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WGMs: What's that?

Known since ancient history:
Beijing, Temple of Sky, etc.

Modern history: Rayleigh, 1910

Acoustic modes localized near the equator

A simplified quasi-1D view:
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Optical WGMs

Localization owing to the total internal reflection
Exact 3D solutions only for sphere (water droplets)

Three numbers: | (orbital), m (azimuth), and g (radial)
@ = = cl /(R n,y) — degeneration in m,
Ny, =~ N modal refractive index

The asymptotics: J (X) with v=1+1/2 > 1
and Y,(6) with (I -m) < |.

The actual numbers: | =103 —10°, q ~1.
Degree of localization:

or, = R/123, Oly= R/|172




WGM resonators

Toroidal

Fabrication technique: lathe (TokapHbIn cTaHOK), lithography, polishing

Materials: Sizes

SiO,, CaF,, GaAs, LiNbO, ... R =(10°3-10") cm




Figures of merit
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Evanescent couplers

Turning point in 90-th: the methods to couple light in and out.
Almost 100% of pump power can be delivered into a single WGM
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Why nonlinear applications?

Large values of Q + small modal cross sections = huge
enhancement of the pump intensity inside the resonator

The higher the order of the nonlinear process, the stronger is the effect
Low-power continuous-wave light sources provide strong nonlinear effects
Large values of Q allow to work with small nonlinearities

Potentially, even few photons can initiate nonlinear effects

Drawbacks:

Discreteness of the WGM spectrum hampers phase matching

Modal nonlinear losses affect critical coupling

Many linear applications




Second harmonic generation, y®
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Optical parametric oscillation, x{?)
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Opto-mechanics

10

Above a threshold, P > P, resonator is unstable against vibrations with m =0

Mechanism: Light pressure, caused by the surface curvature,
and the shift of the resonant eigenfrequency o,(R) during vibration
Predicted by V.B. Braginsky for FP resonators in 1977

optical pump
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Red detuning: Radiation pressure cooling

Displacement (10_17 mle"z)
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Frequency combs 13

An important general problem
Earlier: mode-locked lasers
Hansch, Nobel Prize 2005
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Origin: Cascaded 2—2 processes,
Caused by Kerr nonlinearity

Surprisingly: The peaks are
equidistant with a relative
accuracy (10-16-10-17)
despite the WGM dispersion!
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More data on Kerr combs
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Octave spanning comb
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Not as simple as

believed first

The physics of the comb is rich
Different scenarios are possible
Experiment + numericals

The comb can consist of sub-combs
with incommensurable spacings and
complicated transitions (bifurcations).

The situation is controlled by
Kerr dynamics, and it strongly
depends on the modal dispersion
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Brillouin excitation of acoustic WGMs 16
_ K
Background: —— >
In the bulk case, the SBS process is one of the strongest P >
@, — o, =2
In 1D case (fibers), only the longitudinal sound can be excited y P C —k
p s T
In WGM resonators, interaction with acoustic WGMs must be the strongest
Prospective thresholds are close to nW range
Recently found thesholds of SBS lasing (PRLs2009) are much higher (uW range)
A basic problem: What are acoustic WGMs?
The cases of air (Rayleigh) and solids are different
In solids v, > \/Evt , and the I- and t-waves are ——————
coupled via free surface bo ™ L, L L8,
As a result, there no longitudinal acoustic WGMs -
The physics of acoustic WGMs is very specific




The end



