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RHP with canonical normalization

EF(x,t, \) = & (2,8, \)G(x,t, \), \eR, lim £T(z,t,\) =1,

A—00
X (x,t,\) €GB
Consider particular type of dependence G(x,t, \):
0G B 0G I
— — = — — MK = 0.
ZE):C N, Gz, t,\)] =0, i~ NK,G(x,t,\)] =0

where J € h C g.
The canonical normalization of the RHP:

E5 (2,1, ) = exp Q(a,t, M), (,t, ) ZQk T, 1)\

where all Q(x,t) € g. However,

Tz, t,\) = 5 (x, 6, \)JE (2,8, ), Kz, t,\) = 5 (z, t, VKE (2,8, \),



belong to the algebra g for any J and K from g. If in addition K also
belongs to the Cartan subalgebra §, then

[j(ilj, ta >‘)7 IC(QZ, t, >\)] — O
Zakharov-Shabat theorem

Theorem 1. Let £¥(x,t, \) be solutions to the RHP whose sewing func-
tion depends on the auxiliary variables x and t as above. Then £*(x,t, \)
are fundamental solutions of the following set of differential operators:

Lt =125 U (€ (0,8 N) — M, €2 (1, 0)] = O,

Ox
L0t + kije ot 1
Mf ZW+V(x7ta)‘)€ (:Cata)‘)_)‘ [Kvg (ZU,t,/\) = 0.
Proof. Introduce the functions:
+
g (z,t,\) = zi{fi(w t,\) + NFET (@, t, N JEE (2, 8, ),
(%’i

pT(x,t,\) = z—fi(x tA) + NeeT (2, t, NV KET (2,8, \),



and using

G, ) G, B
’L% —>\ [J, G(le,t, )\)] —0, Za )\ [K,G(ﬂf,t, )\)] = 0.
prove that

gt (z, t,\) =g~ (z,t,N),  pT(z,t,\) =p (z,t,N),

which means that these functions are analytic functions of A in the whole
complex A-plane. Next we find that:

lim gt (z,t,\) = \*J, lim pt(z,t,\) = \°K.

A— 00 A— 00

and make use of Liouville theorem to get

k
g (@, 6, A) = g~ (2, t, A) = AT = Usu(z, )N,

=1

k
pt (@, t,\) =p~(x,t,A) = MK =) Vi(z, t)\" .
=1



We shall see below that the coefficients U;(x,t) and Vi(x,t) can be ex-
pressed in terms of the asymptotic coefficients @, of £¢*(x,t, \).
Now remember the definition of g™ (x, ¢, \)

+
gi(a:,t, A) = ziﬁi(a: t, ) —I—)\kfi(x t, )\)in(x t,\)

= \FJ — Z Ug(x, )AL,
=1
Multiply both sides by ¢ (z, ¢, \) and move all the terms to the left:

8£i

i—— +ZUZ 2, ONFTLEE (2, 8, ) = AR, €5 (2,8, \)] = 0,

=1
ie. LEF(z,t,)\) = 0. ]
Lemma 1. The operators L and M commute

[Lv M] =0,



i.e. the following set of equations hold:

oU oV I B
Y Sl — — A"K|=0.
ik + [U(x, t, ) = A, V(x,t, ) = A"K] =0
where
k k
Uz, t,A) =Y Up(z, t)AF! Ve, t,A) = Vi(z, )A*!

Jets of order k

How to parametrize U(z,t,\) and V(z,t, \)?
Use:

£ (2,1, A) = exp Q(x, 1, \), (2,, A) ZQk T, )\



and consider the jets of order k of J(z,\) and K(z, \):
I t,0) = (N (@, t, )A€ (2,8,0)) = AT = U, 1, ),
_|_
K(z,t,)\) = (Akgi(x, ENKEE (2,1, A)) — MK — V(z,t,\).
+

Express U(x) € g in terms of Q4(x):

T (x,t,\) = J+Z qadod,  K(t,A) = K+Z Had QK.

ad gz = [Q,Z], ad,Z = [Q,1Q, Z]],

and therefore for U; we get:

1
Ui(z,t) = —ad g, J, Us(z,t) = —ad g,J — iad 2Q1J

1 1
Us(z,t) = —ad g,J — 5( dg,ad g, +adg,adg,) J — gad?’ .

and similar expressions for V;(x,t) with J replaced by K.



Reductions of polynomial bundles

a) ATzt AN)A=E(21,)),  AQM(z,t,eX)A = —Q(z,t, N),
b) Be Y (x,t,eN)B = £ (x,t,)\),  BQ*(x,t,eN")B = Q(z,t,\),
c) C&PT(a,t,-NC =€ (v,t,)), CQN(x,t,-N)C = —Q(z,t,\),

where €2 = 1 and A, B and C are elements of the group & such that
A? = B? = C? = 1. As for the Zy-reductions we may have:

DE* (z,t,wA)D = €5 (x,t, N), DQ(z,t,wA\)D = Q(x,t, ),

where w® =1 and DV = 1.

On N-wave equations — £ =1

Zakharov, Shabat, Manakov (1974)



Lax representation involves two Lax operators linear in A:

+
LE* zz%% + [J,Q(x, )5 (x,t, \) — A[J, 5 (x,t,\)] = 0,
M¢* zﬁg—j + [, Q(x, )€ (£, A) = ALK, €5 (£, )] = 0.

The corresponding equations take the form:

|0 52] - 52| - QLK Qo) =0

ot or
0w us 7 = diag (ay. as. a
Q(ilf,t)— —v1 0 wue : g( 1,42, 3)7

K = diag (b1, ba, b3),



Then the 3-wave equations take the form:

8’&1 _ aip — ao (9’&1
(9?5 bl — b2 8x
8?1,2 as — as 8u2
— = * =0
ot bg — b3 ox * et s ’
(’9u3 a1 — as (9’&3

W_bl—bg ox

+ repeaususg = 0,

* ok
+ Kequjuy = 0,

where

R = al(bz — bg) — ag(bl — bg) + ag(bl — bg)

New 3-wave equations — k > 2
Let g = sl(3) and

0 w1 us qi1 w1 ws
Ql(%t): —v; 0 w2 |, Qz(ﬂf,t): —Z1 (22 W2
—vg —vy 0 —Z3 —Z2 (33



Fix up k£ = 2. Then the Lax pair becomes

+
LEF = i% + Uz, t, NS (2, t, \) — N2 J, 65 (2, t, \)] = 0,
L 0¢F n 2 ot _
M :ZW—FV(QZ,@)\)&. (ZC,t,)\)—)\ K,f (:L’,t,)\)]—(),

where

U = Uy + AT, = ([J, Q2(0) — L(17.Q1). Q1(:v)]) FALQ1

V=V, + AV = ([K, Q2(2)] — =[[K, Q1] Ql(w)]> + ALK, Q1]

Impose a Zs-reduction of type a) with A = diag(1,¢,1), €2 = 1. Thus
21 and ()2 get reduced into:

0 u; O 0 0 ws
Qi=|eu; 0 ux |, Qo = 0O 0 O :
0 eus 0 ws 0 0



and we obtain new type of integrable 3-wave equations:

. ou . ou . k(ar — a

Z(CLl — CLZ)@—; — ’L(bl — b2)8—331 + ERUSUS + € (211_ a;)) ’U,1|u2|2 — 0,
, ou , ou . k(ae —a

i(ag — ag)c?—tQ — i(bg — b?’)a—; + ekujus — € ((af_ a33)) up [Pus = 0,
, ous . ous ik O(ujus)

a1 = ag)ﬁ (b - bg)% B a1 —as Ox

apr —a as — a
o (St 2222y + e [uaf?) =
a1 — as a; — as

where

200 — a1 — a
k= ay(by — b3) —as(by — b3) + az(by — b2), U3 = ws + 2 ! 3U1U2.
2(0,1 —CL3)

The diagonal terms in the Lax representation are A-independent.



Two of them read:

. O|u 2 ) O|u 2 * * %

i(a1 — az) |8i| — 1(by — ba) |8;:‘ — er(uruguy — ujusus) = 0,
O|u 2 ) O|u 2 * * ok

i(az — a3) |3§| — 1(by — b3) |(9:12:‘ — er(uruguy — ujusug) = 0,

These relations are satisfied identically as a consequence of the NLEE.

New types of 4-wave interactions

The Lax pair for these new equations will be provided by:

Ly = Z?;:ﬁ + (Us(z,t) + AU (2,1) — N2 T)(x,t,\) = 0,
My = ’iﬁw

o7 T (Va(@,t) + AVa(e, 6) = ME)p(w, ¢, 4) =0,



where Uj(x,t) and V;(x,t) are fast decaying smooth functions taking
values in the Lie algebra so(5)

Ui@.t) = [J.Qu@. )], Uslz.t) = [J,Qalz. )] — %adQ o,
Vl(xvt) — [K,Q1<£C,t)], ‘/2(33775) — [Ka QQ(CUat)] — %adQ 1K-

Here ad g, X = [Q1(z, 1), X].
Assume Q1 (x,t) and Q2(x,t) to be generic elements of so(5):

Ql(fC,t) — Z (qcleoz —I_p(lyE—Oé) + T%Hel + T%H627
(IEA+

QQ(ZC,t> — Z (C]iEa +p(2)4E—Oé) + T%Hel + TgHega
(XEA+
J = CLlHel + CLQHeQ — dlag (CLl, as, 07 —az, _a’l)7
K =0bH,, +byH,, = diag (b1,bs,0, —by, —by),



Next we impose on Q1 (x,t) and Qz(x,t) the natural reduction
BoU (x,t, e)\*)TBo_l = U(x,t, \), By = diag(1,€,1,¢,1), € =1.
As a result:
Bo(x*(x,t,eN)) Byt = (x (2,6, X)), Bo(T(t,eX*)) Byt = (T(t, )7,

which provide p! = e(q¢l)*, p? = €(¢?)*. Then the Lax representation
will be a (rather complicated) system of 8 NLEE for the 8 independent
matrix elements ¢} and g¢2.

However we can impose additional Zs reduction condition

DeE(z,t, =N D = £ (xz,t, \), DQ(xz,t,—\)D = Q(x,t,\),
D =diag(1,-1,1,-1,1)



Ql(ﬂj, t) — ulEel—eg _|_ UQESQ _|_ u3E€1—|—62 _|_ le—el—i—eg _|_ UQE—GQ _|_ UBE—el—eg

(0 ur 0 ug 0
V1 0 U2 0 Us
= 0 V2 0 U9 0 y
U3 0 V2 0 U1
\ 0 vs 0 v; 0

QQ((L’,t) — u4E61 —|_ /U4E—61 —i_ leel —|_ w2H€2

w1 0 Uy 0 0
(O wy 0 0 0 \
= W4y 0 0 0 Uy ,
0 0 0 —wy O

\ 0 0 —vs 0 —w )

J=a1H., + azH., = diag (a1, az,0, —az, —a1),
K = blHel + b2H62 — dlag (b17 b27 07 _b27 _b1)7

Combining both reductions for the matrix elements of Q,(z,t) we have:

* k >k k
v = €uy, Vo = €Uy, U3 = €U, V4 = Uy,



The commutativity condition for the Lax pair

_ 0V2 8V1 ) 8U2 aUl 2 2 _

must hold identically with respect to A\. The terms proportional to A\?,
A3 and \? vanish identically. The term proportional to A and the -
independent term vanish provided (); satisfy the NLEE:

v, U
za—; _ za—tl + [Us, V4] + [U1, V1] = 0,
Z% — Z% + [UQ, VQ] = 0.



In components the corresponding NLEE:

— 2i(ay — ag)% + 2i(by — bg)% + Keus (eususz — uits — 2uy) = 0,
— 22'0,2% — Qibg% — r(uge(Juz|* — Jui]®) + 2usu} + 2euiuy) = 0,

— 2i(ay + ag)% + 2i(b1 + bg)% + Kug(eusus — ugug + 2uyg) = 0,

— 22'0,1% + Qibl% -+ z% (—(2a2 — a1)uius + (2a2 + aq)eusug)

4 i(2by — bl)a(l(;;uz) (20 + bl)ea(%i“3) — ki (2eus(jur|? — Jus|?)

+ eulug(\ul\Q + 3\u3|2) — u3u§(3\u1\2 + \u3|2)) = 0.

Let us now introduce

1
Uy = ug — %((al — az)urus + (a1 + az)eusus).
1



As a result we get:

ou;  Ke

— 22’(&1 — CLQ)— -+ 2’&(()1 — bg) — : Uo (2&1“4 + €d2U- U3 + (2&1 — &2)’&1”&2) = O,
a (4 u a1 + as)|u as|u
2 Y 2 ) ) 2 1 2 3 2101

— 2k(usUy + eujUy + ujususg) = 0,

. ou . ou K .
— 2i(ay + ag)—8t3 + 2i(by + b2) 8:133 + - us(€(2a1 + ag)usug — asuius + 2a1U4) = 0,
1
. 0Uy ., 0Uy ik Ougug ke Qudus
— 2ta1—— + 21b —
1 ot T 201 ox + a1 Ox a1 Ox

K *
- (2€Us(Jur|* — [us]?) + (eurug — ugu3)((2a1 — az)|u1]® + (2a1 + a2)lus|?)) =0,



One parameter family of MKdV and so(8)

Normally with each simple Lie algebra one can associate just one MKdV

eq.
The only exception is so(8) which allows a one-parameter family of

MKdV equations. The reason is that only so(8) has 3 as a double expo-
nent!



0
D = - [2a(0§m — V3¢10:q2) — V3[(3a + b)qs0.q3 + (3a — b)q30,q4]

301 (2062 + (a — D)@ + (a + b)) ] |

9, a-+b a—>b
0#]2:%(\@39@—66]2) [CLCI%+ 5 q; + 5 q;

0

. [ (a+b)d2g3 + V3q30,92 — V3[(3a + b)q10xq1 + 2bg10,q4]

Orq3 =
+ 3¢3 (2aq4 + (a —b)gq +(a+b)q§)],
Diqs = [ (@ — b)(02q4 — V3¢10,q2) — V3[(3a — b)q30,q1) — 2bq10,.g3]
(

+ 3q4 (2aq3 + (a — b)q (a—|—b)q%)].



Hamiltonian properties of the N-wave equa-
tions

For standard N-wave equations related to the simple Lie algebra g:

Introduce grading and basis compatible with it:
g= @ g (1)
k=0

Introduce basis in
glsl = p, glsl = l.c.{E:, hgt a = s}.
[ES, Ef'l = No g ESLY

a+p°
[H, By = a(H)ET
(Eo, F_.] = H..

The dual algebra also has a natural grading:
The phase space for the N-wave eqs. — co-adjoint orbit passing
through J



The non-trivial Poisson brackets are:

{’U,a(ib), u;(y)} — (5(1,_5(34((])5(33 - y) (2)

Generalization to polynomial bundles — Reyman, Kulish and Semenov-
Tian-Schanskii (1980)

For the new N-wave equations:

Consider Kac-Moody algebra g with elements the grading:

UN) =) UN, V(A=) VA, UV, egh

~ % 1~[>|< s]
- g

Lax operator contains Zi:o U, (2)\F~% where

US('CC) — Z us,oz(x)Eom

a,hgt a=s



Central extension:
504 — (Eou Cp)7

Eas gﬁ]p = ([Ea, Eﬁ]?"‘}Z?(EOw Eﬁ))v
where w,(X,Y) is a co-cycle.

O

oY

wp(X,Y):/ Res AP~ 1 <X(x,A),%(x,A)>.

— 00

Then the Lax equation acquires explicit Hamiltonian form. Some of the
Poisson brackets become:

{us,a(), um,p(7)} = —Na,gUstm,a+8(2)(T — y) + cOstm,pla,—g(Ea, Eg)d' (x — ).

(4)



Conclusions and open questions

More classes of new integrable equations: i) higher rank simple Lie
algebras; ii) different types of grading; iii) different power k of the
polynomials U(x,t, A\) and V(x,t, \) and iv) different reductions of
U and V.

These new NLEE must be Hamiltonian. View the jets U(x,t, \)
and V (x,t, ) as elements of co-adjoint orbits of some Kac-Moody
algebra.

Apply Zakharov-Shabat dressing method for constructing their V-
soliton solutions and study their interactions.

Analyze the Hamiltonian properties of the new N-wave equations
— work in progress.

Apply the above methods to twisted Kac-Moody algebras — work
in progress



Thank you for your
attention!



