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Abstract. We present results of numerical experiments on
long-term evolution and collisions of breathers (which cor-
respond to envelope solitons in the NLSE approximation) at
the surface of deep ideal fluid. The collisions happen to be
nonelastic. In the numerical experiment it can be observed
only after many acts of interactions. This supports the hy-
pothesis of “deep water nonintegrability”. The experiments
were performed in the framework of the new and refined ver-
sion of the Zakharov equation free of nonessential terms in
the quartic Hamiltonian. Simplification is possible due to ex-
act cancellation of nonelastic four-wave interaction.

1 Introduction

Theory of weakly nonlinear waves on shallow water is a
nursery for several completely integrable models. Among
them are the famous KdV and KP equations (Gardner et al.,
1967; Kadomtsev and Petviashvili, 1973; Zakharov and Sha-
bat, 1979), the Boussinesq equation (Zakharov, 1974), and
the Kaup system (Kaup, 1975). Detailed study of these in-
tegrable systems has not only theoretical, but also practical
importance. Recently A. Osborne showed (Osborne, 2010)
that representation of solutions of KP equations in the form
of Jacobi theta functions is a very efficient and economical
way of analyzing experimental data for long waves in coastal
areas.

Now the fundamental question appears – what can be
done in the case of deep fluid? So far only one integrable
model on deep water is known. It is the focusing nonlin-
ear Schrödinger equation describing weakly nonlinear quasi-
monochromatic wave trains (Zakharov, 1968; Zakharov and
Shabat, 1972). Exact solutions of this equation can also be

given by theta functions (Belokolos et al., 1994). They are
actively used now for determination of freak wave statistics
(Osborne, 2010). However, the NLSE has a limited area of
application and can hardly be applicable to many experimen-
tal situations.

Hopes that the exact Euler equation for potential flow on
deep water with free surface in the presence of gravity is in-
tegrable appeared in 1994 when two of us (Dyachenko and
Zakharov, 1994) established that the coefficient of a scat-
tering matrix connecting asymptitics att → ±∞ states of
wave field, corresponding to inelastic four-wave processes
and governed by resonant conditions

k+ k1 = k2 + k3 ωk +ωk1 = ωk2 +ωk3,

where

ωk =
√
g|k|

in 1-D geometry is identically equal to zero.
However, this cancellation is just a weak necessary condi-

tion for integrability and is far from being sufficient. For inte-
grability in “strong sense” we need cancellation in all orders
of perturbation theory (seeZakharov and Schulman, 1991).
However, inDyachenko et al.(1995) it was shown that not
all members of a five-wave scattering matrix are zero, thus
we can only hope for integrability in some “weak sense”. We
will not discuss this subject having a “strong mathematical
flavor” here.

Meanwhile, efficient methods for numerical simulations
of the exact Euler equation were developed during the
last decade; massive numerical experiments were also per-
formed. Again, some of them can be considered as a certain
indication of integrability.
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In the framework of NLSE approximation there is an ex-
act solution – envelope soliton. Do such solutions exist in
the exact Euler equation? If the system is nonintegrable, the
soliton exists only during a finite time; then it must lose its
energy due to radiation in a backward direction (Zakharov
and Kuznetsov, 1998). In the nonintegrable MMT model this
backward radiation is a very strong effect leading to the for-
mation of an “abnormal” weak turbulent spectrum (Rumpf
et al., 2009). However, in our experiments on propagation
of steep envelope solitons in the frame of the Euler equation,
we did not trace the slightest backward radiation (Dyachenko
and Zakharov, 2008). The soliton persistently existed during
thousands of their periods.

In this article we present new numerical results shedding
some light on the integrability of the deep-water hydrody-
namics. We study collisions of breathers (solitons) in the
framework of a newly derived approximate equation applica-
ble for small-amplitude waves with any spectral band width.
Actually, this is what is called the “Zakharov equation” (see
Zakharov, 1968), improved by the implementation of addi-
tional canonical transformation to the Poincaré normal form.
This transformation is possible only due to the still mysteri-
ous fact of four-wave interaction cancellation.

The new equation (described in detail inDyachenko and
Zakharov, 2011, 2012) is very convenient for numerical sim-
ulations. It has a nice solitonic solution that so far cannot be
found analytically, but can be easily obtained numerically.
Existence of solitonic solutions and their elastic collisions
are indications of integrability. However, just indications are
not enough. In this paper we study the collision of such soli-
tons and show that this collision is nonelastic. One can how-
ever only see it after multiple collisions. We can interpret this
fact as a numerical proof of nonintegrability, at least for this
“refined Zakharov equation”1.

2 Compact equation

A one-dimensional potential flow of an ideal incompressible
fluid with a free surface in a gravity field fluid is described
by the following set of equations:

φxx +φzz = 0 (φz → 0,z→ −∞),

ηt + ηxφx = φz

∣∣∣∣
z=η

φt +
1

2
(φ2
x +φ2

z )+ gη = 0

∣∣∣∣
z=η

;

here η(x, t) is the shape of a surface,φ(x,z, t) is a po-
tential function of the flow andg is gravitational accelera-
tion. As was shown inZakharov(1968), the variablesη(x, t)

andψ(x, t)= φ(x,z, t)

∣∣∣∣
z=η

are canonically conjugated, and

1Some of the numerical results were put inDyachenko et al.
(2012)

satisfy the equations

∂ψ

∂t
= −

δH

δη

∂η

∂t
=
δH

δψ
.

Here the Hamiltonian can be written as an infinite series
(seeZakharov, 1968):

H =
1

2

∫
gη2

+ψk̂ψdx−
1

2

∫
{(k̂ψ)2 − (ψx)

2
}ηdx+

+
1

2

∫
{ψxxη

2k̂ψ +ψk̂(ηk̂(ηk̂ψ))}dx+ . . . (1)

In this article we consider Hamiltonians up to the fourth
order. In the articles (Dyachenko and Zakharov, 2011, 2012)
we applied canonical transformation to the Hamiltonian vari-
ablesψ and η to introduce the normal canonical variable
b(x, t). This transformation explicitly exploits the vanishing
of four-wave interaction and possibility to consider surface
waves moving in the same direction. Briefly, this transforma-
tion consists of two steps. First, we introduce normal com-
plex variablesak(t) as follows:

ηk =

√
ωk

2g
(ak + a∗

−k) ψk = −i

√
g

2ωk
(ak − a∗

−k).

Then one applies transformation from variablesak to bk
to exclude nonresonant cubic terms along with nonreso-
nant fourth-order terms. This transformation up to accuracy
O(b5) has the form (Zakharov, 1968; Zakharov et al., 1992):

ak = bk +
∫
0kk1k2

bk1bk2δk−k1−k2dk1dk2 −

−2
∫
0
k2
kk1
b∗

k1
bk2δk+k1−k2dk1dk2 +

+
∫
0kk1k2b

∗

k1
b∗

k2
δk+k1+k2dk1dk2

+
∫
B
k2k3
kk1

b∗

k1
bk2bk3δk+k1−k2−k3dk1dk2dk3 +

+
∫
C
k3
kk1k2

b∗

k1
b∗

k2
bk3δk+k1+k2−k3dk1dk2dk3

+
∫
Skk1k2k3b

∗

k1
b∗

k2
b∗

k3
δk+k1+k2+k3dk1dk2dk3. (2)

The particular choice of coefficients in Eq. (2) is described
in Dyachenko and Zakharov(2011, 2012). The choice of
0kk1k2

and0kk1k2 provides cancellation of cubic terms, while

the choice ofCk3
kk1k2

and Skk1k2k3 provides cancellation of
the nonresonant fourth-order term. The particular choice of
B
k2k3
kk1

allows selfconsistent consideration of waves moving in
the same direction only, making the Hamiltonian very simple
at the same time. For this variableb(x, t), Hamiltonian (1)
acquires the nice and elegant form2:

H=

∫
b∗ω̂kbdx+

1

2

∫ ∣∣∣∣ ∂b∂x
∣∣∣∣2[

i

2

(
b
∂b∗

∂x
− b∗

∂b

∂x

)
− K̂|b|2

]
dx. (3)

2There was a misprint in the articles (Dyachenko and Zakharov,
2011, 2012): the coefficient for the quartic term in the Hamiltonian
must be1

2 instead of14

Nat. Hazards Earth Syst. Sci., 13, 3205–3210, 2013 www.nat-hazards-earth-syst-sci.net/13/3205/2013/



A. I. Dyachenko: Collisions of two breathers 3207A.I. Dyachenko: Collisions of two breathers 3

hereP̂+ - projection operator to the upper half-plane.

P̂+2
= P̂+ =

1
2

(1− iĤ).

This operator is the consequence ofθ-functions in (2.4).
It keeps only positivek in the system of waves. (So, we con-
sider self-consistent system of waves propagating in the same
direction.)

Corresponding equation of motion is the following:

i
∂b
∂t
= ω̂kb +

i
4

P̂+
[

b∗
∂

∂x
(b′2)− ∂

∂x
(b∗′

∂

∂x
b2)

]

−

−1
2

P̂+
[

b · K̂(|b′|2)− ∂

∂x
(b′K̂(|b|2))

]

, (2.6)

or in K-space

i
∂bk

∂t
= ωkbk +

∫

T̃ k2k3

kk1
b∗k1

bk2bk3δk+k1−k2−k3dk1dk2dk3. (2.7)

3 Breathers and numerical simulation of its colli-
sions

Breather is the localized solution of (2.6) of the following
type:

b(x, t) = B(x−Vt)ei(k0x−ω0t), (3.8)

wherek0 is the wavenumber of the carrier wave,V is the
group velocity andω0 is the frequency close toωk0. In the
Fourier space breather can be written as follow:

bk(t) = e−i(Ω+Vk)tφk, (3.9)

whereΩ is close to
ωk0

2 .
Forφk the following equation is valid:

(Ω+Vk−ωk)φk =

∫

T̃ k2k3

kk1
φ∗k1
φk2φk3δk+k1−k2−k3dk1dk2dk3.

(3.10)

One can treatφk as pure real function ofk.
To solve equation (3.10) one can use Petviashvili iteration

method (Petviashvili, 1976; Lakoba and Yang, 2007) (n - is
the number of iteration):

(Ω+Vk−ωk)φn+1
k = Mn

∫

T̃ k2k3

kk1
φ∗k1

n
φn

k2
φn

k3
δk+k1−k2−k3dk1dk2dk3.(3.11)

Petviashvili coefficientMn is the following:

Mn =

















< φn
k(Ω+Vk−ωk)φn

k >

< φn
k

∫

T̃ k2k3

kk1
φ∗k1

nφn
k2
φn

k3
δk+k1−k2−k3dk1dk2dk3 >

















3
2

.

Angular brackets mean integration overk.
Below we present a typical numerical solution of (3.10).

Calculations were made in the periodic domain 2π with car-
rier wavenumberk0 ∼ 64,V = 1/16 andΩ = 4.01. In the Fig-
ures 1, 2, 3 one can see real part ofb(x), modulus ofb(x) and
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Figure 1. Real part ofb(x) with V = 1/16 andΩ = 4.01.
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Figure 2. Modulus ofb(x) with V = 1/16 andΩ = 4.01.

Fourier spectrum ofb(x). Modulus ofb(x) coincides with the
modulus ofB(x−Vt) if (3.8) and is similar to the wave en-
velope if we derive Nonlinear Schroedinger Equation from
(2.6).

To analyze the question about integrability of the equa-
tion (2.6) one can consider collision of breathers. It mightbe
elastic or nonelastic. In the papers (Dyachenko et al., 2012;
Fedele and Dutykh, 2012) there were considered one colli-
sion of two breathers. This collision was seamed to be elastic.
Here, in this paper, we consider multiple collisions to check
integrability numerically. For time-integration scheme 4-th
order Runge-Kutta method was used. The scheme is very ro-
bust and allows long-time simulation.

To study breathers collisions we performed the following
numerical simulation:

– As initial condition we have used two breathers sepa-
rated in space (distance was equal toπ.)

www.jn.net J. Name

Fig. 1.Real part ofb(x) with V = 1/16 and�= 4.01.

In K-space the Hamiltonian has the form:

H=

∫
ωk|bk|

2dk+

+
1

2

∫
T̃
k3k4
k1k2

b∗

k1
b∗

k2
bk3bk4δk1+k2−k3−k4dk1dk2dk3dk4. (4)

Here

T̃
kk1
k2k3

=

θ(k)θ(k1)θ(k2)θ(k3)

8π
[(kk1(k+ k1)+ k2k3(k2 + k3))−

− (kk2|k− k2|+kk3|k− k3| + k1k2|k1 − k2|+

+ k1k3|k1 − k3)], (5)

θ(k)=

{
0, if k ≤ 0;

1, if k > 0.

The Fourier transform is defined as follows:

b(x)=
1

√
2π

∞∫
−∞

bke
ikxdx,

whereb(x) can be analytically continued tox+ iy, y > 0.
The motion equation forbk should be understood as follows:

i
∂b

∂t
= P̂+

δH
δk∗

k

,

hereP̂+ - projection operator to the upper half-plane.

ˆ
P+2

= P̂+
=

1

2
(1− iĤ ).

This operator is the consequence ofθ functions in Eq. (4).
It keeps only positivek in the system of waves. (So, we
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consider self-consistent systems of waves propagating in the
same direction.)

The corresponding equation of motion is the following:

i
∂b

∂t
= ω̂kb +

i

4
P̂+

[
b∗
∂

∂x
(b′2)−

∂

∂x
(b∗′ ∂

∂x
b2)

]
−

−
1

2
P̂+

[
b · K̂(|b′

|
2)−

∂

∂x
(b′K̂(|b|2))

]
, (6)

or inK-space

i
∂bk

∂t
= ωkbk +

∫
T̃
k2k3
kk1

b∗

k1
bk2bk3δk+k1−k2−k3dk1dk2dk3. (7)

3 Breathers and numerical simulation of its collisions

A breather is the localized solution of Eq. (6) of the following
type:

b(x, t)= B(x−V t)ei(k0x−ω0t), (8)

wherek0 is the wavenumber of the carrier wave,V is the
group velocity andω0 is the frequency close toωk0. In the
Fourier space a breather can be written as follows:

bk(t)= e−i(�+V k)tφk, (9)

where� is close to
ωk0
2 .

Forφk the following equation is valid:

(�+V k−ωk)φk =

∫
T̃
k2k3
kk1

φ∗

k1
φk2φk3δk+k1−k2−k3dk1dk2dk3. (10)

One can treatφk as a pure real function ofk.
To solve Eq. (10), one can use the Petviashvili iteration

method (Petviashvili, 1976; Lakoba and Yang, 2007) (n is
the number of iterations):

(�+V k−ωk)φ
n+1
k =

Mn

∫
T̃
k2k3
kk1

φ∗

k1

n
φnk2
φnk3
δk+k1−k2−k3dk1dk2dk3. (11)
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Figure 3. Spectrum ofb(x) with V = 1/16 andΩ = 4.01.
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Figure 4. Initial condition with two breathers.

– First breather has the following parameters:Ω1 = 4.01,
V1 = 1/16. Carrier wave number appears to be∼ 64.

– For the second breather -Ω2 = 4.51,V2 = 1/18. Carrier
wave number appears to be∼ 81

This initial condition is shown in Figure 4. Its Fourier
spectrum is shown in Figure 5. After time π

(V1−V2) ≃ 452.4
breathers collides. In the Figure 6 one can see breathers
at the moment of collision (t = 452.4). Fourier spectrum of
two breathers att = 452.4 is shown in Figure 7. And finally
we show the picture of two breathers after 100 collisions
at t ∼ 88000 when they separated again at distance≃ π.The
initial condition and state after 100 breather collisions are
shown in Figure 8. Fourier spectrum of that is given in Fig-
ures 9. One can compare it with initial spectrum in 5. Small
radiation after 100 collisions is shown in Figure 10, which is
zoomed profile of|b(x)|. During numerical simulation the to-
tal energy was conserved up to ninth digit after decimal point.
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Figure 5. Initial Fourier spectrum|bk | of two breathers.

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0  1  2  3  4  5  6

R
e(

b)

x

Figure 6. Two breathers collides.

To make sure the quality of long-time calculations we per-
formed simulation with different time-steps. So, the simula-
tion demonstrates that after multiple collisions of breathers
there appears radiation. It points on nonelastic collisions and
nonintegrability of the equation (2.6).

4 Conclusions

We see that individual breathers are not differ from NLSE
solitons qualitatively. We have studied numerically interac-
tion of two breathers (solitons) with different values of car-
rier wave lengths. Interaction of such breathers cannot be de-
scribed by the NLSE even approximately.

Interaction of such solitons happens to be nonelastic. This
experimental fact requires additional study to prove nonin-
tegrability analytically. One can check 6-waves interaction
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4 A.I. Dyachenko: Collisions of two breathers

 1e-24

 1e-22

 1e-20

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0  100  200  300  400  500

|b
|

k

Figure 3. Spectrum ofb(x) with V = 1/16 andΩ = 4.01.

-0.0003

-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0  1  2  3  4  5  6

R
e(

b)

x

Figure 4. Initial condition with two breathers.

– First breather has the following parameters:Ω1 = 4.01,
V1 = 1/16. Carrier wave number appears to be∼ 64.

– For the second breather -Ω2 = 4.51,V2 = 1/18. Carrier
wave number appears to be∼ 81

This initial condition is shown in Figure 4. Its Fourier
spectrum is shown in Figure 5. After time π

(V1−V2) ≃ 452.4
breathers collides. In the Figure 6 one can see breathers
at the moment of collision (t = 452.4). Fourier spectrum of
two breathers att = 452.4 is shown in Figure 7. And finally
we show the picture of two breathers after 100 collisions
at t ∼ 88000 when they separated again at distance≃ π.The
initial condition and state after 100 breather collisions are
shown in Figure 8. Fourier spectrum of that is given in Fig-
ures 9. One can compare it with initial spectrum in 5. Small
radiation after 100 collisions is shown in Figure 10, which is
zoomed profile of|b(x)|. During numerical simulation the to-
tal energy was conserved up to ninth digit after decimal point.

 1e-24

 1e-22

 1e-20

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0  200  400  600  800  1000

|b
|

k

Figure 5. Initial Fourier spectrum|bk | of two breathers.

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0  1  2  3  4  5  6

R
e(

b)

x

Figure 6. Two breathers collides.
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The Petviashvili coefficientMn is the following:

Mn
=
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< φnk (�+V k−ωk)φ

n
k >

< φnk

∫
T̃
k2k3
kk1

φ∗

k1

nφnk2
φnk3
δk+k1−k2−k3dk1dk2dk3 >

] 3
2

.

The angular brackets mean integration overk.
Below we present a typical numerical solution of Eq. (10).

Calculations were made in the periodic domain 2π with
carrier wavenumberk0 ∼ 64, V = 1/16 and�= 4.01. In
Figs.1, 2, 3 one can see the real part ofb(x), the modulus
of b(x) and the Fourier spectrum ofb(x). The modulus of
b(x) coincides with the modulus ofB(x−V t) in Eq. (8) and
is similar to the wave envelope if we derive the nonlinear
Schrödinger equation from Eq. (6).

To analyze the question about the integrability of Eq. (6),
one can consider collision of breathers. It might be elastic or
nonelastic. In the papers (Dyachenko et al., 2012; Fedele and
Dutykh, 2012) one collision of two breathers was considered.
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– First breather has the following parameters:Ω1 = 4.01,
V1 = 1/16. Carrier wave number appears to be∼ 64.

– For the second breather -Ω2 = 4.51,V2 = 1/18. Carrier
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Fig. 6.Two breathers collide.

This collision seemed to be elastic. Here, in this paper, we
consider multiple collisions to check integrability numeri-
cally. For time-integration schemes, the 4-th order Runge–
Kutta method was used. The scheme is very robust and al-
lows long-term simulation.

To study breather collisions, we performed the following
numerical simulation:

– As the initial condition we have used two breathers
separated in space (distance was equal toπ .)

– The first breather has the following parameters:�1 =

4.01,V1 = 1/16. The carrier wave number appears to
be∼ 64.

– For the second breather,�2 = 4.51, V2 = 1/18. The
carrier wave number appears to be∼ 81.

This initial condition is shown in Fig.4.
Its Fourier spectrum is shown in Fig.5.
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coefficient on the resonant manifold. It is nonzero if the equa-
tion is nonintegrable.

This new equation (2.6) can be generalized for the ”al-
most” 2-D waves, or ”almost” 3-D fluid. When considering
waves slightly inhomogeneous in transverse direction, one
can think in the spirit of Kadomtsev-Petviashvili equation
for Korteveg-de-Vries equation, namely one can treat now
frequencyωk depending on bothkx andky asωkx ,ky , while
leaving coefficient T̃ kk1

k2k3
not depending ony. b now depends

on bothx andy:

H =
∫

b∗ω̂kx ,kybdxdy+
1
2

∫

|b′x|2
[ i
2

(bb′∗x − b∗b′x)− K̂x|b|2
]

dxdy.(4.12)
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Fig. 8. Modulus ofb(x) for two points in time. The solid line cor-
responds to the initial statement (t = 0), the dashed line to the state
after 100 breather collisions (t ∼ 88 000).

After time π
(V1−V2)

' 452.4, breathers collide. In Fig.6one
can see breathers at the moment of collision (t = 452.4).

The Fourier spectrum of two breathers att = 452.4 is
shown in Fig.7.

Finally we show the picture of two breathers after 100 col-
lisions att ∼ 88 000 when they separated again at distance
' π . The initial condition and state after 100 breather col-
lisions are shown in Fig.8. The Fourier spectrum of that is
given in Fig. 9. One can compare it with the initial spec-
trum in Fig. 5. Low radiation after 100 collisions is shown
in Fig. 10, which is a zoomed profile of|b(x)|. During nu-
merical simulation the total energy was conserved up to the
ninth digit after the decimal point. To ensure the quality of
long-term calculations, we performed simulation with differ-
ent time steps.
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So, the simulation demonstrates that after multiple colli-
sions of breathers, radiation appears. It points to nonelastic
collisions and the nonintegrability of Eq. (6).

4 Conclusions

We see that individual breathers are not different qualitatively
from NLSE solitons. We have studied numerically the inter-
action of two breathers (solitons) with different values of car-
rier wave lengths. Interaction of such breathers cannot be de-
scribed by the NLSE even approximately.

Interaction of such solitons happens to be nonelastic. This
experimental fact requires additional study to prove noninte-
grability analytically. One can check the 6-wave interaction
coefficient on the resonant manifold. It is nonzero if the equa-
tion is nonintegrable.
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This new Eq. (6) can be generalized for the “almost” 2-
D waves or “almost” 3-D fluids. When considering waves
slightly inhomogeneous in the transverse direction, one can
think in the spirit of the Kadomtsev–Petviashvili equation for
the Korteveg–de Vries equation, namely one can treat now
frequencyωk depending on bothkx andky asωkx ,ky , while

leaving coefficientT̃ kk1
k2k3

not depending ony. b now depends
on bothx andy:

H=

∫
b∗ω̂kx ,kybdxdy+

+
1

2

∫
|b′
x |

2
[
i

2
(bb′∗

x − b∗b′
x)− K̂x |b|

2
]

dxdy. (12)
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