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Solitons of trapped waves on jet currents 



Envelope solitons over real water 

[Yuen & Lake, 1975] 
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Envelope solitons: 

   - interact elastically; 

   - the asymptotic solution  

           of the Cauchy problem 

Nonlinear Schrodinger equation 



[Yuen & Lake, 1975] 

Another unsuccessful attempt  

to reproduce an intense NLS  

envelope soliton in a wave flume 

Envelope solitons over real water 



A successful reproduction of an intense NLS envelope soliton  

in a wave flume 

Envelope solitons over real water 



A successful attempt to reproduce an intense NLS envelope 

soliton in a wave flume 

Time series 

Envelope solitons over real water 



A successful attempt to reproduce an intense NLS envelope 

soliton in a wave flume 

Time series Snap-shot [Euler eq num sims] 

Envelope solitons over real water 



A successful attempt to reproduce an intense NLS envelope 

soliton in a wave flume 

Time series Snap-shot [Euler eq num sims] 

Steepness Acr
2

m/g = 0.301 (~kA) 

~‘Giant breathers’ of Dyachenko & Zakharov (2008) 

Envelope solitons over real water 



A successful attempt to reproduce an intense NLS envelope 

soliton in a wave flume 

Time series Snap-shot [Euler eq num sims] 

Steepness Acr
2

m/g = 0.301 (~kA) 

[Slunyaev et al, PoF2013] 

The initial condition (wave maker signal) –  
was just the analytic NLS soliton! 

Envelope solitons over real water 



3D:  Transversally unstable (Zakharov & Rubenchik, 1974) 

Envelope solitons over real water 



Rogue waves in 3D seas 

Modulated long-crested waves 

[Muller et al, 2005] 



Waves trapped by a jet current 
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Rogue waves in 3D seas 

Reference to the talk by Prof. V. Shrira (Thursday) 

Top view 



Effectively 1D evolution 
Weakly nonlinear theory for modulated mode quartets 
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- NLSE for a single  

trapped mode (weak  

current assumption) 

- mode velocity 

- attenuation of nonlinearity ( <1) 
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- BVP on modes: 

Sturm-Liouville problem 

  00  Uky nn 



Effectively 1D evolution 
Wave field composition 

      xiktiyYtxA nn 0exp,Re  

eigenfunction  

of the BVP 

solution of the NLSE 

eigenfrequency  

of the BVP 

Three examples: 

 
1) Regular wave 

 

2) Modulated wave train 

 

3) Solitary wave group  

 

Simulated by means of  

current-modified HOSM  

solver for Euler eqs. 

The current is ‘frozen’, 

wave motions are potential.  

Surface elevation 



A uniform wave train 
Euler equations framework 

fundamental mode Y1 

steepness k0H/2 = 0.15 

Cph  10 m/s 

Current profile 
(max 2 m/s) 

Longitudinal wave-shape 
( = 63 m) 

Initial condition: transverse modulated Stokes wave 

008.0~
1
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A uniform wave train 

fundamental mode Y1 

steepness k0H/2 = 0.15 

Current profile 
(max 2 m/s) 

Longitudinal wave-shape 
( = 63 m) 

after 370 wave periods 

Euler equations framework 



Modulated wave train-> Rogue wave 

fundamental mode 

steepness k0H/2 = 0.15 

Initial condition: 10 wave periods, 5% amplitude modulation 

Euler equations framework 



Modulated wave train-> Rogue wave 

Rogue event fundamental mode 

steepness k0H/2 = 0.15 

105 wave periods 

Euler equations framework 



Modulated wave train-> Rogue wave 

Rogue event 
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Coefficient which changes the time scale 

Scaled time according to  
Reference simulation 
(no current) Good fit 

Euler equations framework 



Solitons of trapped waves 

fundamental mode 

steepness k0Acr  0.119 

Initial condition: NLS envelope soliton 

Current profile 
(max 2 m/s) 

Longitudinal and transverse  
wave shapes 

Euler equations framework 



Solitons of trapped waves 

 

steepness k0Acr  0.119 

Initial condition: NLS envelope soliton 

fundamental mode fifth mode 

Euler equations framework 



Solitons of trapped waves 

fundamental mode fifth mode 

Euler equations framework 



fifth mode 

initial condition 

after two passages 

about 10Tnl 
(~120 wave periods) 

Solitons of trapped waves 
Euler equations framework 



Solitons of trapped waves 

No tendency to disintegrate! 

Mode decomposition: trapped modes and mode amplitudes 

fundamental mode 

steepness k0Acr  0.119 

      dyyYtyxtx mm ,,, 

   dxta mm

2~ 

Mode amplitudes 

  12  dyyYm



Solitons of trapped waves 
Mode decomposition: amplitude Fourier spectra 

Wavenumber spectrum Frequency spectrum 
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waves  
opposite  
to current 

waves  
following  
the current soliton 

comb-shaped peaks 



Solitons of trapped waves 
Mode decomposition: amplitude Fourier spectra Strongly nonlinear sims of weakly nonlinear solutions 

fundamental mode 

even steeper/shorter  

wavegroup 

mode amplitudes for more than 100 periods 

Short 3D wave group 
of intense waves 

(k0Acr ~ 0.24) 



Conclusions 

Photo from a presentation by D.H. Peregrine 

3D solitary patterns of trapped waves are proved to exist in the strongly 

nonlinear setting. The weakly nonlinear approach (and generalizations) 

can provide reasonable description of short patterns of steep waves. 

The modal structure of trapped waves is observed within the primitive 

Euler equations’ framework. Modes of nonlinear trapped waves can exist 

for long. 

The effectively 1D model describes the wave dynamics.  

=> Rogue wave occurrence is higher than in case of non-trapped waves. 

=> Deterministic forecasting of dangerous effects is possible. 

A beautiful nonlinear wave phenomenon is handled. 


