A study of two color optical breakdown of gas by investigation of irradiated terahertz pulses properties

AUTHORS:

D.A. Fadeev, V.A. Mironov

PRESENTER:

Daniil A. Fadeev

Institute of Applied Physics RAS, Nizhny Novgorod, Russia

Outline

- Background for THz generated with laser-plasma methods
- Importance of optical breakdown in THz generation studies
- Some features of numerical scheme and modeling
- Some general notes for breakdown with single fs pulse
- Bichromatic breakdown
 - THz source features
 - Varying parameters
 - THz radiation pattern

Background: THz generation from gas plasma

First observations in 1994 by H. Hamster, A. Sullivan, S. Gordon, R. W. Falcone, PRE 49 671 (1994)

A. Mysyrowicz, et. al. PRL 98, 235002, 2007

R. A. Akmedzhanov, I. E. Ilyakov, V. A. Mironov, E. V. Suvorov, D. A. Fadeevx, B. V. Shishkin, Radiophysics and Quantum Electronics **52**, 482 (2009)

D. J. Cook, R. M. Hochstrasser, Opt. Lett. **25**, 1210 (2000)

K. Y. Kim, J. H. Glownia, A. J. Taylor and G. Rodriguez, Opt. Exp. **25**, 4577 (2007)

A. Houard. Y. Liu, B. Prade, V. T. Tikhonchuk, A. Mysyrowicz, PRL **100**, 255006 (2008)

Closer look at two color scheme : broken symmetry and phase matching

Both E_{ω} , n_{ω} and $E_{2\omega}$, $n_{2\omega}$ harmonics are phase matched. Residual current is efficiently generated No phase matching for both E_{ω}, n_{ω} and $E_{2\omega}, n_{2\omega}$ harmonics. Residual current is not generated at all

THz radiation : model problem

THz radiation : waveform

$$\mathbf{E}(\omega, R) = \frac{ik_0 \exp(ik_0 R)}{cR} \left[\mathbf{n}, \left[\mathbf{n}, \int e^{-ik_0 \mathbf{r} \mathbf{n}} \mathbf{j}(\mathbf{r}, \omega) d^3 \mathbf{r} \right] \right]$$

Back to nonlinear light propagation

The most interesting features of THz radiation are expected to be explained by strongly nonlinear evolution of fs pulse during breakdown of air.

$$\tau = t - z/c, \quad z = z$$
ASSUMPTIONS:
$$\frac{2}{c} \frac{\partial^2 E}{\partial \tau \partial z} + \Delta_\perp E + \omega_p^2 E = 0$$

$$\frac{\partial n}{\partial \tau} = w_0 N_0 F^\alpha \exp\left(-\frac{1}{F}\right)$$

$$R = \frac{3}{2} \left(\frac{l}{l_H}\right)^{\frac{1}{2}} \frac{|E|}{E_0}$$
ASSUMPTIONS:
$$\frac{\partial Paraxial approximation}{\partial^2 / \partial z^2} = 0 \text{ in (1)}$$

$$\frac{\partial n}{\partial \tau} = w_0 N_0 F^\alpha \exp\left(-\frac{1}{F}\right)$$

Optical breakdown with quasi-monochromatic pulse

Focal lens length 40 cm.

Distance range $z \in (focal point - 2 cm .. focal point + 1 cm)$

Optical breakdown with quasi-monochromatic pulse

Optical breakdown with quasi-monochromatic pulse: schematic representation

Optical breakdown with bichromatic pulse : plasma channel

Bichromatic breakdown : refraction of components

Eω

Bichromatic optical breakdown : closer look at THz source

Bichromatic optical breakdown : closer look at THz source

Bichromatic optical breakdown : varying second harmonic amplitude

$$E\Big|_{z=0} = A_0 \exp\left(-\frac{\tau^2}{T^2}\right) \exp\left(-\frac{r^2}{R_0^2}\right) (\sin(\omega\tau - Cr^2) + F\sin(2\omega\tau - 2Cr^2 + \varphi))$$

Source of residual current along the propagation distance

For every F phase φ was tuned for optimal residual current generation. It was found that optimal phase is the same $\varphi = 0.4$

Bichromatic optical breakdown : optimal phase

Bichromatic optical breakdown : moving plasma front : THz radiation pattern

Field integrated from plasma string to a far zone:

$$\mathbf{E} \sim \frac{\exp(ik_0 R)}{R} \iiint \exp(i\mathbf{n}\mathbf{r})\mathbf{j}(\mathbf{r})d^3r$$

estimation

Some notes about numerical model

NUMERICAL SCHEME

 Δ_{\perp} operator representing transverse Laplassian in cylindrical coordinates written as Hermitian matrix

IMPLEMENTATION

All **GPU** design (**CUDA**)

$$i\omega\frac{\partial E}{\partial z} + \Delta_{\perp}E = 0$$

Inverse Laplassian operator is implemented in massive parallel way both by **r** and **r** directions

 $\frac{\partial n}{\partial \tau} = \mathbf{w}(|\mathbf{E}|)$

Implemented in GPU way each integration performed by portions in **shared memory**

coalesced read/write

12.000 steps on 512x1024 mesh are done in 5 minutes on below top GeForce gaming card GTX 770.

thnx for attention