amplitudes, so-
called rogue waves, are actively studied in oceanology,
theoretical physics, and mathematics (see, e.g., [1—9])
mainly as a nonlinear effect in the hydrodynamics of
an ideal fluid with a free surface. The probabilities of
the occurrence of rogue waves for various parameters
of the initial waves were estimated in our preceding
computer experiments [10] on the simulation of the
dynamics of surface waves with exact equations
describing the hydrodynamics of an ideal potential
fluid with a free surface. In that work, we used the
equations free of dissipation and pumping. Collapses
of waves during the experiments distorted the statistics
of rogue waves because an experiment in this case was
terminated prematurely.

The equations used in this work to describe the sur-
face waves of an ideal fluid include both energy dissi-
pation and pumping. These equations make it possible
to maintain a given energy level in the experiments.
Dissipation corresponds to energy loss because of the
collapse of waves; for this reason, the experiments can
be continued for any given time. Energy pumping is
chosen such that waves travel in one direction.

We consider the dynamics of an ideal fluid with a
free surface in two-dimensional geometry with an infi-
nite bottom: 0 <x < 21, —0 <y <n(x, ). The boundary
conditions at the ends of the interval x = [0, 2] are
periodic.

The flow is assumed to be potential and the fluid is
incompressible:

v=Ved, divv = 0.
Thus, the potential satisfies the Laplace equation
Ad = 0.
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We perform the conformal mapping of the region
occupied by the fluid onto the lower half-plane where
the coordinates are specified as w = u + iv. This map-
ping is given by the function z = z(w), z=x + iy.

The dynamic equations formulated in terms of the
Dyachenko variables

R=1/7, V=iod/oz

have the form

R(u,t) = i(UR' = UR) + F¢[R, V]-aR"",
V(u,t) = i(UV' = BR)+g(R- 1)+ F)[R, V] — oV,
U = P(VR* + RV¥), (D
B = P(VV¥).
Here, P= (1 + iH)/2 is the projection operator on the

lower half-space, where H is an analog of the Hilbert
operator for the periodic case, which is specified as

fw)
(' —u)/2]

2n
1
H = — du'.
[/1(u) o vp Jtan[ u

The linear integral operators Fz and F, correspond to
pumping and have the following form in terms of Fou-
rier transforms:

FR[R, V] = —Bi(ri—iNk/gvy),

FJUR V] = Bulre—iNk/gvy).
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Here,
@, K,- Dp<k<Ky;
B = §
W, K,<k<K,+ Dp,
Dy

where K|, is the wavenumber and Dy is the spectral
width of the pumping. The fourth derivativesin Eq. (1)
correspond to dissipation. The pumping is switched on
when the energy is below a given level and is switched
off when the energy is above the given level.

The physical meaning of the dissipative terms and
pumping operators in Eq. (1) is as follows. The col-
lapse of waves is the main reason for the premature ter-
mination of a computer experiment. To avoid the ter-
mination, we use only dissipative terms suppressing
high harmonics, which can be interpreted as collapse-
induced dissipation. Pumping operators increase the
energy of waves traveling in one direction, which cor-
responds to the chosen initial data. The pumping to
the spectral peak makes it possible to increase the
energy of the main waves considered in the experi-
ment.

The system of equations (1) has become popular
recently because of its properties very appropriate for
theoretical and numerical analyses. The mathematical
results concerning the solvability of this system, as well
as the methods for its numerical solution, were
reported in [11—14].

Our computer experiments basically correspond to
the experiments described in [10]. An ensemble of
waves traveling in one direction is initially specified.
The average wavenumber is K, = 25.

The initial perturbation of the surface is specified
by the sum of harmonics with random phases:

lx

E max

Mo(x) = D d(k—Ky)cos(kx~E&). (2)

K

_E max

Here, K., is the total number of spectral modes and
&, is a random variable uniformly distributed in the
range —K,,../2 < k < K 0i/2.

It is assumed that the initial potentials of velocities
are related to Eq. (2) according to the linear theory.

The function ¢(k) has the form

8ks |k|>‘K;;
b(k) = 2 3)
kexp(—ak’) +8,, |kl<K,.

Here, 9, are independent random parameters uni-
formly distributed in the range —K,,,/2 < k < K,51/2.
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Fig. 1. Functions (/) v(¢) and (2) u().

The spectral parameters 1 < K, < 10, k, and o are
specified so as to ensure given values of the average
slope 1 whose square is

2n

2 1 2
= — dx,
W= o [nadx
0

and variance

K, . K, , -1
D = [ I ke dk)[ j e dk] .
-K,

w

The contribution of random noise to the energy is less
than three percent.

Each individual experiment is performed at 0 <7<
400, which approximately corresponds to 1000 wave
periods. The total number of harmonics in the calcu-
lations is K,,,,, = 2048. The spectral width of the pump-
ing is Dr = 15 and the dissipation coefficient is o0 =
107°.

Rogue waves were detected according to the stan-
dard amplitude criterion, which means that the fol-
lowing conditions are simultaneously satisfied at a cer-
tain value ¢ = *:

Hmax(t*)

= T

>2.1,

u(r*) = max |n,(x, %) =0.3,
0<x<2m
where H(r) is the significant height of waves and
H_,.. () is the maximum amplitude of a wave at time 7.
The results of a typical computer experiment are
shown in Fig. 1, where the functions v(7) and u(?) are
plotted and the critical lines v=2.1 and p = 0.3.
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Fig. 2. Intensity of the occurrence of rogue waves for },Lz =
(1) 2.06 x 1073, (2) 3.08 x 10 73, and (3) 4.10 x 107>,

A rogue wave in an individual computer experi-
ment can appear several times. For this reason, we use
the stochastic model of the occurrence of rogue waves
in the form of the Poisson distribution

n -AT
P(n,T) = O‘L.

n!

This distribution is the probability of the occurrence of
n rogue waves in 7 periods. Figure 2 shows the param-
eter A, which has the meaning of the intensity of the
occurrence of rogue waves for various parameters of
initial waves. According to Little’s formula, the aver-
age number of rogue waves appearing in 7 periods is

N* = AT.

Natural experiments aimed at detecting rogue waves
near the southern shore of Sakhalin Island were
reported in [15]. The Poisson distribution was also
used in those experiments. The estimates obtained in
them qualitatively coincide with our results.

The existence time of rogue waves was estimated in
computer experiments. Figure 3 shows the average
lifetimes (in periods) of rogue waves.

The occurrence of rogue waves is usually accompa-
nied by the collapse of a wave, which is manifested in
sharp energy dissipation. Figure 4 shows the depen-
dences of the maximum energy dissipation (in per-
cent) on the initial parameters at the collapse of a
rogue wave.

The proposed modification of the Dyachenko
equations including pumping and dissipation makes it
possible to perform computer experiments, on one
hand, stable to the collapse of waves and, on the other
hand, with maintenance of a given energy level in the
system. Using these experiments based on the com-
plete nonlinear equations, we constructed the Poisson
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Fig. 3. Average existence time of rogue waves for u2 =
(1) 2.06 x 1073, (2) 3.08 x 10 73, and (3) 4.10 x 1075,

distribution for the occurrence of rogue waves. The
obtained statistic certainly depends on the parameters
of the spectra of initial waves, in particular, on the
number of individual waves in the wave train under
consideration. However, our results confirm the sto-
chastic character of the occurrence of rogue waves,
which was mentioned in many works, and make it pos-
sible to obtain other characteristics of rogue waves.
The intensity (in the sense of a Poisson process) of
the occurrence of rogue waves decreases with an
increase in dispersion (Fig. 2) in agreement with the
conclusions made in other works devoted to the study
of rogue waves. The average existence time of a rogue

Dissipation (in percent)

Dispersion

Fig. 4. Maximum energy dissipation at the collapse of a
rogue wave for p% = (1) 2.06 x 1073, (2) 3.08 x 10 3, and
(3)4.10x 1073,
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wave (Fig. 3) also decreases with an increase in disper-
sion. It is worth noting that the existence time of a
rogue wave at the minimum slope in the case of a nar-
row spectrum is close to values at a larger slope and this
time decreases sharply with an increase in the width of
the spectrum.

The maximum energy dissipations at the collapse
of a rogue wave shown in Fig. 4 indicate that this wave
can contain a significant part of the energy of the
entire system. Performing a numerical experiment,
A.I. Smirnova calculated the total energy of each indi-
vidual wave and concluded that a typical rogue wave
contains about 20% of the energy of waves.
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