Robust energy transfer mechanism via precession resonance in nonlinear turbulent wave systems

Principal Investigator: Miguel D. Bustamante Postdocs: Brenda Quinn (IRC), Dan Lucas (SFI)

> Complex and Adaptive Systems Laboratory School of Mathematical Sciences University College Dublin

> > August 4th 2014

M D Bustamante (UCD

・ロト・(局)・(目)・(目)・(日)・(の)への

According to "folk" tradition ...

- Strong turbulence \implies Large amplitudes
- Wave turbulence theory \Longrightarrow Limit of infinitesimally small amplitudes

However, our research (PRL, 2014, in press) establishes the following: 1 2

¹http://arxiv.org/abs/1404.7833 ²http://arxiv.org/abs/1305.5517

According to "folk" tradition ...

- Strong turbulence \implies Large amplitudes
- Wave turbulence theory \Longrightarrow Limit of infinitesimally small amplitudes

However, our research (PRL, 2014, in press) establishes the following: ^{1 2}

• Turbulence is stronger at intermediate amplitudes

¹http://arxiv.org/abs/1404.7833 ²http://arxiv.org/abs/1305.5517

According to "folk" tradition ...

- Strong turbulence \implies Large amplitudes
- Wave turbulence theory \Longrightarrow Limit of infinitesimally small amplitudes

However, our research (PRL, 2014, in press) establishes the following: ^{1 2}

- Turbulence is stronger at intermediate amplitudes
- Wave turbulence theory can be developed at intermediate amplitudes

¹http://arxiv.org/abs/1404.7833 ²http://arxiv.org/abs/1305.5517

According to "folk" tradition ...

- Strong turbulence \implies Large amplitudes
- Wave turbulence theory \Longrightarrow Limit of infinitesimally small amplitudes

However, our research (PRL, 2014, in press) establishes the following: 1 2

- Turbulence is stronger at intermediate amplitudes
- Wave turbulence theory can be developed at intermediate amplitudes
- A new turbulence-generating mechanism is revealed:
 Precession resonance ⇒ strong energy transfers across scales

¹http://arxiv.org/abs/1404.7833 ²http://arxiv.org/abs/1305.5517

According to "folk" tradition ...

- Strong turbulence \implies Large amplitudes
- Wave turbulence theory \Longrightarrow Limit of infinitesimally small amplitudes

However, our research (PRL, 2014, in press) establishes the following: 1 2

- Turbulence is stronger at intermediate amplitudes
- Wave turbulence theory can be developed at intermediate amplitudes
- A new turbulence-generating mechanism is revealed:
 Precession resonance ⇒ strong energy transfers across scales
- We provide abundant evidence of this in a nonlinear PDE: Charney-Hasegawa-Mima equation

¹http://arxiv.org/abs/1404.7833 ²http://arxiv.org/abs/1305.5517

Many physical systems consist of nonlinearly interacting oscillations or waves:

Many physical systems consist of nonlinearly interacting oscillations or waves:

- Nonlinear circuits in electrical power systems
- High-intensity lasers
- Nonlinear photonics

Many physical systems consist of nonlinearly interacting oscillations or waves:

- Nonlinear circuits in electrical power systems
- High-intensity lasers
- Nonlinear photonics
- Gravity water waves in oceans
- Rossby-Haurwitz planetary waves in the atmosphere
- Drift waves in fusion plasmas, etc.

Many physical systems consist of nonlinearly interacting oscillations or waves:

- Nonlinear circuits in electrical power systems
- High-intensity lasers
- Nonlinear photonics
- Gravity water waves in oceans
- Rossby-Haurwitz planetary waves in the atmosphere
- Drift waves in fusion plasmas, etc.

These systems are characterised by:

- Extreme events, localised in space and time
- Strong nonlinear energy exchanges
- Out-of-equilibrium dynamics: chaos & turbulence

- One of the few consistent theories that deal with nonlinear exchanges
- Widely used in numerical prediction of ocean waves ³

³Gerbrand J Komen, Luigi Cavaleri, Mark Donelan, Klaus Hasselmann, S Hasselmann, and PAEM Janssen, *Dynamics and modelling of ocean waves*, Cambridge University Press, 1996

- One of the few consistent theories that deal with nonlinear exchanges
- Widely used in numerical prediction of ocean waves ³
- Produces mainly statistical predictions
- Makes ad-hoc hypotheses on correlations of the evolving quantities

³Gerbrand J Komen, Luigi Cavaleri, Mark Donelan, Klaus Hasselmann, S Hasselmann, and PAEM Janssen, *Dynamics and modelling of ocean waves*, Cambridge University Press, 1996

- One of the few consistent theories that deal with nonlinear exchanges
- Widely used in numerical prediction of ocean waves ³
- Produces mainly statistical predictions
- Makes ad-hoc hypotheses on correlations of the evolving quantities
- Requires infinitesimally small amplitudes

³Gerbrand J Komen, Luigi Cavaleri, Mark Donelan, Klaus Hasselmann, S Hasselmann, and PAEM Janssen, *Dynamics and modelling of ocean waves*, Cambridge University Press, 1996

- One of the few consistent theories that deal with nonlinear exchanges
- Widely used in numerical prediction of ocean waves ³
- Produces mainly statistical predictions
- Makes ad-hoc hypotheses on correlations of the evolving quantities
- Requires infinitesimally small amplitudes
- Requires infinitely extended spatial domains

³Gerbrand J Komen, Luigi Cavaleri, Mark Donelan, Klaus Hasselmann, S Hasselmann, and PAEM Janssen, *Dynamics and modelling of ocean waves*, Cambridge University Press, 1996

- One of the few consistent theories that deal with nonlinear exchanges
- Widely used in numerical prediction of ocean waves ³
- Produces mainly statistical predictions
- Makes ad-hoc hypotheses on correlations of the evolving quantities
- Requires infinitesimally small amplitudes
- Requires infinitely extended spatial domains

In real-life systems, hypotheses of classical wave turbulence do not hold:

³Gerbrand J Komen, Luigi Cavaleri, Mark Donelan, Klaus Hasselmann, S Hasselmann, and PAEM Janssen, *Dynamics and modelling of ocean waves*, Cambridge University Press, 1996

- One of the few consistent theories that deal with nonlinear exchanges
- Widely used in numerical prediction of ocean waves ³
- Produces mainly statistical predictions
- Makes ad-hoc hypotheses on correlations of the evolving quantities
- Requires infinitesimally small amplitudes
- Requires infinitely extended spatial domains

In real-life systems, hypotheses of classical wave turbulence do not hold:

- Amplitudes of the carrying fields are not infinitesimally small
- Spatial domains have a finite size
- Linear wave timescales are comparable with nonlinear oscillations' timescales

³Gerbrand J Komen, Luigi Cavaleri, Mark Donelan, Klaus Hasselmann, S Hasselmann, and PAEM Janssen, *Dynamics and modelling of ocean waves*, Cambridge University Press, 1996

Discrete and Mesoscopic Wave Turbulence: A theory in development $^{4\ 5\ 6}$

 Applications in nonlinear PDEs: Classical fluids – Quantum fluids – Nonlinear optics – Magneto-hydrodynamics – etc.

⁴V. S. L'Vov and S. Nazarenko, *Discrete and mesoscopic regimes of finite-size wave turbulence*, Phys. Rev. E **82** (2010), 056322–1

⁵V. E. Zakharov, Korotkevich A. O., A. N. Pushkarev, and Dyachenko A. I., *Mesoscopic wave turbulence*, JETP Letters **82** (2005), 487–491

Discrete and Mesoscopic Wave Turbulence: A theory in development $^{4\ 5\ 6}$

- Applications in nonlinear PDEs: Classical fluids Quantum fluids Nonlinear optics – Magneto-hydrodynamics – etc.
- We focus on the Charney-Hasegawa-Mima (CHM) equation, a PDE governing Rossby waves (atmosphere) and drift waves (plasmas):

$$(\nabla^2 - F)\frac{\partial \psi}{\partial t} + \beta \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial x} \frac{\partial \nabla^2 \psi}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial \nabla^2 \psi}{\partial x} = 0.$$

⁴V. S. L'Vov and S. Nazarenko, *Discrete and mesoscopic regimes of finite-size wave turbulence*, Phys. Rev. E **82** (2010), 056322–1

⁵V. E. Zakharov, Korotkevich A. O., A. N. Pushkarev, and Dyachenko A. I., *Mesoscopic wave turbulence*, JETP Letters **82** (2005), 487–491

⁶S. V. Nazarenko, *Sandpile behavior in discrete water-wave turbulence*, J. Stat. Mech. Theor. Exp. (2006), L02002

Discrete and Mesoscopic Wave Turbulence: A theory in development $^{4\ 5\ 6}$

- Applications in nonlinear PDEs: Classical fluids Quantum fluids Nonlinear optics – Magneto-hydrodynamics – etc.
- We focus on the Charney-Hasegawa-Mima (CHM) equation, a PDE governing Rossby waves (atmosphere) and drift waves (plasmas):

$$(\nabla^2 - F)\frac{\partial \psi}{\partial t} + \beta \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial x} \frac{\partial \nabla^2 \psi}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial \nabla^2 \psi}{\partial x} = 0.$$

- $\bullet\,$ In the plasma case $\psi({\bf x},t)(\in\mathbb{R})$ is the electrostatic potential
- $F^{-1/2}$ is the ion Larmor radius at the electron temperature
- β is a constant proportional to the mean plasma density gradient
- Periodic boundary conditions: $\mathbf{x} \in [0, 2\pi)^2$

⁴V. S. L'Vov and S. Nazarenko, *Discrete and mesoscopic regimes of finite-size wave turbulence*, Phys. Rev. E **82** (2010), 056322–1

⁵V. E. Zakharov, Korotkevich A. O., A. N. Pushkarev, and Dyachenko A. I., *Mesoscopic wave turbulence*, JETP Letters **82** (2005), 487–491

⁶S. V. Nazarenko, *Sandpile behavior in discrete water-wave turbulence*, J. Stat. Mech. Theor. Exp. (2006), L02002

•
$$\psi(\mathbf{x}, t) = \sum_{\mathbf{k} \in \mathbb{Z}^2} A_{\mathbf{k}}(t) e^{i\mathbf{k} \cdot \mathbf{x}}$$
 Wavevector: $\mathbf{k} = (k_x, k_y)$

A 🖓

3

- $\psi(\mathbf{x}, t) = \sum_{\mathbf{k} \in \mathbb{Z}^2} A_{\mathbf{k}}(t) e^{i\mathbf{k}\cdot\mathbf{x}}$ Wavevector: $\mathbf{k} = (k_x, k_y)$
- Components $A_{\mathbf{k}}(t)\,,\quad \mathbf{k}\in\mathbb{Z}^2$ satisfy the evolution equation

$$\dot{A}_{\mathbf{k}} + i\,\omega_{\mathbf{k}}\,A_{\mathbf{k}} = \frac{1}{2}\sum_{\mathbf{k}_{1},\mathbf{k}_{2}\in\mathbb{Z}^{2}} Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}}\,\delta_{\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}}\,A_{\mathbf{k}_{1}}\,A_{\mathbf{k}_{2}}$$
(1)

•
$$\omega_{\mathbf{k}} = \frac{-\beta k_x}{|\mathbf{k}|^2 + F}$$
 (linear frequencies)
• $Z_{\mathbf{k}_1 \mathbf{k}_2}^{\mathbf{k}} = (k_{1x} k_{2y} - k_{1y} k_{2x}) \frac{|\mathbf{k}_1|^2 - |\mathbf{k}_2|^2}{|\mathbf{k}|^2 + F}$ (interaction coefficients)
• δ is the Kronecker symbol

▲ 同 ▶ → 三 ▶

- $\psi(\mathbf{x}, t) = \sum_{\mathbf{k} \in \mathbb{Z}^2} A_{\mathbf{k}}(t) e^{i\mathbf{k}\cdot\mathbf{x}}$ Wavevector: $\mathbf{k} = (k_x, k_y)$
- Components $A_{\mathbf{k}}(t)\,,\quad \mathbf{k}\in\mathbb{Z}^2$ satisfy the evolution equation

$$\dot{A}_{\mathbf{k}} + i\,\omega_{\mathbf{k}}\,A_{\mathbf{k}} = \frac{1}{2}\sum_{\mathbf{k}_{1},\mathbf{k}_{2}\in\mathbb{Z}^{2}}Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}}\,\delta_{\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}}\,A_{\mathbf{k}_{1}}\,A_{\mathbf{k}_{2}}$$
(1)

•
$$\omega_{\mathbf{k}} = \frac{-\beta k_x}{|\mathbf{k}|^2 + F}$$
 (linear frequencies)
• $Z_{\mathbf{k}_1 \mathbf{k}_2}^{\mathbf{k}} = (k_{1x}k_{2y} - k_{1y}k_{2x})\frac{|\mathbf{k}_1|^2 - |\mathbf{k}_2|^2}{|\mathbf{k}|^2 + F}$ (interaction coefficients)
• δ is the Kronecker symbol

- Reality of $\psi \Longrightarrow A_{-\mathbf{k}} = A^*_{\mathbf{k}}$ (complex conjugate)
- The modes A_k interact in triads

イロト イポト イヨト イヨト 二日

- $\psi(\mathbf{x}, t) = \sum_{\mathbf{k} \in \mathbb{Z}^2} A_{\mathbf{k}}(t) e^{i\mathbf{k}\cdot\mathbf{x}}$ Wavevector: $\mathbf{k} = (k_x, k_y)$
- Components $A_{\mathbf{k}}(t)\,,\quad \mathbf{k}\in\mathbb{Z}^2$ satisfy the evolution equation

$$\dot{A}_{\mathbf{k}} + i\,\omega_{\mathbf{k}}\,A_{\mathbf{k}} = \frac{1}{2}\sum_{\mathbf{k}_{1},\mathbf{k}_{2}\in\mathbb{Z}^{2}} Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}}\,\delta_{\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}}\,A_{\mathbf{k}_{1}}\,A_{\mathbf{k}_{2}}$$
(1)

•
$$\omega_{\mathbf{k}} = \frac{-\beta k_x}{|\mathbf{k}|^2 + F}$$
 (linear frequencies)
• $Z_{\mathbf{k}_1 \mathbf{k}_2}^{\mathbf{k}} = (k_{1x} k_{2y} - k_{1y} k_{2x}) \frac{|\mathbf{k}_1|^2 - |\mathbf{k}_2|^2}{|\mathbf{k}|^2 + F}$ (interaction coefficients)

- δ is the Kronecker symbol
- Reality of $\psi \Longrightarrow A_{-\mathbf{k}} = A^*_{\mathbf{k}}$ (complex conjugate)
- The modes A_k interact in **triads**
- A triad is a group of any three spectral modes $A_{k_1}(t), A_{k_2}(t), A_{k_3}(t)$ whose wavevectors satisfy $\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3$
- Triad's linear frequency mismatch: $\omega_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3} \equiv \omega_{\mathbf{k}_1} + \omega_{\mathbf{k}_2} \omega_{\mathbf{k}_3}$

$$\dot{A}_{\mathbf{k}} + i\,\omega_{\mathbf{k}}\,A_{\mathbf{k}} = \frac{1}{2}\sum_{\mathbf{k}_{1},\mathbf{k}_{2}\in\mathbb{Z}^{2}}Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}}\,\delta_{\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}}\,A_{\mathbf{k}_{1}}\,A_{\mathbf{k}_{2}}\,.$$

Triad interactions: wavevectors satisfy $\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3$ Frequency mismatch: $\omega_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3} \equiv \omega_{\mathbf{k}_1} + \omega_{\mathbf{k}_2} - \omega_{\mathbf{k}_3}$

$$\dot{A}_{\mathbf{k}} + i\,\omega_{\mathbf{k}}\,A_{\mathbf{k}} = \frac{1}{2}\sum_{\mathbf{k}_{1},\mathbf{k}_{2}\in\mathbb{Z}^{2}}Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}}\,\delta_{\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}}\,A_{\mathbf{k}_{1}}\,A_{\mathbf{k}_{2}}\,.$$

Triad interactions: wavevectors satisfy $\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3$ Frequency mismatch: $\omega_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3} \equiv \omega_{\mathbf{k}_1} + \omega_{\mathbf{k}_2} - \omega_{\mathbf{k}_3}$

Classical wave turbulence theory requires |A_k| infinitesimally small
 ⇒ triad interactions with non-zero frequency mismatch can be eliminated via a quasi-identity transformation

$$\dot{A}_{\mathbf{k}} + i\,\omega_{\mathbf{k}}\,A_{\mathbf{k}} = \frac{1}{2}\sum_{\mathbf{k}_{1},\mathbf{k}_{2}\in\mathbb{Z}^{2}}Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}}\,\delta_{\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}}\,A_{\mathbf{k}_{1}}\,A_{\mathbf{k}_{2}}\,.$$

Triad interactions: wavevectors satisfy $\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3$ Frequency mismatch: $\omega_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3} \equiv \omega_{\mathbf{k}_1} + \omega_{\mathbf{k}_2} - \omega_{\mathbf{k}_3}$

- Classical wave turbulence theory requires |A_k| infinitesimally small ⇒ triad interactions with non-zero frequency mismatch can be eliminated via a quasi-identity transformation
- Key Observation:

At finite nonlinearity these interactions cannot be eliminated *a priori* because they take part in **triad precession resonances**

$$\dot{A}_{\mathbf{k}} + i\,\omega_{\mathbf{k}}\,A_{\mathbf{k}} = \frac{1}{2}\sum_{\mathbf{k}_{1},\mathbf{k}_{2}\in\mathbb{Z}^{2}}Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}}\,\delta_{\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}}\,A_{\mathbf{k}_{1}}\,A_{\mathbf{k}_{2}}\,.$$

Triad interactions: wavevectors satisfy $\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3$ Frequency mismatch: $\omega_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3} \equiv \omega_{\mathbf{k}_1} + \omega_{\mathbf{k}_2} - \omega_{\mathbf{k}_3}$

- Classical wave turbulence theory requires |A_k| infinitesimally small
 ⇒ triad interactions with non-zero frequency mismatch can be eliminated via a quasi-identity transformation
- Key Observation:

At finite nonlinearity these interactions cannot be eliminated *a priori* because they take part in **triad precession resonances**

We consider inertial-range dynamics, i.e. no forcing and no dissipation: enstrophy cascades to small scales respect enstrophy conservation.

\dots Now, we change gears \dots ⁷

CHM equation, Galerkin-truncated to N wavevectors: "Cluster" C_N :

$$\dot{A}_{\mathbf{k}} + i\,\omega_{\mathbf{k}}\,A_{\mathbf{k}} = \frac{1}{2}\sum_{\mathbf{k}_{1},\mathbf{k}_{2}\in\mathcal{C}_{N}}Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}}\,\delta_{\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}}\,A_{\mathbf{k}_{1}}\,A_{\mathbf{k}_{2}}\,,\quad\mathbf{k}\in\mathcal{C}_{N}$$

< /⊒ > <

- ×

CHM equation, Galerkin-truncated to N wavevectors: "Cluster" C_N :

$$\dot{A}_{\mathbf{k}} + i\,\omega_{\mathbf{k}}\,A_{\mathbf{k}} = \frac{1}{2}\sum_{\mathbf{k}_{1},\mathbf{k}_{2}\in\mathcal{C}_{N}}Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}}\,\delta_{\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}}\,A_{\mathbf{k}_{1}}\,A_{\mathbf{k}_{2}}\,,\quad\mathbf{k}\in\mathcal{C}_{N}$$

• Amplitude-phase representation: $A_{\mathbf{k}} = \sqrt{n_{\mathbf{k}}} \exp(i \phi_{\mathbf{k}})$

• nk: Wave Spectrum

CHM equation, Galerkin-truncated to N wavevectors: "Cluster" C_N :

$$\dot{A}_{\mathbf{k}} + i\,\omega_{\mathbf{k}}\,A_{\mathbf{k}} = \frac{1}{2}\sum_{\mathbf{k}_{1},\mathbf{k}_{2}\in\mathcal{C}_{N}}Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}}\,\delta_{\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}}\,A_{\mathbf{k}_{1}}\,A_{\mathbf{k}_{2}}\,,\quad\mathbf{k}\in\mathcal{C}_{N}$$

• Amplitude-phase representation: $A_{\mathbf{k}} = \sqrt{n_{\mathbf{k}}} \exp(i \phi_{\mathbf{k}})$

- n_k: Wave Spectrum
- Exact conservation in time of $E = \sum_{\mathbf{k} \in \mathbb{Z}^2} (|\mathbf{k}|^2 + F) n_{\mathbf{k}}$ (energy) and $\mathcal{E} = \sum_{\mathbf{k} \in \mathbb{Z}^2} |\mathbf{k}|^2 (|\mathbf{k}|^2 + F) n_{\mathbf{k}}$ (enstrophy)

CHM equation, Galerkin-truncated to N wavevectors: "Cluster" C_N :

$$\dot{A}_{\mathbf{k}} + i\,\omega_{\mathbf{k}}\,A_{\mathbf{k}} = \frac{1}{2}\sum_{\mathbf{k}_{1},\mathbf{k}_{2}\in\mathcal{C}_{N}}Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}}\,\delta_{\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}}\,A_{\mathbf{k}_{1}}\,A_{\mathbf{k}_{2}}\,,\quad\mathbf{k}\in\mathcal{C}_{N}$$

• Amplitude-phase representation: $A_{\mathbf{k}} = \sqrt{n_{\mathbf{k}}} \exp(i \phi_{\mathbf{k}})$

- n_k: Wave Spectrum
- Exact conservation in time of $E = \sum_{\mathbf{k} \in \mathbb{Z}^2} (|\mathbf{k}|^2 + F) n_{\mathbf{k}}$ (energy) and $\mathcal{E} = \sum |\mathbf{k}|^2 (|\mathbf{k}|^2 + F) n_{\mathbf{k}}$ (enstrophy)

$$\mathcal{E} = \sum_{\mathbf{k} \in \mathbb{Z}^2} |\mathbf{k}|^2 (|\mathbf{k}|^2 + F) n_{\mathbf{k}} ext{ (enstrophy)}$$

• The truly dynamical degrees of freedom are any N-2 linearly independent triad phases $\varphi_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3} \equiv \phi_{\mathbf{k}_1} + \phi_{\mathbf{k}_2} - \phi_{\mathbf{k}_3}$ and the N wave spectrum variables $n_{\mathbf{k}}$

CHM equation, Galerkin-truncated to N wavevectors: "Cluster" C_N :

$$\dot{A}_{\mathbf{k}} + i\,\omega_{\mathbf{k}}\,A_{\mathbf{k}} = \frac{1}{2}\sum_{\mathbf{k}_{1},\mathbf{k}_{2}\in\mathcal{C}_{N}}Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}}\,\delta_{\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}}\,A_{\mathbf{k}_{1}}\,A_{\mathbf{k}_{2}}\,,\quad\mathbf{k}\in\mathcal{C}_{N}$$

• Amplitude-phase representation: $A_{\mathbf{k}} = \sqrt{n_{\mathbf{k}}} \exp(i \phi_{\mathbf{k}})$

- n_k: Wave Spectrum
- Exact conservation in time of $E = \sum_{\mathbf{k} \in \mathbb{Z}^2} (|\mathbf{k}|^2 + F) n_{\mathbf{k}}$ (energy) and $\mathcal{E} = \sum |\mathbf{k}|^2 (|\mathbf{k}|^2 + F) n_{\mathbf{k}}$ (enstrophy)

$$\mathcal{E} = \sum_{\mathbf{k} \in \mathbb{Z}^2} |\mathbf{k}|^2 (|\mathbf{k}|^2 + F) n_{\mathbf{k}} \text{ (enstrophy)}$$

- The truly dynamical degrees of freedom are any N-2 linearly independent triad phases $\varphi_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3} \equiv \phi_{\mathbf{k}_1} + \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_3}$ and the N wave spectrum variables $n_{\mathbf{k}}$
- These 2N 2 degrees of freedom form a closed system
- Individual phases $\phi_{\mathbf{k}}$ are "slave": obtained by quadrature

Closed system for the 2N - 2 truly dynamical variables:

$$\dot{n}_{\mathbf{k}} = \sum_{\mathbf{k}_{1},\mathbf{k}_{2}} Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} \delta_{\mathbf{k}-\mathbf{k}_{1}-\mathbf{k}_{2}} (n_{\mathbf{k}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \cos \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} , \qquad (2)$$

$$\dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} = \sin \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} (n_{\mathbf{k}_{3}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \left[\frac{Z_{\mathbf{k}_{2}\mathbf{k}_{3}}^{\mathbf{k}_{1}}}{n_{\mathbf{k}_{1}}} + \frac{Z_{\mathbf{k}_{3}\mathbf{k}_{1}}^{\mathbf{k}_{2}}}{n_{\mathbf{k}_{2}}} - \frac{Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}}{n_{\mathbf{k}_{3}}} \right]$$

$$- \omega_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} + \text{NNTT}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} , \qquad (3)$$

where the second equation applies to any triad $(\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3)$.

Closed system for the 2N - 2 truly dynamical variables:

$$\dot{n}_{\mathbf{k}} = \sum_{\mathbf{k}_{1},\mathbf{k}_{2}} Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} \delta_{\mathbf{k}-\mathbf{k}_{1}-\mathbf{k}_{2}} (n_{\mathbf{k}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \cos \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} , \qquad (2)$$

$$\dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} = \sin \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} (n_{\mathbf{k}_{3}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \left[\frac{Z_{\mathbf{k}_{2}\mathbf{k}_{3}}^{\mathbf{k}_{1}}}{n_{\mathbf{k}_{1}}} + \frac{Z_{\mathbf{k}_{3}\mathbf{k}_{1}}^{\mathbf{k}_{2}}}{n_{\mathbf{k}_{2}}} - \frac{Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}}{n_{\mathbf{k}_{3}}} \right]$$

$$- \omega_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} + \text{NNTT}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} , \qquad (3)$$

where the second equation applies to any triad $(\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3)$.

• ${\rm NNTT}_{k_1k_2}^{k_3}$: "nearest-neighbouring-triad terms"; these are nonlinear terms similar to the first line in Eq. (3)

Closed system for the 2N - 2 truly dynamical variables:

$$\dot{n}_{\mathbf{k}} = \sum_{\mathbf{k}_{1},\mathbf{k}_{2}} Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} \delta_{\mathbf{k}-\mathbf{k}_{1}-\mathbf{k}_{2}} (n_{\mathbf{k}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \cos \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} , \qquad (2)$$

$$\dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} = \sin \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} (n_{\mathbf{k}_{3}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \left[\frac{Z_{\mathbf{k}_{2}\mathbf{k}_{3}}^{\mathbf{k}_{1}}}{n_{\mathbf{k}_{1}}} + \frac{Z_{\mathbf{k}_{3}\mathbf{k}_{1}}^{\mathbf{k}_{2}}}{n_{\mathbf{k}_{2}}} - \frac{Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}}{n_{\mathbf{k}_{3}}} \right]$$

$$- \omega_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} + \text{NNTT}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} , \qquad (3)$$

where the second equation applies to any triad $(\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3)$.

- ${\rm NNTT}_{k_1k_2}^{k_3}$: "nearest-neighbouring-triad terms"; these are nonlinear terms similar to the first line in Eq. (3)
- Any dynamical process in the original system results from the dynamics of equations (2)–(3)

$$\dot{n}_{\mathbf{k}} = \sum_{\mathbf{k}_{1},\mathbf{k}_{2}} Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} \delta_{\mathbf{k}-\mathbf{k}_{1}-\mathbf{k}_{2}} (n_{\mathbf{k}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \cos \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} ,$$

$$\dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} = \sin \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} (n_{\mathbf{k}_{3}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \left[\frac{Z_{\mathbf{k}_{2}\mathbf{k}_{3}}^{\mathbf{k}_{1}}}{n_{\mathbf{k}_{1}}} + \frac{Z_{\mathbf{k}_{3}\mathbf{k}_{1}}^{\mathbf{k}_{2}}}{n_{\mathbf{k}_{2}}} - \frac{Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}}{n_{\mathbf{k}_{3}}} \right]$$

$$- \omega_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} + \text{NNTT}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} .$$

Triad phases $\varphi_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3}$ versus spectrum variables $\mathit{n}_{\mathbf{k}}$:

3

$$\dot{n}_{\mathbf{k}} = \sum_{\mathbf{k}_{1},\mathbf{k}_{2}} Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} \delta_{\mathbf{k}-\mathbf{k}_{1}-\mathbf{k}_{2}} (n_{\mathbf{k}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \cos \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}},$$

$$\dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} = \sin \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} (n_{\mathbf{k}_{3}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \left[\frac{Z_{\mathbf{k}_{2}\mathbf{k}_{3}}^{\mathbf{k}_{1}}}{n_{\mathbf{k}_{1}}} + \frac{Z_{\mathbf{k}_{3}\mathbf{k}_{1}}^{\mathbf{k}_{2}}}{n_{\mathbf{k}_{2}}} - \frac{Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}}{n_{\mathbf{k}_{3}}} \right]$$

$$- \omega_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} + \text{NNTT}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}.$$

Triad phases $\varphi_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3}$ versus spectrum variables $n_{\mathbf{k}}$:

- Wave spectra $n_{\mathbf{k}}$ contribute directly to the energy of the system
- $\varphi_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3}$ have a contribution that is more subtle

$$\dot{n}_{\mathbf{k}} = \sum_{\mathbf{k}_{1},\mathbf{k}_{2}} Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} \delta_{\mathbf{k}-\mathbf{k}_{1}-\mathbf{k}_{2}} (n_{\mathbf{k}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \cos \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}},$$

$$\dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} = \sin \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} (n_{\mathbf{k}_{3}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \left[\frac{Z_{\mathbf{k}_{2}\mathbf{k}_{3}}^{\mathbf{k}_{1}} + \frac{Z_{\mathbf{k}_{3}\mathbf{k}_{1}}^{\mathbf{k}_{2}}}{n_{\mathbf{k}_{2}}} - \frac{Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}}{n_{\mathbf{k}_{3}}} \right]$$

$$- \omega_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} + \text{NNTT}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}.$$

Triad phases $\varphi_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3}$ versus spectrum variables $n_{\mathbf{k}}$:

- Wave spectra $n_{\mathbf{k}}$ contribute directly to the energy of the system
- $\varphi_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3}$ have a contribution that is **more subtle**
- The RHS of $\dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}$ -equation admits, under plausible hypotheses, a zero-mode (in time): $\Omega_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} \equiv \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} \dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}(t') dt'$
- This is by definition the precession frequency of the triad phase

$$\dot{n}_{\mathbf{k}} = \sum_{\mathbf{k}_{1},\mathbf{k}_{2}} Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} \delta_{\mathbf{k}-\mathbf{k}_{1}-\mathbf{k}_{2}} (n_{\mathbf{k}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \cos \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}},$$

$$\dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} = \sin \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} (n_{\mathbf{k}_{3}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \left[\frac{Z_{\mathbf{k}_{2}\mathbf{k}_{3}}^{\mathbf{k}_{1}} + \frac{Z_{\mathbf{k}_{3}\mathbf{k}_{1}}^{\mathbf{k}_{2}}}{n_{\mathbf{k}_{2}}} - \frac{Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}}{n_{\mathbf{k}_{3}}} \right]$$

$$- \omega_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} + \text{NNTT}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}.$$

Triad phases $\varphi_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3}$ versus spectrum variables $n_{\mathbf{k}}$:

- Wave spectra $n_{\mathbf{k}}$ contribute directly to the energy of the system
- $\varphi_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3}$ have a contribution that is more subtle
- The RHS of $\dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}$ -equation admits, under plausible hypotheses, a zero-mode (in time): $\Omega_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} \equiv \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} \dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}(t') dt'$
- This is by definition the precession frequency of the triad phase
- Typically it does not perturb the energy dynamics, except when ...

$$\dot{n}_{\mathbf{k}} = \sum_{\mathbf{k}_{1},\mathbf{k}_{2}} Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} \delta_{\mathbf{k}-\mathbf{k}_{1}-\mathbf{k}_{2}} (n_{\mathbf{k}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \cos \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} ,$$

$$\dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} = \sin \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} (n_{\mathbf{k}_{3}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \left[\frac{Z_{\mathbf{k}_{2}\mathbf{k}_{3}}^{\mathbf{k}_{1}} + \frac{Z_{\mathbf{k}_{3}\mathbf{k}_{1}}^{\mathbf{k}_{2}}}{n_{\mathbf{k}_{2}}} - \frac{Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}}{n_{\mathbf{k}_{3}}} \right]$$

$$- \omega_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} + \text{NNTT}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} .$$

... when the triad precession frequency $\left(\Omega_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3} = \langle \dot{\varphi}_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3} \rangle \right)$ matches one of the typical nonlinear frequencies of the triad variables, then:

$$\dot{n}_{\mathbf{k}} = \sum_{\mathbf{k}_{1},\mathbf{k}_{2}} Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} \delta_{\mathbf{k}-\mathbf{k}_{1}-\mathbf{k}_{2}} (n_{\mathbf{k}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \cos \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} ,$$

$$\dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} = \sin \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} (n_{\mathbf{k}_{3}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \left[\frac{Z_{\mathbf{k}_{2}\mathbf{k}_{3}}^{\mathbf{k}_{1}} + \frac{Z_{\mathbf{k}_{3}\mathbf{k}_{1}}^{\mathbf{k}_{2}}}{n_{\mathbf{k}_{2}}} - \frac{Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}}{n_{\mathbf{k}_{3}}} \right]$$

$$- \omega_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} + \text{NNTT}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} .$$

... when the triad precession frequency $\left(\Omega_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3} = \langle \dot{\varphi}_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3} \rangle \right)$ matches one of the typical nonlinear frequencies of the triad variables, then:

- The RHS of $\dot{n}_{\mathbf{k}}$ -equation will develop a zero-mode (in time) \implies sustained growth of energy in $n_{\mathbf{k}}$, for some wavevector(s) k
- We call this a triad precession/nonlinear frequency resonance

$$\dot{n}_{\mathbf{k}} = \sum_{\mathbf{k}_{1},\mathbf{k}_{2}} Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} \delta_{\mathbf{k}-\mathbf{k}_{1}-\mathbf{k}_{2}} (n_{\mathbf{k}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \cos \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}},$$

$$\dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} = \sin \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} (n_{\mathbf{k}_{3}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \left[\frac{Z_{\mathbf{k}_{2}\mathbf{k}_{3}}^{\mathbf{k}_{1}} + \frac{Z_{\mathbf{k}_{3}\mathbf{k}_{1}}^{\mathbf{k}_{2}}}{n_{\mathbf{k}_{2}}} - \frac{Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}}{n_{\mathbf{k}_{3}}} \right]$$

$$- \omega_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} + \text{NNTT}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}.$$

...when the triad precession frequency $\left(\Omega_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3} = \langle \dot{\varphi}_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3} \rangle \right)$ matches one of the typical nonlinear frequencies of the triad variables, then:

- The RHS of $\dot{n}_{\mathbf{k}}$ -equation will develop a zero-mode (in time) \implies sustained growth of energy in $n_{\mathbf{k}}$, for some wavevector(s) k
- We call this a triad precession/nonlinear frequency resonance

When several triads are involved in precession resonance:

Strong fluxes of enstrophy through the network of interconnected triads, coherent collective oscillations, and cascades towards small scales.

$$\dot{n}_{\mathbf{k}} = \sum_{\mathbf{k}_{1},\mathbf{k}_{2}} Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} \delta_{\mathbf{k}-\mathbf{k}_{1}-\mathbf{k}_{2}} (n_{\mathbf{k}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \cos \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} ,$$

$$\dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} = \sin \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} (n_{\mathbf{k}_{3}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \left[\frac{Z_{\mathbf{k}_{2}\mathbf{k}_{3}}^{\mathbf{k}_{1}}}{n_{\mathbf{k}_{1}}} + \frac{Z_{\mathbf{k}_{3}\mathbf{k}_{1}}^{\mathbf{k}_{2}}}{n_{\mathbf{k}_{3}}} - \frac{Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}}{n_{\mathbf{k}_{3}}} \right]$$

$$- \omega_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} + \text{NNTT}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} .$$

- Resonance is accessible via initial-condition manipulation
- Simple overall re-scaling of initial spectrum: $n_{\mathbf{k}} \rightarrow \alpha n_{\mathbf{k}}$ for all \mathbf{k}
- \bullet Linear frequency mismatch $\omega_{{\bf k}_1 {\bf k}_2}^{{\bf k}_3}$ must be nonzero for some triad

$$\dot{n}_{\mathbf{k}} = \sum_{\mathbf{k}_{1},\mathbf{k}_{2}} Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} \delta_{\mathbf{k}-\mathbf{k}_{1}-\mathbf{k}_{2}} (n_{\mathbf{k}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \cos \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} ,$$

$$\dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} = \sin \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} (n_{\mathbf{k}_{3}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \left[\frac{Z_{\mathbf{k}_{2}\mathbf{k}_{3}}^{\mathbf{k}_{1}}}{n_{\mathbf{k}_{1}}} + \frac{Z_{\mathbf{k}_{3}\mathbf{k}_{1}}^{\mathbf{k}_{2}}}{n_{\mathbf{k}_{3}}} - \frac{Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}}{n_{\mathbf{k}_{3}}} \right]$$

$$- \omega_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} + \text{NNTT}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} .$$

- Resonance is accessible via initial-condition manipulation
- Simple overall re-scaling of initial spectrum: $n_{\mathbf{k}} \rightarrow \alpha n_{\mathbf{k}}$ for all \mathbf{k}
- Linear frequency mismatch $\omega_{{\bf k}_1 {\bf k}_2}^{{f k}_3}$ must be nonzero for some triad

$$\dot{n}_{\mathbf{k}} = \sum_{\mathbf{k}_{1},\mathbf{k}_{2}} Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} \delta_{\mathbf{k}-\mathbf{k}_{1}-\mathbf{k}_{2}} (n_{\mathbf{k}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \cos \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} ,$$

$$\dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} = \sin \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} (n_{\mathbf{k}_{3}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \left[\frac{Z_{\mathbf{k}_{2}\mathbf{k}_{3}}^{\mathbf{k}_{1}}}{n_{\mathbf{k}_{1}}} + \frac{Z_{\mathbf{k}_{3}\mathbf{k}_{1}}^{\mathbf{k}_{2}}}{n_{\mathbf{k}_{3}}} - \frac{Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}}{n_{\mathbf{k}_{3}}} \right]$$

$$- \omega_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} + \text{NNTT}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} .$$

- Resonance is accessible via initial-condition manipulation
- Simple overall re-scaling of initial spectrum: $n_{\mathbf{k}} \rightarrow \alpha n_{\mathbf{k}}$ for all \mathbf{k}
- \bullet Linear frequency mismatch $\omega_{{\bf k}_1 {\bf k}_2}^{{\bf k}_3}$ must be nonzero for some triad

•
$$\dot{n}_{\mathbf{k}} \propto (n_{\mathbf{k}})^{3/2} \Longrightarrow$$
 nonlinear frequency: $\Gamma \propto \alpha^{rac{1}{2}}$

$$\dot{n}_{\mathbf{k}} = \sum_{\mathbf{k}_{1},\mathbf{k}_{2}} Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} \delta_{\mathbf{k}-\mathbf{k}_{1}-\mathbf{k}_{2}} (n_{\mathbf{k}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \cos \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} ,$$

$$\dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} = \sin \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} (n_{\mathbf{k}_{3}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \left[\frac{Z_{\mathbf{k}_{2}\mathbf{k}_{3}}^{\mathbf{k}_{1}}}{n_{\mathbf{k}_{1}}} + \frac{Z_{\mathbf{k}_{3}\mathbf{k}_{1}}^{\mathbf{k}_{2}}}{n_{\mathbf{k}_{3}}} - \frac{Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}}{n_{\mathbf{k}_{3}}} \right]$$

$$- \omega_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} + \text{NNTT}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} .$$

- Resonance is accessible via initial-condition manipulation
- Simple overall re-scaling of initial spectrum: $n_{\mathbf{k}} \rightarrow \alpha n_{\mathbf{k}}$ for all \mathbf{k}
- \bullet Linear frequency mismatch $\omega_{{\bf k}_1 {\bf k}_2}^{{\bf k}_3}$ must be nonzero for some triad

•
$$\dot{n}_{\mathbf{k}} \propto (n_{\mathbf{k}})^{3/2} \Longrightarrow$$
 nonlinear frequency: $\Gamma \propto \alpha^{\frac{1}{2}}$

•
$$\dot{\varphi}^{\mathbf{k}_3}_{\mathbf{k}_1\mathbf{k}_2}$$
 equation \Longrightarrow triad precession: $\Omega^{\mathbf{k}_3}_{\mathbf{k}_1\mathbf{k}_2} \sim C \, \alpha^{\frac{1}{2}} - \omega^{\mathbf{k}_3}_{\mathbf{k}_1\mathbf{k}_2}$

$$\dot{n}_{\mathbf{k}} = \sum_{\mathbf{k}_{1},\mathbf{k}_{2}} Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} \delta_{\mathbf{k}-\mathbf{k}_{1}-\mathbf{k}_{2}} (n_{\mathbf{k}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \cos \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}} ,$$

$$\dot{\varphi}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} = \sin \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} (n_{\mathbf{k}_{3}} n_{\mathbf{k}_{1}} n_{\mathbf{k}_{2}})^{\frac{1}{2}} \left[\frac{Z_{\mathbf{k}_{2}\mathbf{k}_{3}}^{\mathbf{k}_{1}}}{n_{\mathbf{k}_{1}}} + \frac{Z_{\mathbf{k}_{3}\mathbf{k}_{1}}^{\mathbf{k}_{2}}}{n_{\mathbf{k}_{3}}} - \frac{Z_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}}{n_{\mathbf{k}_{3}}} \right]$$

$$- \omega_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} + \text{NNTT}_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}} .$$

- Resonance is accessible via initial-condition manipulation
- Simple overall re-scaling of initial spectrum: $n_{\mathbf{k}} \rightarrow \alpha n_{\mathbf{k}}$ for all \mathbf{k}
- \bullet Linear frequency mismatch $\omega_{{\bf k}_1 {\bf k}_2}^{{\bf k}_3}$ must be nonzero for some triad

- $\dot{n}_{\bf k} \propto (n_{\bf k})^{3/2} \Longrightarrow$ nonlinear frequency: $\Gamma \propto \alpha^{\frac{1}{2}}$
- $\dot{\varphi}_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3}$ equation \Longrightarrow triad precession: $\Omega_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3} \sim C \, \alpha^{\frac{1}{2}} \omega_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3}$
- Therefore, provided $\omega_{{\bf k}_1{\bf k}_2}^{{\bf k}_3} \neq 0$, $\Omega_{{\bf k}_1{\bf k}_2}^{{\bf k}_3} = \Gamma$ for some value of α

Results (I'll show videos if someone asks)

æ

A (10) F (10)

Triggering the mechanism starting from a single triad 1/3

Full PDE model is difficult to draw (~ 12 million triads in resolution 128^2) **Pseudospectral**, 2/3-rd dealiased

M D Bustamante (UCD)

SCT-2014, Chernogolovka, Russia

Triggering the mechanism starting from a single triad 2/3

Parameters

$$F = 1, \beta = 10$$

- Single triad:
 - $\begin{aligned} & \mathbf{k}_1 = (1, -4), \\ & \mathbf{k}_2 = (1, 2), \\ & \mathbf{k}_3 = \mathbf{k}_1 + \mathbf{k}_2 = (2, -2) \end{aligned}$
- Initial conditions:

$$\begin{split} \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}(0) &= \pi/2, \\ n_{\mathbf{k}_{1}}(0) &= 5.96 \times 10^{-5}\alpha, \\ n_{\mathbf{k}_{2}}(0) &= 1.49 \times 10^{-3}\alpha, \\ n_{\mathbf{k}_{3}} &= 1.29 \times 10^{-3}\alpha, \\ \text{where } \alpha \text{ is a re-scaling parameter} \end{split}$$

• Initially $n_{\mathbf{k}_a}(0) = 0$ for all other modes

Triggering the mechanism starting from a single triad 2/3

• Parameters

 $F=1, \beta=10$

- Single triad:
 - $\begin{aligned} & \mathbf{k}_1 = (1, -4), \\ & \mathbf{k}_2 = (1, 2), \\ & \mathbf{k}_3 = \mathbf{k}_1 + \mathbf{k}_2 = (2, -2) \end{aligned}$
- Initial conditions:
 - $$\begin{split} \varphi_{\mathbf{k}_{1}\mathbf{k}_{2}}^{\mathbf{k}_{3}}(0) &= \pi/2, \\ n_{\mathbf{k}_{1}}(0) &= 5.96 \times 10^{-5}\alpha, \\ n_{\mathbf{k}_{2}}(0) &= 1.49 \times 10^{-3}\alpha, \\ n_{\mathbf{k}_{3}} &= 1.29 \times 10^{-3}\alpha, \\ \text{where } \alpha \text{ is a re-scaling} \\ \text{parameter} \end{split}$$
- Initially n_{k_a}(0) = 0 for all other modes

How to quantify a strong transfer? **Use enstrophy conservation** Define transfer efficiency to mode n_{k_a} :

$$Eff_a = \max_{t \in [0,T]} \frac{\mathcal{E}_a(t)}{\mathcal{E}}$$

Example: below, $\textit{Eff}_4\sim 20\%$

Triggering the mechanism starting from a single triad 3/3

Family of models: Deform the original equations using two positive numbers $\epsilon_1, \epsilon_2 \in [0, 1]$ which multiply the interaction coeffs. $Z_{\mathbf{k}_s \mathbf{k}_b}^{\mathbf{k}_c}$

Triggering the mechanism starting from a single triad 3/3

Family of models: Deform the original equations using two positive numbers $\epsilon_1, \epsilon_2 \in [0, 1]$ which multiply the interaction coeffs. $Z_{\mathbf{k}_a \mathbf{k}_b}^{\mathbf{k}_c}$

- Two connected triads: $\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3$ and $\mathbf{k}_2 + \mathbf{k}_3 = \mathbf{k}_4$, with $\mathbf{k}_4 = (3,0)$ and $\omega_{\mathbf{k}_2\mathbf{k}_3}^{\mathbf{k}_4} = -\frac{8}{9}$ (freq. mismatch)
- dof = 6

くほと くほと くほと

- Two connected triads: $\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3$ and $\mathbf{k}_2 + \mathbf{k}_3 = \mathbf{k}_4$, with $\mathbf{k}_4 = (3,0)$ and $\omega_{\mathbf{k}_2\mathbf{k}_3}^{\mathbf{k}_4} = -\frac{8}{9}$ (freq. mismatch)
- dof = 6
- Energy & enstrophy invariants: dof = 4 (not necessarily integrable)

- Two connected triads: $\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3$ and $\mathbf{k}_2 + \mathbf{k}_3 = \mathbf{k}_4$, with $\mathbf{k}_4 = (3,0)$ and $\omega_{\mathbf{k}_2\mathbf{k}_3}^{\mathbf{k}_4} = -\frac{8}{9}$ (freq. mismatch)
- dof = 6
- Energy & enstrophy invariants: **dof** = 4 (not necessarily integrable)
- Analytical solution in the limit $\epsilon_1 \rightarrow 0$ leads to resonant condition:

$$\Omega_{\mathbf{k}_2\mathbf{k}_3}^{\mathbf{k}_4} = p\Gamma, \quad p \in \mathbb{Z}.$$

- Two connected triads: $\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3$ and $\mathbf{k}_2 + \mathbf{k}_3 = \mathbf{k}_4$, with $\mathbf{k}_4 = (3,0)$ and $\omega_{\mathbf{k}_2\mathbf{k}_3}^{\mathbf{k}_4} = -\frac{8}{9}$ (freq. mismatch) • **dof** = 6
- Energy & enstrophy invariants: **dof** = 4 (not necessarily integrable)
- Analytical solution in the limit $\epsilon_1 \rightarrow 0$ leads to resonant condition:

$$\Omega_{\mathbf{k}_{2}\mathbf{k}_{3}}^{\mathbf{k}_{4}} = p\Gamma, \quad p \in \mathbb{Z}.$$

 $-0.202\alpha^{1/2} + \frac{8}{9} = p \times 0.273\alpha^{1/2}$

٠

- Two connected triads: $\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3$ and $\mathbf{k}_2 + \mathbf{k}_3 = \mathbf{k}_4$, with $\mathbf{k}_4 = (3,0)$ and $\omega_{\mathbf{k}_2\mathbf{k}_3}^{\mathbf{k}_4} = -\frac{8}{9}$ (freq. mismatch) • **dof** = 6
- Energy & enstrophy invariants: **dof** = 4 (not necessarily integrable)
- Analytical solution in the limit $\epsilon_1 \rightarrow 0$ leads to resonant condition:

$$\Omega^{\mathbf{k}_4}_{\mathbf{k}_2\mathbf{k}_3} = p \Gamma, \quad p \in \mathbb{Z}.$$

 $-0.202 \alpha^{1/2} + \frac{8}{9} = p \times 0.273 \alpha^{1/2}$

Therefore, initial conditions satisfying

$$\alpha_p = \frac{10.6272}{(0.740382 + p)^2}, \quad p = 0, 1, \dots$$

should show strong transfers towards $n_{\mathbf{k}_4}$.

- Integrate numerically evolution equations, from time t = 0 to $t = 2000/\sqrt{\mathcal{E}}$.
- Timescale of strong transfer: $t \sim 20/\sqrt{\mathcal{E}}$
- Plots of Triad Precession and Efficiency versus α :

Why the peaks of efficiency? Unstable manifolds! (e.g., periodic orbits)

Results for family-model case ($\epsilon_1 \neq 0, \epsilon_2 \neq 0$) 1/2

Role of invariant manifolds is very important:

- They are persistent in parameter space (ε₁, ε₂)
- We can **"trace"** the invariant manifolds along the parameter space
- New precession resonances involving new modes

Results for family-model case ($\epsilon_1 \neq 0, \epsilon_2 \neq 0$) 2/2

Triad initial condition. "Tracing" method until $\epsilon_1 = \epsilon_2 = 0.1$ Pseudospectral method, 128² resolution (3500 modes) \implies look at "bins"

184

 $\frac{\Omega_{ab}^{c}}{\sqrt{\mathcal{E}}}$

 $\frac{\mathcal{E}_{bin_3}}{\mathcal{E}}$

182 183

Results for Full-PDE case ($\epsilon_1 = \epsilon_2 = 1$) **1/2**

- We consider a more general large-scale initial condition: $n_{\mathbf{k}} = 0.0321 \times \alpha |\mathbf{k}|^{-2} \exp(-|\mathbf{k}|/5)$ for $|\mathbf{k}| \le 8$ and zero otherwise, where α is the re-scaling parameter
- Total enstrophy: $\mathcal{E} = 0.156 \alpha$
- Initial phases $\phi_{\mathbf{k}}$ are chosen randomly and uniformly between 0 and 2π
- Direct numerical simulations: pseudospectral method with resolution 128^2 from t = 0 to $t = 800/\sqrt{\mathcal{E}}$
- To study cascades, partition the k-space in shell bins defined as follows: Bin₁: 0 < |k| ≤ 8, and Bin_j: 2^{j+1} < |k| ≤ 2^{j+2} j = 2,3,...
- Nonlinear interactions lead to successive transfers $Bin_1 \rightarrow Bin_2 \rightarrow Bin_3 \rightarrow Bin_4$

・同下 ・ヨト ・ヨト 三日

Results for Full-PDE case ($\epsilon_1 = \epsilon_2 = 1$) **2/2**

- Efficiencies of enstrophy transfers from Bin₁ to Bin₃ and Bin₄ have broad peaks
- These correspond to collective synchronisation of precession resonances
- Strong synchronisation is signalled by minima of the dimensionless precession standard deviation

$$\label{eq:set} \begin{split} \sigma &= \sqrt{\langle \Omega^2 \rangle - \langle \Omega \rangle^2} / \sqrt{\mathcal{E}} \\ \text{averaged over the whole} \\ \text{set of triad precessions} \end{split}$$

Results for Full-PDE case ($\epsilon_1 = \epsilon_2 = 1$) **2/2**

- Efficiencies of enstrophy transfers from Bin₁ to Bin₃ and Bin₄ have broad peaks
- These correspond to collective synchronisation of precession resonances
- Strong synchronisation is signalled by minima of the dimensionless precession standard deviation

$$\label{eq:set} \begin{split} \sigma &= \sqrt{\langle \Omega^2 \rangle - \langle \Omega \rangle^2} / \sqrt{\mathcal{E}} \\ \text{averaged over the whole} \\ \text{set of triad precessions} \end{split}$$

Enstrophy fluxes, equipartition and resolution study (Full-PDE case)

- Time averages ($T = 800/\sqrt{\mathcal{E}}$) of dimensionless enstrophy spectra $\mathcal{E}_k/\mathcal{E}$, compensated for enstrophy equipartition
- In all cases the system reaches small-scale equipartition (Bin_2-Bin_4) quite soon: $T_{\rm eq} \approx 80/\sqrt{\mathcal{E}}$

- The flux of enstrophy from large scales (Bin_1) to small scales (Bin_4) is 50% greater in the resonant case ($\alpha = 625$) than in the limit of very large amplitudes ($\alpha = 10^6$)
- At double the resolution (256²), the enstrophy cascade goes further to *Bin*₅ and all above analyses are verified, with *Bin*₄ replaced by *Bin*₅

Conclusions and Extensions

- There is vast literature on precession-like resonances in galactic dynamics, notably Pluto precession-orbit resonance and orbital 2 : 5 Saturn-Jupiter resonance ⁸
- Critical balance turbulence principle ⁹ is effectively satisfied at the precession resonance, where we fine-tune a nonlinear frequency with the linear frequency mismatch $\omega_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3}$
- Future work: precession resonance mechanism in water gravity waves, magneto-hydrodynamics
- Quartet and higher-order systems (Kelvin waves in superfluids, nonlinear optics)
- Including forcing and dissipation

⁸TA Michtchenko and S Ferraz-Mello, *Modeling the 5: 2 mean-motion resonance in the jupiter–saturn planetary system*, Icarus **149** (2001), no. 2, 357–374

Conclusions and Extensions

- There is vast literature on precession-like resonances in galactic dynamics, notably Pluto precession-orbit resonance and orbital 2 : 5 Saturn-Jupiter resonance ⁸
- Critical balance turbulence principle ⁹ is effectively satisfied at the precession resonance, where we fine-tune a nonlinear frequency with the linear frequency mismatch $\omega_{\mathbf{k}_1\mathbf{k}_2}^{\mathbf{k}_3}$
- Future work: precession resonance mechanism in water gravity waves, magneto-hydrodynamics
- Quartet and higher-order systems (Kelvin waves in superfluids, nonlinear optics)
- Including forcing and dissipation

THANK YOU!

⁸TA Michtchenko and S Ferraz-Mello, *Modeling the 5: 2 mean-motion resonance in the jupiter–saturn planetary system*, Icarus **149** (2001), no. 2, 357–374