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Energy Portrait of Rogue Waves
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Processes of the concentration of energy at the formation of rogue waves have been studied in computer
experiments based on the exact hydrodynamic equations for an ideal fluid. The distribution of anomalies of
waves both in height and in energy has been found in the computer experiment. Correlation between the
energy concentration and height of anomalously large surface waves has been revealed. The results can be
used to estimate the danger of anomalously large surface waves.
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1. INTRODUCTION

Rogue waves are sudden single surface waves with
large heights (up to 30 m). Their suddenness and high
amplitude pose serious danger to marine facilities.
Studies of these waves began in the last decades. Any
general theory of extreme waves is still absent. Rogue
waves are both of applied and theoretical interest [1, 2].

Computer experimental studies of rogue waves
have become most popular in recent years [3—8]. The
statistics of rogue waves appearing through the nonlin-
ear dynamics of surface waves of an ideal fluid were
studied in numerical experiments reported in our pre-
ceding works [9, 10]. The processes of concentration
of energy and momentum are quantitatively estimated
in the computer experiments in this work. The capa-
bilities of the numerical simulation of rogue waves
make it possible “to look into” the processes responsi-
ble for their formation.

2. COMPUTER EXPERIMENTS

In our computer experiments, we considered waves
traveling in one direction, which corresponds to rip-
ples in the ocean. The experiments were based on the
numerical solution of the Euler equation for an ideal
fluid with a free surface and infinite depth in two-
dimensional geometry:

—o<y<n(x, 1),
O0<x<2m.

The boundary conditions in the variable x were 27
periodic. It was assumed that a flow is potential and
the fluid is incompressible. Therefore,

v(x,y,1) = VO(x,p,1),

Thus, the potential of the velocity field of the fluid ®
satisfies the Laplace equation

AD(x,y,t) = 0.

For numerical calculations, we used the equations
in conformal variables obtained in [11]. Mathematical
problems of the correctness of these equations, as well
as problems of numerical calculations, were consid-
ered in [12—14]. The equations in conformal variables
make it possible to perform the necessary computer
experiments with a high accuracy in long time inter-
vals and to observe the appearance of rogue waves.

We performed the conformal mapping of the region
occupied by the fluid onto the lower half-plane, where
the coordinates are specified as w = u + iv. This map-
ping is specified by the function z = z(w), z =x + iy.

The dynamic equations written in the Dyachenko
variables

divv = 0.

=2

z, 0z
have the form
R(u,t) = i(UR' - U'R) - aR™,
W(u,t) = i(UV' =B'R)+g(R-1)—a V" +F,
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U= P(VR+VR),
B = P(VV).

Here, P= % (1 + iH) is the projection operator on the

lower half-plane, where H is an analog of the Hilbert
operator for the periodic case, which is given by the
expression

2n

HIf](w) = Lvp. ILCM
2n : tan[(u'—u)/2]

In these equations, dissipation was used to take into
account the possibility of the collapse of waves in the
course of evolution, as well as energy pumping. Energy
pumping served for the maintenance of the same
energy during the entire experiment and was switched
on when the energy of the system decreased below the
necessary level. This dissipation was also used in our
preceding work [10]. The form of pumping was modi-
fied in order to make it physically meaningful. Pump-
ing has the meaning of a surface force that acts on the
free surface and is proportional to the slope of the sur-
face:

dy
dx

The coefficients a and F,, were chosen empirically so
as to maintain a given energy level in the system. The
use of dissipation and pumping allows calculations in
an almost unlimited time interval.

Rogue waves are usually identified by the ampli-
tude criterion

F=F,

v(r) = HHma—("g)Zv* = 2.1,

where H,,,, is the maximum height and H is the signif-
icant height of waves (average of one-third of the high-
est waves). The critical value v* = 2.1 was chosen
empirically and was used in many studies of rogue
waves [1].

3. ENERGY CHARACTERISTICS
OF INDIVIDUAL WAVES

In our computer experiments, we considered a
train of waves periodic in the spatial variable. In this
case, the profile of the free surface is specified by the
function y = y(x, f), which is 2n-periodic in the vari-
able x. The region between two local minima of the
free surface is called an individual wave.

The energy E (kinetic energy 7 and potential
energy U), as well as the absolute value of the momen-
tum 7 (absolute values of the horizontal, I, and verti-
cal, I, projections of the momentum), can be calcu-
lated for each wave by hydrodynamic formulas. In
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Fig. 1. Profile of a typical rogue wave.

addition, we also calculated the geometric character-
istics of individual waves (amplitude A4, steepness M,
and curvature C).

For each characteristic, we calculated the ratio of
its maximum value to the average value for all waves in
the train at a fixed time; this ratio is called the concen-
tration of this characteristic:

Xmax
=T
N X
i=1
where X; (i = 1, ..., N) are the characteristics of indi-

vidual waves and X,,,, = maxJX;.
i

4. EXAMPLE OF THE FORMATION
OF A ROGUE WAVE

Numerous computer experiments on the simula-
tion of the nonlinear dynamics of surface waves were
performed in our previous works [9, 10] in order to
examine the statistics of the occurrence of rogue
waves. When extreme waves are formed, the processes
of concentration of energy and momentum are
observed. Concentration often occurs according to the
same scenario.

We consider below the characteristic example of
the formation of a rogue wave. In this experiment, the
initial field of waves consisted of a train of 53 waves
traveling in one direction. The square of average steep-
ness was p? = 3.72 x 1073, The duration of the experi-
ment was approximately 3525 periods. A rogue wave
appeared after 1412 periods. The profile of the free
surface at this time is shown in Fig. 1. The functional v
reached the value

v(r*) = 2.26.
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Fig. 2. Energy concentration at the (thin line with trian-
gles) initial time and (thick line) time of formation of the
rogue wave.

The concentration of the total energy at the time of
formation of the rogue wave is shown in Fig. 2 together
with the energy concentration at the initial time. It can
be seen that the distribution of the concentration at
the initial time is almost linear, whereas the largest
fraction of the energy at the time of formation of the
rogue wave is concentrated in the largest wave. The
concentration of the energy is Cp = 9.1. A similar pic-
ture is also characteristic of the momentum of the
rogue wave.

We now consider the joint two-dimensional distri-
bution of the parameter v and the concentration of the
total energy C for the largest wave at each time of the
computer experiment. In the overwhelming majority
(about 98%) of realizations, vy, and Cy satisfy nor-

mal probability distributions: v,,,, ~ N(1.54, 0.026)
and Cp ~ N(4.8, 0.895). The coefficient of correla-

tion between these quantities is 7 = 0.85.

We plot the scattering ellipse for this example,
which has the eccentricity e = 0.985 and ellipticity k =
0.029 (Fig. 3). The points inside the ellipse correspond

to {(Viax» C Emax} pairs satisfying a normal two-dimen-

sional distribution. The points outside the ellipse cor-
respond to {Vn,,, C } pairs that do not satisfy a nor-

mal distribution and correspond to anomalous waves
having either an anomalously high height or an anom-
alously high energy. It is noteworthy that their devia-
tions only toward higher values are observed.

Figure 4 shows the histogram of the average values
of the maximum concentrations of the energy and
momentum at the time of appearance of the rogue
wave according to the results of a large series of com-
puter experiments with various parameters of the ini-
tial waves.
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Fig. 3. Joint distribution of the parameters v, and C, .

It is also possible to construct a regression correla-
tion between the concentrations of the height and
energy of a rogue wave. In the results of numerous
computer experiments, we determined the concentra-
tions of the height and energy for rogue waves at the
time when the parameter v for them was maximal. The
resulting regression correlation is shown in Fig. 5. The
linear regression equation has the form y = 4.1x — 4.4.
The linear determination coefficient is R?> = 0.834.

Maximum concentration

Fig. 4. Average maximum concentrations of the (/) kinetic
energy, (2) total energy, (3) potential energy, (4) vertical
momentum component, (5) horizontal momentum com-
ponent, and (6) absolute value of the momentum.
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Fig. 5. Regression correlation between the concentrations
of the height and energy of rogue waves.

5. CONCLUSIONS

In summary, nonlinear processes of local concen-
tration of the energy at the time of formation of
extreme surface waves, i.e., rogue waves, have been
considered. Quantitative estimates of these processes
have been obtained. It has been shown that a single
anomalously large wave can concentrate the energy an
order of magnitude higher than the average energy of
neighboring waves.

Significant correlation between the amplitude cri-
terion of the rogue wave and energy concentration has
been demonstrated. This allows a new insight into the
definition of a rogue wave.
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