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The integrability of the compact 1D Zakharov equation has been analyzed. The numerical experiments show
that the multiple collisions of breathers (which correspond to envelope solitons in the NLSE approximation)
are not pure elastic. The amplitude of six-wave interactions for the compact 1D Zakharov equation has also
been analyzed. It has been found that the six-wave amplitude is not canceled for this equation. Thus, the 1D

Zakharov equation is not integrable.
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1. INTRODUCTION

The work described here is motivated by remark-
able fact regarding two-dimensional free surface
hydrodynamics—four-wave interaction coefficient
vanishes on the resonant manifold

k+k, ky + ks,

This cancellation was derived in [1] and brought the
hypothesis of integrability of 2D free surface hydrody-
namics. Also the cancellation allows to consider sur-
face waves moving in the same direction only. Namely,
if initial state consists of such waves, evolution equa-
tion keeps this property. In this article we study the
problem of integrability in more details.

So, we consider two-dimensional potential flow of
an ideal incompressible fluid with a free surface in a
gravity field fluid which is described by the following
set of equations:
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here, n(x, ) is the shape of a surface, ¢(x, z, ) is a
potential function of the flow, and g is a gravitational
acceleration. As was shown in [2] these equations are
Hamiltonian with respect to variables n(x, ) and
vx, 1) =6(x,z,0)],_,>
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Here H= K+ Uisthe total energy of the fluid with the
following kinetic and potential energy terms:

K = %J.dx]-vzdz, U= ‘%J-nzdx.

Hamiltonian can be expanded in infinite series of
characteristic wave steepness kn,; << 1 and we consider
this series up to the fourth order:
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Applying canonical transformation along with intro-

ducing normal complex variable b(x, f) Hamiltonian (1)
transforms to the equivalent compact form:

H= Ib*&;kbdx
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Here, b' = 0b/0x, o, = Jg7c, and k is the modulus
operator. All the details of this transformation can be
found in [3].

Corresponding equation of motion is the following:
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Fig. 1. Modulus of b(x) and real part of b(x) with '=1/16
and Q = 4.01, carrier wavenumber appears to be ~64.
Dashed line corresponds to modulus of 5(x), solid line cor-
responds to the real part of b(x).

For Fourier harmonics Hamiltonian can be written as
following

H= I(Dk|bk|2
1 3k
+ > J‘Tilkzblj{,bzbk3bk48k, t k- ky— k, Ky dIydhy dk .

Here
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where 0 functions in (4) correspond to waves moving
in the same direction. Corresponding evolution equa-
tion is the following:
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Below we will analyze this equation from the point of
view of its integrability.

2. BREATHERS AND NUMERICAL
SIMULATION OF ITS COLLISIONS

Breather is the localized solution of (3) of the fol-
lowing type:

i(kgx — wyt)

b(x,1) = B(x-Vt)e , (6)
where k is the wavenumber of the carrier wave, Vis the
group velocity and o, is the frequency close to ® k- In
the Fourier space breather can be written as follow:

b(t) = e, (7)
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Fig. 2. Modulus of b(x) for two points of time. Solid line
corresponds the initial statement (¢ = 0), dashed line cor-
responds to the state after 100 breather collisions (# ~
88000).

where Q is close to @, /2.

For ¢, the following equation is valid:
(Q+ Vk— o),

~ kayks
= J-Tkk. ¢I><kl¢k2¢k38k +k, —kz—k3dkldk2dk3-

One can treat ¢, as pure real function of .

(8)

To solve Eq. (8) one can use Petviashvili iteration
method (7 is the number of iteration):
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The Petviashvili coefficient M" has the form
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In the limit of NLSE breather solution (6) is nothing
but well-known NLSE soliton. Space profile of typical
breather is shown in Fig. 1.

If Eq. (3) is integrable collisions of breathers would
be pure elastic. To study breathers collision we per-
formed the following numerical simulation.

* As initial condition we have used two breathers
separated in space (distance was equal to ). Number
of space points was 4096. Length of the periodic
domain was 2.

* First breather has the following parameters: (2, =
4.01, V; = 1/16. Carrier wavenumber appears to be
~64.

* For the second breather, Q, = 4.51, V, = 1/18.
Carrier wavenumber appears to be ~81.

JETP LETTERS Vol. 98  No. 1 2013



ON THE NONINTEGRABILITY OF THE FREE SURFACE HYDRODYNAMICS

The initial condition and state after 100 breather
collisions are shown in Fig. 2. One can see radiation
after collisions in this figure that shows the zoomed
profile of |b(x)|. During numerical simulation the total
energy was conserved up to ninth digit after decimal
point. Thus numerical simulation shows the collisions
are not elastic.

It should be mentioned that in [4, 5] similar colli-
sions simulations seem to be elastic. Thus, it was made
suggestion about integrability of compact 1D
Zakharov equation. However, in these papers very few
collisions were simulated and radiation was hardly
observed.

To prove nonintegrability rigorously, we analyze
analytically amplitudes of six-wave interactions for
this equation.

3. SCATTERING MATRIX
FOR COMPACT EQUATION

For further consideration we introduce ¢, () in a
following way:

bu(t) = cu(t)e ™
Then Eq. (5) can be rewritten as
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and rewrite it in the Picard form (e > 0)
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This equation can be solved by iterations:

c, = cio)+ckl)(t)+c(2)(t) +..., cZO) = ¢p(—x).

Following [6] we introduce a so-called formal scatter-
ing matrix for Eq. (10) for
¢, = lime(r), ¢, = lim c(¢), ¢ = Sl
t— -0 t— = 4o
So far as (9) has only four-wave vortex, scattering
matrix has the form:

S[C;] = C; + S22[CZ] + S33[C;] + ...

Element .5,, has already been calculated in [7]. In spite
of it has logarithmic divergence (it is why scattering
matrix is formal), it does not produce “new” wave vec-
tors as should be in the integrable systems. Below we
will calculate 53;. Performing two iteration of (10) one

can get for ¢, (h (0:
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Fig. 3. Modulus of b(x) for two points of time. Solid line
corresponds the initial statement (¢ = 0), dashed line cor-
responds to the state after 100 breather collisions (¢ ~
88000).
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Performing second iteration one can get:
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Element 7";‘p2p3 is the kernel of six waves element of
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scattering matrix S3;. Symbolically it can be repre-
sented as 9 diagrams, see for details [8]. Now we cal-

Pap .
culate 6-waves element 74(:‘ ** on the resonant mani-
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Manifold can be parameterized using three parame-
ters A, o, and [ as following
2

0 2
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Plugging w;, p;, and g; for different values of A, o, and
B one can check that
Towa *0-
This is the proof of nonintegrability of compact 1D
Zakharov equation.
Note, that if consider above theory for Nonlinear
Schrodinger Equation for which

k 2
12
i, = 1, o =k

simple calculations end up with T:ZZ; =0, as it must

be for integrable system.

4. CONCLUSIONS

Compact 1D Zakharov equation (5), or equivalent
system with Hamiltonian (1) is nonintegrable system.
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We have proved it both numerically and analytically.
However the question about integrability of fully non-
linear system (1) is still unclear. Exact equation has his
own six wave term which could make total six wave
coefficient changed.
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