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Introduction

Cigar-like magnetic structures, elongated along the
direction of the ambient magnetic field, are commonly
observed in planetary magnetosheaths close to the
magnetopause, in the solar wind and even near comets
(see, for instance, data obtained first time near the
Halley comet).
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Introduction

In these regions the plasma is characterized by a
relatively large β and a transverse (usually ionic)
temperature T⊥ larger than the parallel one T‖, such
that the condition for mirror instability

T⊥/T‖ − 1 > β−1

⊥

is fulfilled.

Here β⊥ = 8πp⊥/B
2 (similarly, β‖ = 8πp‖/B

2), where p⊥
and p‖ are the perpendicular and parallel plasma
pressures respectively. For this reason, these magnetic
structures are often associated with the nonlinear
development of the mirror instability, and called mirror
structures.
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Introduction

The mirror instability (MI) is a kinetic instability first
predicted by Vedenov and Sagdeev in 1957 using the
expansion ω/ωci ≪ 1. The growth rate

γ = |kz|vT‖i

2β‖√
πβ⊥

[
β⊥
β‖

− 1− 1

β⊥
− k2z
k2⊥

(
1 +

β⊥ − β‖

2

)
1

β⊥

]
.

Here ion distribution function f(v‖, v⊥) is assumed
bi-Maxwellian and electrons cold.

The applicability condition of MI γ/kz ≪ vT‖i
means that

ε =
2β⊥

2 + β⊥ − β‖

(
β⊥
β‖

− 1− 1

β⊥

)
≪ 1.
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Introduction

The MI has later on been extensively studied both
analytically and numerically, usually by means of
particle-in-cell (PIC) simulations. γ at fixed angle turns
out to increase linearly with the wavenumber k. As first
shown by Hasegawa (1969), the linear instability is
arrested at large k by finite ion Larmor radius (FLR)
effects. Later this effect was studied in details by many
authors (Hall, Pokhotelov, Sagdeev, Balikhin, etc.).
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Introduction

According to observations (Soucek, et. al., 2007), more
than half of mirror structures are magnetic holes
associated with maxima of the density and pressure
fluctuations. A typical depth of magnetic holes is about
20% from the mean magnetic field value and can
sometimes reach 50 %. Their characteristic width is of
the order of a few ion Larmor radii, and they display an
aspect ratio of about 7 to 10.

Other mirror structures are humps with relatively large
enhancement of the magnetic field amplitude, and are
associated with minima in the plasma density. The
presence of magnetic holes or humps was correlated with
the relatively small or large value of β.
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Introduction

A quantitative characterization of the statistically
dominant type of magnetic structures was presented by
Genot, et. al. (2007) and Soucek et. al. (2007), by
measuring the skewness of the magnetic fluctuations
whose negative or positive sign reflects the preference
towards magnetic holes or humps respectively. It turns
out that there exists a clear statistical correlation between
the skewness and the distance to the mirror instability
threshold. Slightly above threshold, quasi-sinusoidal
fluctuations dominate, while at further distance (which
often corresponds to larger values of β), magnetic humps
are preferably observed.
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Introduction

Magnetic holes are mainly observed both below or
slightly above threshold. Mirror structures are also
observed when the plasma is linearly stable, which may
be viewed as the signature of a bistability regime resulting
from a subcritical bifurcation. As well known, for such a
bifurcation, non trivial stationary states below threshold
are linearly unstable, while above threshold, initially
small-amplitude solutions undergo a sharp
(asymptotically blowing-up) transition to a large-amplitude
state.
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Main goals

The main goal of this paper is to study stationary
localized structures resulting from the balance of
magnetic and (both parallel and perpendicular) thermal
pressures, whose simplest description is provided by
anisotropic MHD.

Isotropic MHD equilibria are classically governed by the
Grad-Shafranov (GS) equation. We here revisit this
approach in the case of anisotropic electron and ion fluids
where the perpendicular and parallel pressures are given
by equations of state appropriate for the static character
of the solutions.
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Main goals

In this case, as well known (Grad, Shafranov, etc.), the
parallel component of the equation is satisfied identically
that allows to formulate a variational principle with a free
energy given by the space integral of the parallel tension:

F =

∫ (
B2

8π
− p‖

)
dr.

However, the MHD stationary equations, at least in the
two-dimensional geometry, turn out to be ill-posed due to
breaking. Therefore these equations require some
regularization. For nonlinear mirror modes, such
regularization originates from finite Larmor radius (FLR)
corrections.
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Main goals

This free energy can be matched with the weakly
nonlinear expression found perturbatively in our papers
(PRL, JETP Letters, 2007). It gives a key how one to
seek for stationary mirror structures.

In our previous papers we demonstrated that at the
weakly nonlinear stage of the MI the system above the MI
threshold has a blow-up behavior so that the final
saturated states should have amplitude of order 1. I.e. we
have subcritical bifurcation. In order to find possible
stationary states we should use exact nonlinear
equations.
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Anisotropic Grad-Shafranov equations

The pressure balance equation for a static anisotropic MHD
equilibrium is of the form

∂

∂xj
Πij = 0

where the tension tensor

Πij = Π⊥ (δij − bibj) + Π‖bibj, b = B/B,

Π⊥ = p⊥ +B2/(8π)

and

Π‖ = p‖ − B2/(8π).
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Anisotropic Grad-Shafranov equations

In usual notations these equations read as

0 = −∇ ·P+
1

c
[j×B] ,

where the current j= c
4π
∇×B, and the pressure tensor P is

Pij = p⊥ (δij − bibj) + p‖bibj.

The solvability conditions read B · (∇·P)=0, and j · (∇·P)=0.
The pressures p⊥ = Σαp⊥α and p‖ = Σαp‖α where the partial
pressures are expressed as

p⊥α = mαB
2

∫
µfαdv‖dµ,

p‖α = mαB

∫
v2‖fαdv‖dµ.
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Anisotropic Grad-Shafranov equations

The distribution functions fα satisfy the stationary drift kinetic
equations

v‖∇‖fα −
(
µ∇‖B +

eα
mα

∇‖φ
)∂fα
∂v‖

= 0,

∇‖ = b · ∇ denotes the gradient along B, v‖ the parallel
component of the particle velocity, φ the electric potential, and
µ = v2⊥/ (2B) the adiabatic invariant ( a parameter). These
equations are supplemented by

∑

α

eαB

∫
fαdv‖dµ = 0,

that allows one to eliminate φ.
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Identity in the parallel direction

We consider partial solutions of the kinetic equations
depending on the particle energy Wα = v2‖/2 + µB + (eα/mα)φ

and µ. In general, the solution can also depend on integrals
which label the magnetic field lines. The choice
fα = fα(Wα, µ) can be matched with the solution for weakly
nonlinear mirror modes. In this case p⊥,α and p‖,α are
functions of B only.
The anisotropic pressure balance equation reads

−∇
(
p⊥ +

B2

8π

)
+

[
1 +

4π

B2
(p⊥ − p‖)

]
(B · ∇)B

4π

+B(B · ∇)

(
p⊥ − p‖
B2

)
= 0.
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Identity in the parallel direction

Projection along the magnetic field gives

−∇‖p‖ −
4π
(
p⊥ − p‖

)

B2
∇‖

B2

8π
= 0,

which coincides with Eq. (9.2) (Shafranov,1966). It is
possible to prove that the solvability condition reduces to an
identity by means of both stationary kinetic equations and the
quasi-neutrality condition. Since the pressures depend on B
only, the identity also can be written as

p⊥ − p‖
B

= −dp‖
dB

.
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Identity in the parallel direction

The existence of this identity means that for stationary states,
the pressure balance provides only two scalar equations
which, together with the condition ∇ ·B = 0, leads to a closed
system of three equations for the three magnetic field
components.
Defining ∇⊥ = ∇− B−2B(B · ∇) , the perpendicular
component reads

−∇⊥p⊥ +
4π

B2
(p⊥ − p‖)∇⊥

B2

8π

+

[
1 +

4π

B2
(p⊥ − p‖)

] [ [∇×B]×B
]

4π
= 0,

which coincides with Eq. (9.3) of Shafranov’s review (1966).
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Anisotropic Grad-Shafranov equations

In two dimensions, defining the stream function ψ, such that
Bx = ∂ψ/∂y, By = −∂ψ/∂x, due to the identity, the equation
for Bz admits integration (like in Grad-Shafranov):

Bz

4π

(
1 +

4π

B2
(p⊥ − p‖)

)
= f(ψ).

When p⊥ − p‖ = 0), we have Bz = Bz(ψ), in full agreement
with the Grad-Shafranov reduction.
The equation for ψ has the form, which can be viewed
analogous to the Grad-Shafranov equation:

(
∇ψ · ∇(p⊥ +

B2
z

8π
)
)
− (p⊥ − p‖)

2B2

(
∇ψ · ∇

(
B2 − B2

z

))

= −(B2 − B2
z )

4π

[
1 +

4π

B2
(p⊥ − p‖)

]
∆ψ,
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Variational principle

In the purely two-dimensional geometry when Bz = 0 the
equation for ψ reduces to

∇ ·
{[

1 +
4π

B2
(p⊥ − p‖)

]
∇ψ
}

= 0.

Due to the identity, this equation follows from the variational
principle δF = 0 with

F =

∫ (
B2

8π
− p‖

)
dx dy ≡ −

∫
Π‖ dx dy.

Thus, all the two-dimensional stationary states in anisotropic
MHD are stationary points of the functional F . Its density is a
function of B only. In the special case of cold electrons, this
free energy turns out to identify with the Hamiltonian of the
static problem (Passot, Ruban, & Sulem, 2006).Variational principle and stationary mirror structures in a plasma with pressure anysotropy – p. 24



Variational principle

Similar equations arise in the context of pattern structures in
thermal convection. As shown by Ercolani, Indik, Newell,
Passot (2006) , such equations represent integrable
hydrodynamic systems. As in the usual one-dimensional gas
dynamics, these systems display breaking phenomena where
the solution looses its smoothness at finite distance, due to
the formation of folds. As a consequence, these models
require some regularization. In plasma case, this procedure,
corresponding to the replacement of
F → F + (ν/2)

∫
(∆ψ)2 dxdy with ν > 0, originates from finite

Larmor radius (FLR) corrections, which are, however, beyond
the drift approximation.
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Adiabatic approximation and lump for KPII

Mirror instability represents one of the slowest instabilities
known in plasma physics. Its characteristic frequencies are
much smaller than the ion gyro-frequency. Therefore it is
natural to apply the adiabatic arguments to construct the
equation of state. In the weakly nonlinear regime, as it was
demonstrated in our papers, the transition from the initial
homogeneous state is slow in time, so that, to leading order,
the distribution function fα as a function of µ and Wα retains
its form during the evolution. Therefore, the function fα(µ,Wα)

can be determined by matching with the initial distribution
function f (0)

α .
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Adiabatic approximation: matching

In the bi-Maxwellian case

f (0)
α = Aα exp

[
−
v2‖
v2‖α

− µB0mα

T⊥α

]
,

which corresponds to φ = 0 andWα =
v2
‖

2
+ µB0. Here T‖α and

T⊥α are the initial perpendicular and transverse temperatures,
B0 the initial homogeneous magnetic field, and

v‖α =
(
2T‖α/mα

)1/2
the parallel thermal velocity. As a result of

the matching, we get

fα(µ,Wα) = Aα exp
[
− 2Wα

v2‖α
+ µB0mα

( 1

T‖α
− 1

T⊥α

)]
.
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Adiabatic approximation and lump for KPII

This function has the Boltzmann form with respect to Wα but
display, at fixed Wα, an exponential growth relatively to µ
when T⊥α > T‖α, a necessary condition for MI. Such a growth,
however, leads to a singular behavior of

p‖ = n0(T‖i + T‖e)
1 + u

(1 + aeu)
ce (1 + aiu)

ci ,

where u = B/B0 − 1, aα = T⊥α/T‖α is the anisotropy
parameter fα, and cα = T‖α(T‖e + T‖i)

−1. The singularities at
u = −a−1

α correspond to

Bs = B0
aα − 1

aα
< B0.

For cold electrons, p‖ = n0T‖(1 + u)(1 + au)−1 displays a pole
singularity.
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Adiabatic approximation: regularization

The above singularities are presumably related to an
overestimated contribution from large µ, corresponding either
to small B or to large a transverse kinetic energy. In both
cases, the applicability of the drift approximation breaks down
and we are thus led to introduce some cut-off type correction
near µ∗

α. In a simple variant, we take

fα = C̃α exp(−mαWα/T‖α)

at µ > µ∗
α, with some positive constant C̃α , and fα retains its

original form for µ ≤ µ∗
α.
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KP lump

Next, it is possible to see F has the meaning of a free energy
because in the weakly nonlinear regime the behavior of the
mirror modes can be described by a generalized gradient
model, that in the 2D geometry reads

ut = −|̂ky|
δF

δu
, F =

∫ [
1

2

(
−εu2 + u

(
∂y
∂x

)2

u+ u2x

)
+
λ

3
u3

]
dxdy.

Here u = (B − B0)/B0, ε is the distance from the threshold,
the third term originates from the FLR, and nonlinear coupling
coefficient λ > 0 for bi-Maxwellian distributions. Irreversibility
is connected with the positiveness of operator |̂ky|: F can
decrease in time function (the latter provides by Landau ion
damping).
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KP lump

If one expands the functional F in series with respect to u
(assuming ψ = −B0(x+ ϕ) with ϕ→ 0 as |r| → ∞ putting
u ≈ ϕx), so that the mean magnetic field B0 is directed along
the y-axis) it is easy to establish that its expansion coincides
with F .
In particular, the quadratic term in this expansion defines the
MI threshold (for any distribution function!). For instance, from
here one can easily get the Vedenov-Sagdeev’ answer:

ε =
2β⊥

2 + β⊥ − β‖

(
β⊥
β‖

− 1− 1

β⊥

)
.
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KP lump

As well known, as ǫ→ 0, MI develops in quasi-transverse
directions:ϕx ≫ ϕy. In the stationary case ϕ is determined
from

Lϕ− λ∂x
(
ϕ2
x

)
= 0

where L = −ε∂xx + ∂yy − ∂xxxx is elliptic or hyperbolic
depending on the sign of ε. For ε < 0, L is elliptic and thus
invertible in the class of functions vanishing at infinity. In this
case the solution identifies with the soliton for KP equation
called lump (Petviashvili, 1976). In our notation, it reads
(Zakharov, Manakov, et al, 1979)

ϕx = −12|ε|
λ

(3 + ε2y2 − |ε|x2)
[3 + ε2y2 + |ε|x2]2

.

This function vanishes algebraically at infinity like r−2.
In the center region −2

√
−2
√

,
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Numerical results

The Petviashvili method allows to construct localized
stationary solution: δF = 0.

Figure 5: Fig. 1. Localized solution for ε = −0.002.
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Numerical results

The second approach is a generalization of the well known
gradient method which corresponds to a dissipative dynamics
along an auxiliary time-like variable τ of the form

ϕτ = −Γ̂(δF/δϕ),

with a positive definite linear operator Γ̂. The operator Γ̂ was
taken in a form giving stable computation, namely
Γ(kx, ky) = 1/[k2x + k2y + ν(k2x + k2y)

2].
It is clear that attractors in the phase space of the above
dynamical system are stable solutions of the equation.
Unstable solutions however cannot be found by this method.
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Numerical results
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Numerical results

Figure 6: Formation of a stable 1D solution in a gra-

dient computation
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