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TURBULENCE IN SUPERFLUIDS:

ideas, experiments, numerics and theory

Victor S. Lvov

Weizmann Institute of Science

ABSTRACT

Turbulence in superfluid helium is unusual and presents a challenge to fluid dynamicists because it

consists of two coupled, inter penetrating turbulent fluids: the first is inviscid with quantized vorticity,

the second is viscous with continuous vorticity. Despite this double nature, the observed spectra of the

superfluid turbulent velocity at sufficiently large length scales are similar to those of ordinary turbulence.

After brief historical overview I will present experimental, numerical and theoretical results which

explain these similarities, and illustrate the limits of our present understanding of superfluid turbulence.
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0.1 Superfluids: experiments and theory

.

.

Heike Kamerlingh-Onnes using this Compressor Piotr Leonidovich Kapitza Jack Allen

hydrogen mixture of 0.2 mole 

fraction helium, maintained at 20 K, the gas 

. and his student

. Donald Missener

.

Nobel prize 1913

”for his investigations on

the properties of matter

at low temperatures which

led, inter alia, to the pro-

duction of liquid helium”.

K-O discovered in 1911

. superconductivity.

.

liquified He at T = 4.2K

in July 10, 1908.

K-O & coworkers in 1924

discovered density change

at T = 2.18K.

Keesom & Wolfke, 1928:

this is a phase transition

. He I ⇔ He II.

.

Nobel prize 1978

”for his basic inventions

and discoveries in the

area of low-temperature

physics”. P.L. Kapitza in

Moscow discovered and

named in 1937

. superfluidity of 4He independently discov-

ered superfluidity in

PLK’s Cambridge lab.
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Lev Davidovich Landau

. Nobel Prize, 1962

”for his pioneering theo-

ries for condensed matter,

especially liquid helium”.

In particular, he quantized

in 1941 the Tisza-1940

two-fluid model and sug-

gested Andronikashvilii’s

1946 experiment on oscil-

lating in He II discs.

Elepter Luarsabovich

. Andronikashvili

. Laszlo

. Tizsa

za 

idity

Its period and damping measures densities

of superfluid, ρs and normal, ρs, components:

.
Andronikashvili experiment
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Here: S – entropy, T – temperature and

Fns = Aρnρs(Vs − Vn)
3 is the mutual friction

between superfluid and normal components
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. -
.Douglas D. Osheroff, David M. Lee & Robert C. Richardson

.

.Nobel Prize 1996 ”for their discovery of superfluidity in helium-3”.

.Alexei A. Abrikosov, Vitaly L. Ginzburg, & Anthony J. Leggett

.

.Nobel Prize 2003 ”for pioneering contributions to the theory

.of superconductors and superfluids”

3He, the result of tririum decay, was

produced (150Kg since 1955) and

liquified in LANL. Using Pomer-

anchuk’s compressive cooling D.O,

R.R&D.L discovered superfluidity of
3He on April 20, 1972 at Cornell.

Knowing this before publication, J.

Leggett on Sept. 5, 1972 submited to

PRL explanation of their observations

as Bardeen-Cooper-Schrieffer conden-

sation of Couper pairs of 3He atoms

in the triplet state with the tensorial

ordering parameter. The B-state has

an isotropic gap.

.
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Quantum mechanical description of He II
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connected region

Quantized vortices in He II Rotating bucket of He II
-thanks to the existence of  rectilinear vortex lines

He II mimics solid body rotation
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0.2 Superfluid Dynamics and Turbulence: Feinmann, Hall-Vinen, Tabeling, . . .

Turbulence in a superfluid was predicted first by Richard Feynman in 1955 and

found experimentally (in counterflow 4He) by Henry Hall and Joe Vinen in 1956.

Consider

1.3.1 Normal fluid vs. superfluid at T → 0 limit:

– Normal fluid kinematic viscosity ν ̸= 0 vs. ν ≡ 0 in superfluids;

– Two scales in normal fluids: Outer scale L and dissipative micro-scale η ≪ L;
– Two additional scales in superfluids due to quantization of vortex lines:

⇓ vortex core diameter a0 ⇓ ⇓ mean inter-vortex distance ℓ ⇓ ⇓ Outer scale L ⇓

v rs
. /d m

a

b

In 4He a0 ≃ 1 Å, in 3He a0 ≃ 800 Å. Experimentally, in both 4He and 3He,Λ ≡ ln
( ℓ

a0

)
≃ 12 ÷ 15
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Sketch of the quantum-turbulence cascades1

abc

Very small scales:

L ≪ ℓ.

Intervortex scales:

L ∼ ℓ

Large scales:
L ≫ ℓ
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Physics of different temperature regions in superfluid 4He

• Near Tλ, phase transition region, 2.16K < T < Tλ. Will not be discussed today.

small superfluid density: large thermodynamical fluctuation, large mutual friction α ≃ 1.

Very interesting region to study interplay of phase-transition with superfluid turbulence phenomena.

• Medium temperatures, two-fluid region, 1.5K . T . 2.16K. Will be discussed shortly.

ρs & ρn are comparable,
(ρs
ρn

between 10 and 0.1
)
, large mutual friction 0.1 . α . 1.

“Quasi-classical” behavior, with interesting new physics of superfluid turbulence: unexpected spectra

of vortex-line density (requires more detailed theoretical analysis), encasement of intermittency (re-

quires further numerical and experimental study), bottleneck energy accumulation near intervortex

scale (much more analytical, numerical and experimental works are needed).

• Low temperatures, 0.8K. T . 1.3K, transient from two- to one-fluid region. Will be discussed.

ρn < 0.05ρ, small, but mutual friction 0.0007 < α < 0.04.

I expect classical intermittency exponents. Kelvin waves (KWs) still effectively are damped. Both

predictions require experimental and further numerical clarification.

• Ultra-low temperatures, T . 0.6K, one-fluid hydrodynamic and KW region. Main subject today.

Statistical importance of KW cascade. L’vov-Nazarenko spectrum of weak turbulence of KWs vs.

Vinen spectrum of strong KW turbulence – the problem in its infancy.

• Zero-temperature limit T . 0.06K. There are no reason to discuss separately from T . 0.6K.

Mutual friction fully irrelevant, KW damping is assumed to be caused by photon emission and KW

cascade probably reaches the core radius – Interesting, important and difficult problem to study.
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Two-fluid hydrodynamic (HD) equations for medium and low temperatures, T & 0.8K

In the HD region, R ≫ ℓ, one can neglect the quantization of vortex lines and make use coarse-grained

two fluid equation for velocities the superfluid and normal components us and un, with densities ρs and

ρn and pressures ps and pn

ρs

[∂ us

∂t
+ (us∇)us

]
−∇ps = −Fns , ps =

ρs
ρ
[p− ρn|us − un|2] , (1a)

ρn

[∂ un

∂t
+ (un∇)un

]
−∇pn = ρnν∆un + Fns , pn =

ρn
ρ
[p + ρs|us − un|2] , (1b)

coupled by the the mutual friction between superfluid and normal components of the liquid mediated by

quantized vortices which transfer momenta from the superfluid to the normal subsystem and vice versa:

Fns = −ρs{α′(us−un)×ωs+α ω̂s× [ωs×(us−un)]} ≈ α ρsωT
(us−un) , ω

T
=
√

⟨|ωs|2⟩ . (1c)

Eqs (1) are very similar to the Navier-Stokes equation. Therefore in a theory of large-scale superfluid

turbulence we can use numerous tools, developed in the theory of classical HD turbulence, in particular,

the differential closure for the energy flux

ε(k) = −
1

8

√
k11 E(k)

d

dk

[E(k)

k2

]
⇒ E(k) = k2

[ 24 ε

11k11/2
+

( T

πρ

)3/2]2/3
. (2)

This solution with the constant energy flux ε(k) = ε gives KO-41 spectrum ∝ k−5/3 for small k end

thermodynamic equilibrium spectrum T/πρ at large k.

9



0.3 Kolmogorov spectra in 4He turbulence

Energy spectrum measured in the TOUPIE wind tunnel (Inset) below the superfluid transition (solid

blue line, T = 1.56K and aboveTλ (dashed red line) 1

Right: Numerical energy spectra of the superfluid (solid lines) and normal (dashed lines) component

from two-fluid Eqs. at T = 1.15 K (red) and T = 2.157 K (blue) with truncation of phase space

beyond the intervortex scale 2

1 Salort J, Chabaud B, Lvque E, Roche P-E, Energy cascade and the four-fifths law in superfluid turbulence. Europhys

Lett. 97, 34006 (2012)
2 C. F. Barenghi, V. S. Lvov, and P.-E. Roche, Experimental, numerical, and analytical velocity spectra in turbulent

quantum fluid, Proc Natl Acad Sci USA., 111 46834690 (2014)
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0.4 Intermittency enhancement in 4He turbulence
L. Boue, V.S. L’vov, A. Pomyalov, I. Procaccia, PRL, 110, 014502 (2013)

Our shell model simulations with eight decades of k-space allowed detailed comparison of classical and

superfluid turbulent statistics in the wide temperature range. A difference between classical and super-

fluid intermittent behavior in a wide (up to three decades) interval of scales was found in the range

0.8Tλ < T < 0.9Tλ, where (ρs ≈ ρn)
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Superfluid (solid lines) and normal fluid (dash

lines) compensated energy spectra k1.72E(k);

the compensation factor is the classical energy

spectrum with intermittency correction.

Inset: k5/3E(k) for T = 0.9Tλ. Shell

model simulation of Eqs. (1) at T/Tλ = 0.99

K(green), 0.9(red) and 0.85(blue), cor-

responding to ρs/ρ = 0.1 , 0.5 , and 0.9

respectively. The vertical dash lines indicate

kℓ ≡ 1/ℓ.
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1 Weak turbulence of small-scale Kelvin waves in zero temperature limit

The theory is based on Biot-Savart equation for quantized vortex lines, written in the Hamiltonian form3,
4 for small amplitudes ak(t), of Kelvin waves (KWs) that describe deviations of the vortex line from the

straight line. Using general approach, described, e.g. in ZLF-92 book 5 the effective KW Hamiltonian

was found in LLNR-10 6.

Heff =
∑∑∑
k

ω(k)bkb
∗
k +

1

36

∑∑∑
1+2+3=4+5+6̃

W 4,5,6
1,2,3 b1b2b3b

∗
4b

∗
5b

∗
6 . (3a)

W̃
3,4,5

k,1,2 = W 3,4,5
k,1,2 +Q 3,4,5

k,1,2 ≃ −
3kk1k2k3k4k5

4πκ
. (3b)

Next step is to derive the 3 ↔ 3-KW Kinetic Equation (KE) for the “occupation numbers” n(k, t) 7:

∂n(k, t)

∂t
=

π

12

∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫ ∣∣∣W̃ 3,4,5
k,1,2

∣∣∣2 δ 3,4,5
k,1,2 δ

(
ΛΩ 3,4,5

k,1,2

)
nkn1n2n3n4n5 (4)

×
(
n−1

k + n−1
1 + n−1

2 − n−1
3 − n−1

4 − n−1
5

)
dk1 dk2 dk3 dk4 dk5 .

3 E.B. Sonin, Reviews of modern physics v. 59, 87 (1987)
4 B. V. Svistunov, Phys. Rev. B v. 52, 3647 (1995)
5 ZLF-92: V.E. Zakharov, V.S. L’vov & G.E. Falkovich, Kolmogorov Spectra of Turbulence, (Springer-Verlag, 1992)
6 LLNR-10: J. Laurie, V. S. Lvov, S. Nazarenko & O. Rudenko, Phys. Rev. B., v. 81, 104526 (2010)
7Here, we evoke a quantum mechanical analogy as an elegant shortcut, allowing us to derive KE and the respective solutions easily.

However, the reader should not get confused with this analogy and understand that our KW system is purely classical. In particular,

the Plank’s constant ~ is is irrelevant outside of this analogy, and should be simply replaced by 1.
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Stationarity of solutions of Eq. (4) was found by Kosik-Svistunov (KS) 8 under assumption of inter-

action locality [convergence of all integrals in (4)]:

E
KS
(k) = ωknk = C

KS

Λκ7/5ϵ1/5

k7/5
, KS-spectrum of weak KW turbulence ? (5)

However, as shown in LLNR-10 paper, this locality assumption is wrong and therefore the KS spec-

trum (5) is irrelevant. Rigorous analysis by L’vov and Nazarenko (LN) 9 culminate with the result:

E(k) =
C

LN
Λκ ε1/3

Ψ2/3ℓ4/3k5/3
, C

LN
≃ 3.04 , LN-spectrum of weak KW turbulence ! (6)

Earlier Vinen suggested the spectrum 10

E(k) ≃
κ2

k
, Vinen-spectrum of strong KW turbulence ! (7)

There is a vast and constantly growing body of literature, where KWs was numerically detected, 11

12 13 14 15 16 17 18 19 however the resolution was not sufficient to distingue between KS and LN

spectra.
8 E. Kozik & B. Svistunov, Phys. Rev. Lett. v. 92, 035301 (2004)
9 V. S. L’vov & S. Nazarenko, Pis’ma v ZhETF, v. 91, 464 (2010).

10 W. F. Vinen & J. J. Niemela,, J. Low Temp. Phys. 128, 167 (2002).
11 W. F. Vinen, M. Tsubota, and A. Mitani, JPhys. Rev. Lett. 91, 135301 (2003).
12 C. F. Barenghi, L. Skrbek, and K. R. Sreenivasan, Proc. Nath, Acad. Sci. USA 111 4647-4652 (2014).
13 R. Hanninen and A.W. Baggaley, Proc. Nath. Acad. Sci. USA 111, 46674674 (2014).
14 L. Kondaurova, V. Lvov, A. Pomyalov, and I. Procaccia, Phys. Rev. B, 89, 014502 (2014).
15 E. Kozik and B. Svistunov, Phys. Rev. B 72, 172505 (2005).
16 T. Araki and M. Tsubota, J. Low Temp. Phys. 121, 405 (2000).
17 S. K. Nemirovskii, J. Pakleza, and W. Poppe, Russ. J. Eng. Thermophys. 3, 369 (1993).
18 D. Kivotides, J. C. Vassilicos, D. C. Samuels, and C. F. Barenghi, Phys. Rev. Lett. 86, 3080 (2001).
19 M. Tsubota, T. Araki, S.K. Nemirovskii, Phys. Rev. B 62, 11751-11762 (2000).
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. Krstutovic [19] and Baggaley–Laurie [20]: Lvov-Nazarenko vs Kozik-Svistunov controversy is over

.DNS of Gross-Pitaevskii equations in [19]a al-

lows author to conclude that “Numerical data

obtained from long time integration and ensem-

ble average over initial conditions support the

spectrum proposed by Lvov-Nazarenko” (with

m = 11/3 ≃ 3.67) . . . and exclude the Kozik-

Svistunov prediction (m = 17/5 = 3.4) see Table

in Ref. [13]:

TABLE I. List of runs. N⊥ and Nz are the resolutions in the

perpendicular and parallel directions with respect to the vortex. Nrea

is the number of realizations. n is the number of initial KW modes

and m is the exponent k−m of the KW spectrum.

Run N⊥ Nz Nrea n ξ A m

I 256 128 31 3 0.025 2ξ 3.85± 0.24

II 256 128 31 2 0.025 4ξ 3.682± 0.13

III 256 256 11 2 0.025 4ξ 3.753± 0.17

a[19] G. Krstutovic, PRE 86, 055301(R) (2012)

DNS of Biot-Savart equation in 20 a “ observes

a remarkable agreement with the Lvov-Nazarenko

spectrum” with Cnum
LN

≈ 0.3079, which agrees

with Ctheory
LN

≈ 0.308, while Cnum
KS

≈ 0.009 which

clearly disagrees with KS-estimate Ctheory
KS

∼ 1

Log-log plots of the DNS energy spectra E(k)

compensated by kβ with the LN (β = 5/3),

KS (β = 7/5) and Vinen (β = 1) exponents.
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1.1 Kelvin waves and the decay of quantum superfluid turbulence:

L. Kondaurova, V. Lvov, A. Pomyalov, and I. Procaccia, PRB submitted, (2014)

.
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Left: An example of the initial configuration, used in the simulations at all the temperatures.

Right: Configurations obtained at t = 50 s at T = 0.8K.
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Left: Configurations obtained at t = 50 s at T = 0K.

Right: The fragment of this tangle configuration, shown at three successive times separated by 5 10-4 s. The black lines correspond to the

earliest time t = 50 s, the light grey to the latest time. The arrows indicate the direction of the line movement.
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10
−1

10
0

10
1

10
2

0

10

20

30

40

t[s]

S
 l 

 

 

∆ ξ
high

    

∆ ξ
mid

∆ ξ
low

  

T=0 K

10
−1

10
0

10
1

10
2

5

10

15

20

25

30

35

t[s]

S
 l 

(∆
 ξ

/∆
 ξ

m
id

)2/
3

 

 

∆ ξ
high

   

∆ ξ
mid

∆ ξ
low

T=0 K

10
−1

10
0

10
1

10
2

0

5

10

15

20

25

30

35

t[s]

S
 l 

 (
∆ 

ξ/
∆ 

ξ m
id

)

 

 

∆ ξ
high

   

∆ ξ
mid

∆ ξ
low

T=0 K

Left: Comparison of the time dependence of the normalized curvature S(t)ℓ(t) for different resolutions and T = 0.

Middle: Normalization by Lvov-Nazarenko spectrum of weak wave turbulence: ℓS ≃ (ℓ∆ξ)2/3 leads to the data collapse

Right: Normalization by Vinen spectrum fo strong wave turbulence ℓS ≃ (ℓ∆ξ)2/3

These support WEAK KW turbulence regime (with LN-spectrum) rather then STRONG KW turbulence regime in the vortex tangle decay
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2 Bottleneck energy accumulation at cross-over scales at ultralow temperatures and T → 0 limit

2.1 Differential model for small-scale KW turbulence

suggested in 20, approximates superfluid turbulence and KW-motions results for T = 0:

ε(k) = −
{1

8

√
k11g(kℓ)E(k) +

3

5

{
Ψk3k∗ ℓ

2[1 − g(kℓ)]E(k)]
}2(

CΛκ
)3 ×

d

dk

{
E(k)

[g(kℓ)
k2

+
[1 − g(kℓ)]

k2
∗

]}
,

.

1 10

0.01

0.1

1

2 
l Ekl

 = 2

 = 10

 = 30

 = 100+2 -5/3

-5/3

-5/3

 

 

k l
.

I. For kℓ ≪ 1 E(k) and ε(k) are dominated by HD components and one

sees K41 law (??), E
HD

(k) ∝ k−5/3, with constant HD energy flux.

II. At kℓ ... 1 and for Λ ≫ 1 one sees the bottleneck with thermodynamic

equilibrium: equipartition between HD degrees of freedom, E
HD

(k) ∝ k2.

III. At kℓ &&& 1 the energy flux is still carried by HD motions, ε(k) ≃ ε
HD

(k)

while energy is already dominated by KWs, E(k) ≃ E
KW

(k). In the flux-

free system of KWs one again sees thermodynamic equilibrium: but with

equipartition between KW degrees of freedom, E
KW

(k) =const

IV. For kℓ ≫ 1 E(k) ≃ E
KW

(k) and ε(k) ≃ ε
KW

(k) i.e. are dominated by KWs. In this pure KW region, as expected, one observes the

LN-spectrum of KWs, E
KW

(k) ∝ k−5/3 with constant KW-energy flux.

• As Λ decreases, the bottleneck effect becomes less pronounced. The equilibrium HD region II practically disappears for Λ ≃ 2. However the

equilibrium KW region III is still well featured, being less sensitive to Λ. This agrees with the Tokio-DNS results 21 for 20483, 10243, and

5123, shown by dots.

20 V. S. L’vov, S. V. Nazarenko & O. Rudenko, Phys. Rev. B 76, 024520 (2007).

V. S. L’vov, S. V. Nazarenko & O. Rudenko, J. of Low Temp. Phys. v. 153, 140 (2008).
21N. Sasa, M. Machida, T. Kano, V. S. L’vov, O. Rudenko and M. Tsubota,, Phys. Rev. B, 84, 054525 (2011).
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– Comparison with the Manchester 4He spin-down 22 and towed grid experiments
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. ⇑ Cartoon of the vortex configurations ⇑
⇐ Vortex line density (LΩ−3/2) vs. (Ω t) .

Measuring the time-decay of the vortex line density by negative-ion scatter-

ing, they found the temperature dependence of the effective viscosity ν′,

defined via rate of energy dissipation ε and mean square vorticity:

dE(t)

dt
= ε(t) = ν′⟨|ω|2

⟩
,
⟨
|ω|2

⟩
= (κL)2 ,

Turb. Energy E ∝ ε2/3 ⇒ E(t) ∝ (t− t∗)
2

⇒ L(t) ∝ 1/[κ
√
ν′(t− t∗)3]

22 Walmsley, Golov, Hall, Levchenko and Vinen, PRL, v. 99, 265302 (2007)
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3 Summary and perspectives

Much more experimental, analytical and numerical studies are required

to achieve desired level of understanding of superfluid turbulence
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