Alexey Slunyaev¹⁾ and V. Shrira²⁾

 Institute of Applied Physics, Nizhny Novgorod (Russia) Nizhny Novgorod State Technical University (Russia)
Department of Mathematics, EPSAM, Keele University, UK

Solitons of trapped waves on jet currents

FIG. 3. One wave pulse overtaking and passing through another wave pulse. Left-hand trace: first pulse alone, $\omega_0 = 1.5$ Hz, initial $(ka)_{\max} \approx 0.01$, six-cycle nulse. Center trace: second pulse alone, $\omega_0 = 3$ Hz, initial $(ka)_{\max} \approx 0.2$, hence the pulse which disintegrates into two solitons. Right hand traces: interaction of the two pulses.

[Yuen & Lake, 1975]

Nonlinear Schrodinger equation

$$\left(\frac{\partial A}{\partial t} + \frac{\omega}{2k}\frac{\partial A}{\partial x}\right) + \frac{\omega}{8k^2}\frac{\partial^2 A}{\partial x^2} + \frac{\omega k^2}{2}|A|^2A = 0$$

Envelope solitons:

- interact elastically;
- the asymptotic solution of the Cauchy problem

A <u>successful</u> reproduction of an intense NLS envelope soliton in a wave flume

A successful attempt to reproduce an intense NLS envelope soliton in a wave flume

Time series

A successful attempt to reproduce an intense NLS envelope soliton in a wave flume

Time series

Snap-shot [Euler eq num sims]

A successful attempt to reproduce an intense NLS envelope soliton in a wave flume

Time series

Snap-shot [Euler eq num sims]

A successful attempt to reproduce an intense NLS envelope soliton in a wave flume

Time series

Snap-shot [Euler eq num sims]

t, s [Slunyaev et al, PoF2013]

3D: Transversally unstable (Zakharov & Rubenchik, 1974)

Rogue waves in 3D seas

Rogue waves in 3D seas

Waves trapped by a jet current

Top view

Reference to the talk by Prof. V. Shrira (Thursday)

Effectively 1D evolution

Weakly nonlinear theory for modulated mode quartets

$$-i\left(\frac{\partial A}{\partial t} + V\frac{\partial A}{\partial x}\right) + \frac{\omega_n}{8k_0^2}\frac{\partial^2 A}{\partial x^2} + \kappa\frac{\omega_n k_0^2}{2}A|A|^2 = 0$$

- NLSE for a single trapped mode (weak current assumption)

$$\Omega_n(y) = \omega_n - k_0 U > 0$$

$$\kappa = \frac{\int_{-\infty}^{\infty} Y_n^4 dy}{\int_{-\infty}^{\infty} Y_n^2 dy}$$

- attenuation of nonlinearity ($\kappa < 1$)

$$\frac{d^2 Y_n}{dy^2} + 4k^2 \left[\frac{\omega_n}{\sqrt{gk_0}} - \left(1 + \frac{k_0 U}{\sqrt{gk_0}}\right)\right] Y_n = 0$$

 $Y_n \xrightarrow{v \to +\infty} 0$

- BVP on modes: Sturm-Liouville problem

Effectively 1D evolution

Wave field composition

Surface elevation

Three examples:

1) Regular wave

- 2) Modulated wave train
- 3) Solitary wave group

Simulated by means of current-modified HOSM solver for Euler eqs. The current is 'frozen', wave motions are potential.

A uniform wave train

Euler equations framework

A uniform wave train

Euler equations framework

after 370 wave periods

Modulated wave train-> Rogue wave

Euler equations framework

Initial condition: 10 wave periods, 5% amplitude modulation

Modulated wave train-> Rogue wave

Euler equations framework

105 wave periods

Modulated wave train-> Rogue wave

Euler equations framework

Euler equations framework

Euler equations framework

Initial condition: NLS envelope soliton

steepness $k_0 A_{cr} \approx 0.119$

Euler equations framework

fundamental mode

fifth mode

Euler equations framework

Mode decomposition: trapped modes and mode amplitudes

No tendency to disintegrate!

Mode decomposition: amplitude Fourier spectra

Strongly nonlinear sims of weakly nonlinear solutions

fundamental mode even steeper/shorter wavegroup

Short 3D wave group of intense waves $(k_0A_{cr} \sim 0.24)$

mode amplitudes for more than 100 periods

Conclusions

The **modal structure of trapped waves** is observed within the primitive Euler equations' framework. Modes of nonlinear trapped waves can exist for long.

The effectively 1D model describes the wave dynamics. => Rogue wave occurrence is higher than in case of non-trapped waves. => Deterministic forecasting of dangerous effects is possible.

3D solitary patterns of trapped waves are proved to exist in the strongly nonlinear setting. The weakly nonlinear approach (and generalizations) can provide reasonable description of short patterns of steep waves.

A **beautiful** nonlinear wave phenomenon is handled.

Photo from a presentation by D.H. Peregrine