Nonlinear waves in twocomponent Bose-Einstein condensates

> A. M. Kamchatnov Institute of Spectroscopy RAS

In honor of V.E. Zakharov 75th birthday

VII International Conference "Solitons, Collapses and Turbulence" August 8, 2014

This work was done in collaboration with

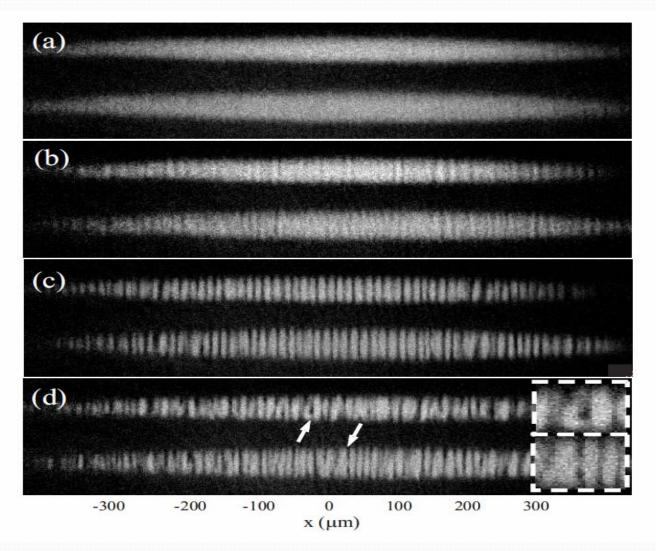
Yaroslav Kartashov, Institute of Spectroscopy RAS

Pierre-Élie Larré, Université Paris-Sud, France

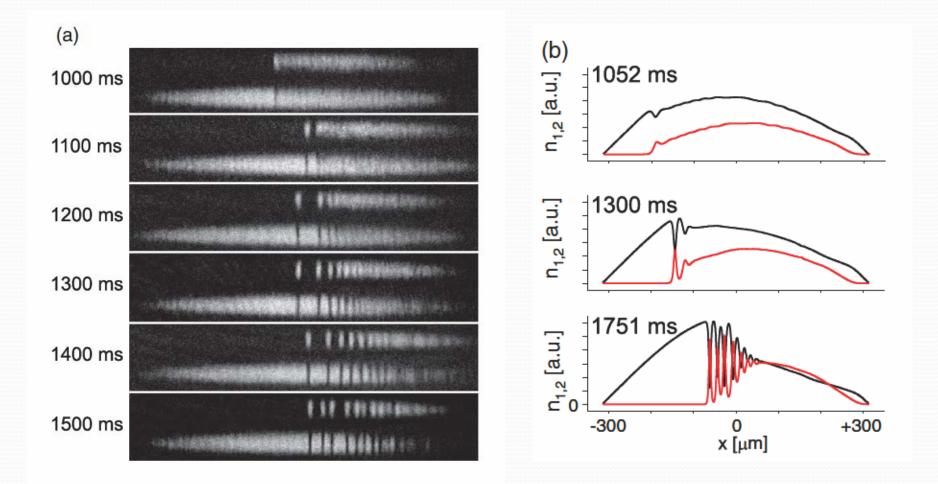
Nicolas Pavloff, Université Paris-Sud, France

Experiment (P.Engels et al, PRA, 84, 041605 (2011))

Generation of polarization waves by counter flows of two components



Experiment (C.Hamner et al, PRL, 106, 065302 (2011))



Gross-Pitaevskii equations

⁸⁷Rb $a_{11} = 100.4a_0, a_{12} = 98.98a_0 a_{22} = 98.98a_0$

$$i\partial_t \psi_{\pm} + \frac{1}{2} \partial_{xx}^2 \psi_{\pm} - \sigma \left(|\psi_{\pm}|^2 + |\psi_{\mp}|^2 \right) \psi_{\pm} = 0.$$

Density and polarization variables

$$\begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix} = \sqrt{\rho} e^{i\Phi/2} \chi = \sqrt{\rho} e^{i\Phi/2} \begin{pmatrix} \cos\frac{\theta}{2} e^{-i\phi/2} \\ \sin\frac{\theta}{2} e^{i\phi/2} \end{pmatrix}$$

Densities

$$\rho(x,t) = |\psi_+|^2 + |\psi_-|^2$$

$$\rho_{+}(x,t) = \rho \cos^{2}(\theta/2), \quad \rho_{-}(x,t) = \rho \sin^{2}(\theta/2)$$

Flow velocities

$$U = \Phi_x$$
 и $v = \phi_x$

 $\varphi_{\pm}(x,t) = \frac{1}{2}(\Phi \mp \phi), \quad v_{\pm}(x,t) = \partial_x \varphi_{\pm} = \frac{1}{2}(U \mp v)$

Dynamics

A.M.K., Europhysics Letters, **103**, 60003 (2013)

$$\rho_t + \frac{1}{2} [\rho(U - v\cos\theta)]_x = 0,$$

$$\Phi_t - \frac{\operatorname{ctg}\theta}{2\rho} (\rho\theta_x)_x + \frac{\rho_x^2}{4\rho^2} - \frac{\rho_{xx}}{2\rho} + \frac{1}{4} (\Phi_x^2 + \theta_x^2 + \phi_x^2) + 2\sigma\rho = 0,$$

$$\theta_t + \frac{1}{2\rho} [(\rho v\sin\theta)_x + \rho U\theta_x] = 0,$$

$$\phi_t - \frac{1}{2\rho\sin\theta} (\rho\theta_x)_x + \frac{1}{2} Uv = 0.$$

Nonlinear periodic solution

Separation of variables. Total density wave:

$$ρ = ρ(ξ), \quad θ = θ(ξ), \quad Φ = -2μt + Φ_0(ξ), \quad φ = φ(ξ), \quad где \quad ξ = x - Vt.$$

 $\rho_{\xi}^2 = 4\mathcal{R}(\rho),$

$$\mathcal{R}(\rho) = \sigma \rho^3 - (2\mu + V^2)\rho^2 + D\rho - (A^2 + C^2)$$

Polarization wave:

$$\left(\frac{d\theta}{d\xi}\right)^2 = \frac{4}{\rho^2} \left(C^2 - \frac{(B - A\cos\theta)^2}{\sin^2\theta}\right)$$

Periodic solution

Total density

$$\rho(\xi) = \rho_1 + (\rho_2 - \rho_1) \operatorname{sn}^2(\sqrt{\rho_3 - \rho_1} (\xi + \xi_0), m)$$
$$m = (\rho_2 - \rho_1)/(\rho_3 - \rho_1)$$

Polarization wave

 $R^{2} \equiv \rho_{1}\rho_{2}\rho_{3} \qquad A = R\cos\gamma, \quad C = R\sin\gamma, \quad B = R\cos\beta.$ $\theta_{1} = \beta + \gamma, \quad \theta_{2} = \beta - \gamma$ $\cos\theta(\xi) = \cos\theta_{1}\sin^{2}\frac{X(\xi)}{2} + \cos\theta_{2}\cos^{2}\frac{X(\xi)}{2}$ $X(\xi) = 2R\int_{\xi_{0}}^{\xi}\frac{d\xi'}{\rho_{1} + (\rho_{2} - \rho_{1})\operatorname{sn}^{2}(\sqrt{\rho_{3} - \rho_{1}}\xi', m)} + X_{0}$

Polarization wave

For the case of equal counter flows we get:

$$\cos \theta = \sin \gamma \cdot \cos \left[\frac{2V}{\cos \gamma} (x - Vt) \right]$$

$$k = 2V/\cos\gamma, \quad \omega(k) = \frac{1}{2}k^2\cos\gamma$$

Comparison with experiment (dimensional units). Wavelength equals to

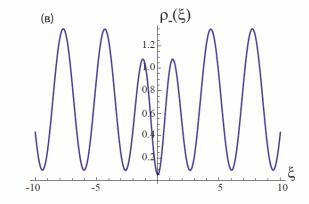
$$\Lambda = \frac{\pi \xi_{1D} c_s}{V} \qquad \qquad \xi_{1D} = \hbar / \sqrt{m g_{1D} \rho_{ch}} \approx 2.4 \times 10^{-5} \text{ cm}$$
$$c_s = \sqrt{g_{1D} \rho_{ch} / m} \approx 0.3 \text{ cm s}^{-1}$$

Experimental velocity $V \approx 1.8 \times 10^{-2} \text{ cm s}^{-1}$ corresponds to $\Lambda \approx 13 \text{ }\mu\text{m}$

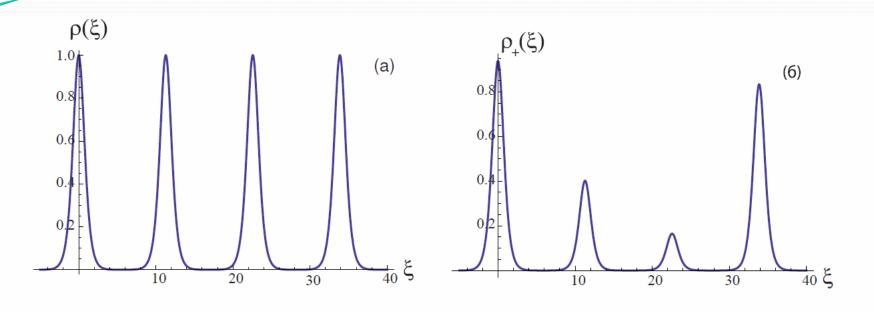
Experimental value of wavelength $\Lambda \approx 15 - 18 \ \mu m$

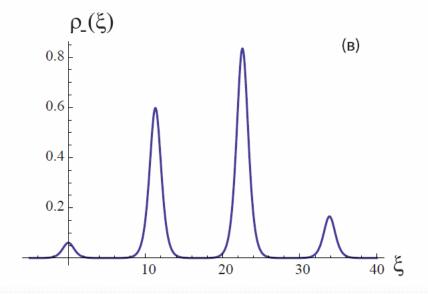
Quasi-soliton

 $\rho_2 = \rho_3 = \rho_0$ $\rho(x,t) = \rho_0 \left\{ 1 - \frac{1 - \rho_1 / \rho_0}{\operatorname{ch}^2 [\sqrt{\rho_0 - \rho_1} (x - Vt)]} \right\}$ $X(\xi) = 2\sqrt{\rho_1}\xi + 2 \operatorname{arctg}\left[\sqrt{\rho_0/\rho_1 - 1} \operatorname{th}(\sqrt{\rho_0 - \rho_1}\xi)\right]$ ρ(ξ) (a) .2 0.6 0.4 0.2 -10 -5 -10



Condensate with attractive interaction between atoms





Nonequal nonlinear constants

A.M.K., Y. V. Kartashov, P.-É. Larré, N. Pavloff, Phys. Rev. A 89, 033618 (2014)

$$i\partial_t\psi_{\pm} + \frac{1}{2}\partial_{xx}^2\psi_{\pm} - \left[(\alpha_1\pm\delta)|\psi_{\pm}|^2 + \alpha_2|\psi_{\mp}|^2\right]\psi_{\pm} = 0,$$

$$\begin{split} \rho_t &+ \frac{1}{2} [\rho(U - v\cos\theta)]_x = 0, \\ \Phi_t &- \frac{\cot\theta}{2\rho} (\rho\theta_x)_x + \frac{\rho_x^2}{4\rho^2} - \frac{\rho_{xx}}{2\rho} + \frac{1}{4} (\Phi_x^2 + \theta_x^2 + \phi_x^2) \\ &+ \rho(\alpha_1 + \alpha_2 + \delta\cos\theta) = 0, \\ \rho\theta_t &+ \frac{1}{2} [(\rho v\sin\theta)_x + \rho U\theta_x] = 0, \\ \phi_t &- \frac{1}{2\rho\sin\theta} (\rho\theta_x)_x + \frac{1}{2} Uv - \rho [\delta + (\alpha_1 - \alpha_2)\cos\theta] = 0, \end{split}$$

Dispersion laws

$$\begin{aligned} \omega_d^2(k) &= \frac{1}{2}\rho_0 \left(\alpha_1 + \sqrt{\alpha_2^2 + \delta^2}\right) k^2 + \frac{1}{4}k^4, \\ \omega_p^2(k) &= \frac{1}{2}\rho_0 \left(\alpha_1 - \sqrt{\alpha_2^2 + \delta^2}\right) k^2 + \frac{1}{4}k^4, \end{aligned}$$

Two sound velocities

$$c_d^2 = \frac{1}{2}\rho_0 \left(\alpha_1 + \sqrt{\alpha_2^2 + \delta^2}\right),$$
$$c_p^2 = \frac{1}{2}\rho_0 \left(\alpha_1 - \sqrt{\alpha_2^2 + \delta^2}\right).$$

Weakly nonlinear density waves

In quadratic with respect to amplitude approximation we get the KdV equation

$$\rho_t' + c_d \rho_x' + \frac{3(2\sqrt{\alpha_2^2 + \delta^2} - \alpha_2)c_d}{2\rho_0 \sqrt{\alpha_2^2 + \delta^2}} \rho' \rho_x' - \frac{1}{8c_d} \rho_{xxx}' = 0,$$

For

$$\delta \to 0$$

we obtain

$$\rho_t' + c_d \rho_x' + \frac{3c_d}{2\rho_0} \rho' \rho_x' - \frac{1}{8c_d} \rho_{xxx}' = 0, \quad c_d = \sqrt{\frac{1}{2}\rho_0(\alpha_1 + \alpha_2)}$$

Weakly nonlinear polarization waves

In quadratic with respect to amplitude approximation we get the KdV equation

$$\theta_t' + c_p \theta_x' + \frac{3c_p (2\delta^2 + \alpha_2^2 - \alpha_2 \sqrt{\alpha_2^2 + \delta^2})}{2\delta \sqrt{\alpha_2^2 + \delta^2}} \theta' \theta_x' - \frac{1}{8c_p} \theta_{xxx}' = 0$$

For $\delta \to 0$

$$\theta_t' + c_p \theta_x' + \frac{9c_p \delta}{4\alpha_2} \theta' \theta_x' - \frac{1}{8c_p} \theta_{xxx}' = 0, \quad c_p = \sqrt{\frac{\rho_0(\alpha_1 - \alpha_2)}{2}}$$

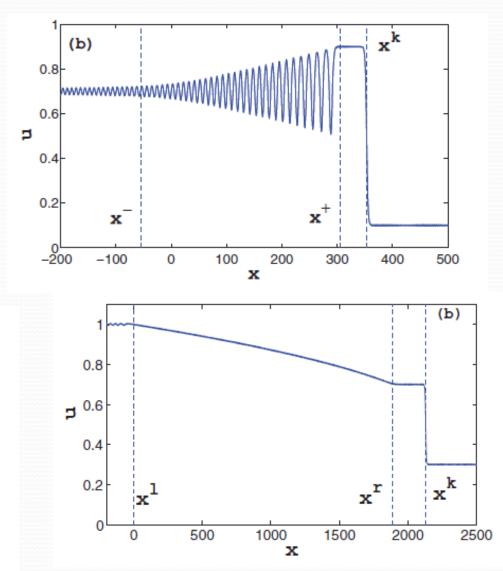
In cubic with respect to amplitude approximation we get the Gardner equation

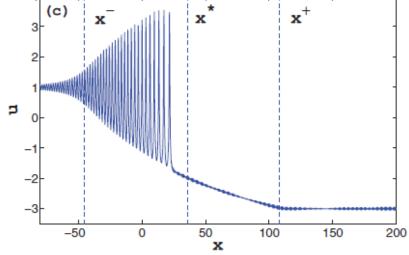
$$\theta_t' + \left(c_p - \frac{\rho_0 \delta^2}{8c_p \alpha_2}\right) \theta_x' + \frac{9 c_p \delta}{4\alpha_2} \theta' \theta_x' - \frac{3c_p}{8\alpha_2} \left(9\alpha_1 - \alpha_2\right) \theta'^2 \theta_x' - \frac{1}{8c_p} \theta_{xxx}' = 0$$

Dispersive shock waves for Gardner equation

A.M.K., Y.-H. Kuo, T.-C. Lin et al., Phys. Rev. E 89, 036605 (2012)

 $u_t + 6u(1 - \alpha u)u_x = 0,$





Breather solution

(R. Grimshaw, D. Pelinovsky, E. Pelinovsky, and T. Talipova, Physica D 159, 35 (2001))

$$\theta'(x,t) = -\frac{2}{c_p} \sqrt{\frac{2\alpha_2}{9\alpha_1 - \alpha_2}} \\ \times \frac{\partial}{\partial x} \arctan \frac{\kappa \cosh p \cos \Theta_b - k \cos q \sinh \Phi_b}{\kappa \sinh p \sin \Theta_b + k \sin q \cosh \Phi_b}$$

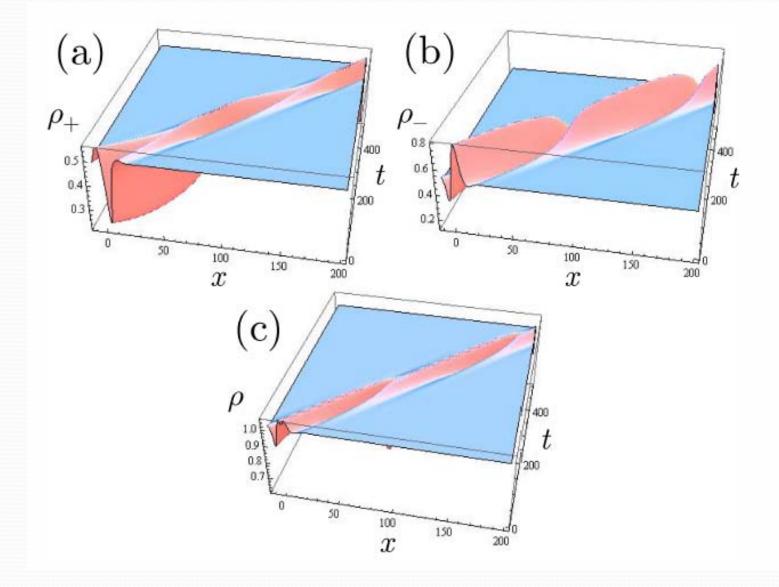
$$\Theta_b = k(v - V_b t) + \Theta_0, \quad \Phi_b = \kappa(x - V_i t) + \Phi_0.$$

$$k = \frac{3\delta c_p}{\sqrt{2\alpha_2(9\alpha_1 - \alpha_2)}} \frac{\sinh(2p)}{\cos^2 q \cosh^2 p + \sin^2 q \sinh^2 p},$$

$$\kappa = \frac{3\delta c_p}{\sqrt{2\alpha_2(9\alpha_1 - \alpha_2)}} \frac{\sin(2q)}{\cos^2 q \cosh^2 p + \sin^2 q \sinh^2 p},$$

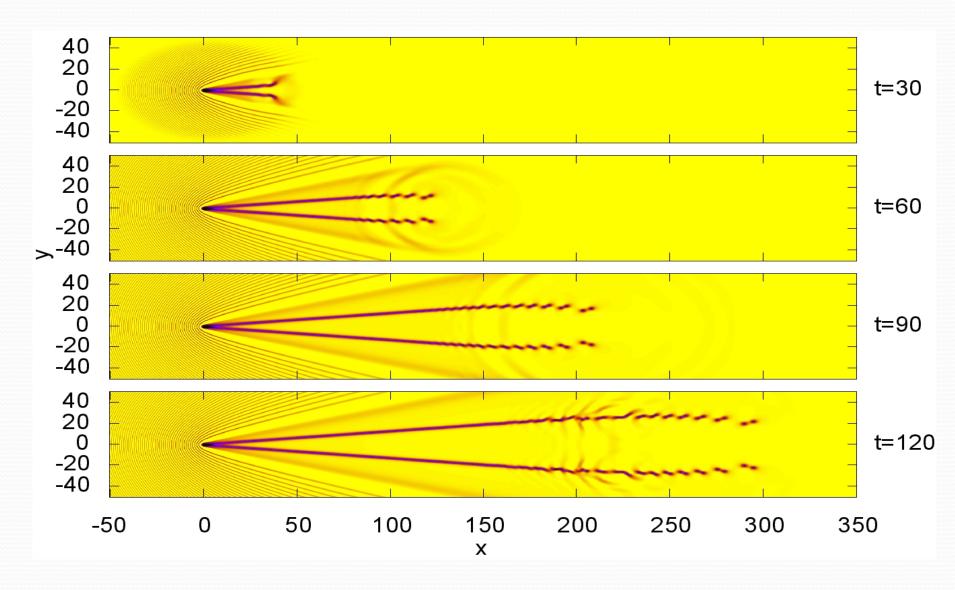
$$V_b = c_p - \frac{\rho_0 \delta^2}{8c_p \alpha_2} - \frac{3\kappa^2 - k^2}{8c_p}, \quad V_i = c_p - \frac{\rho_0 \delta^2}{8c_p \alpha_2} - \frac{\kappa^2 - 3k^2}{8c_p}$$

Breather

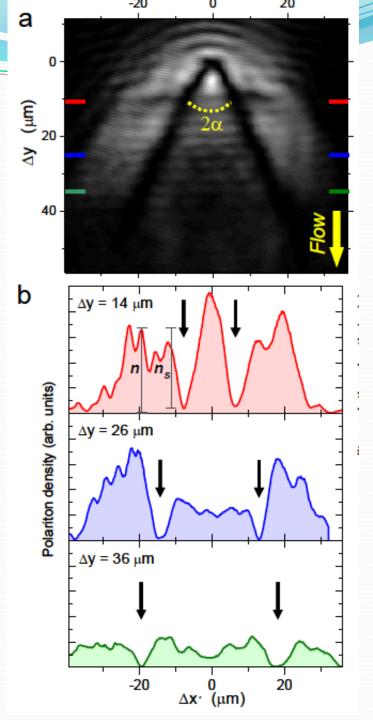


Flow past an obstacle

G.A. El, A. Gammal, A.M.K., PRL, 97, 180405 (2006)



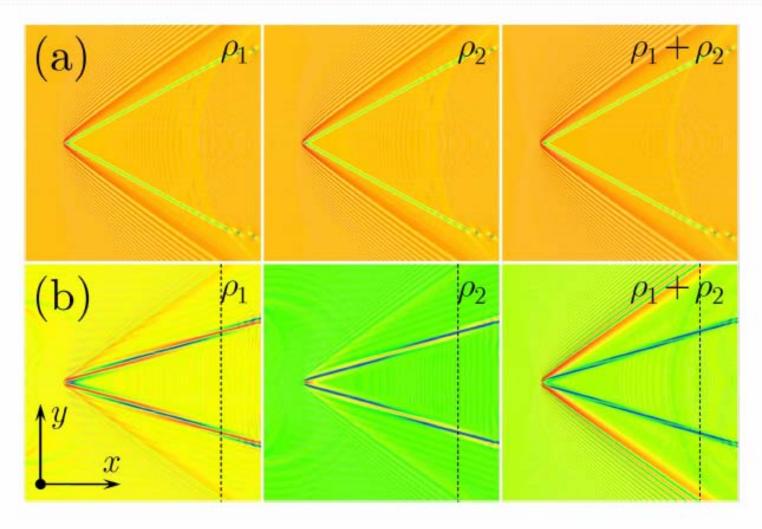
Experiment with a flow past an obstacle of a polariton condensate, A.Amo et al, Science, 332, 1167 (2011)



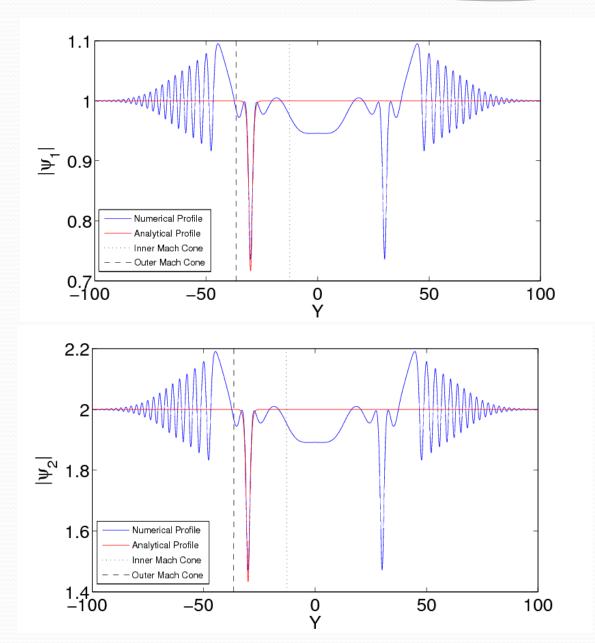
Oblique breather

A.M.K., Y. V. Kartashov, Phys. Rev. Lett. 111, 140402 (2013)

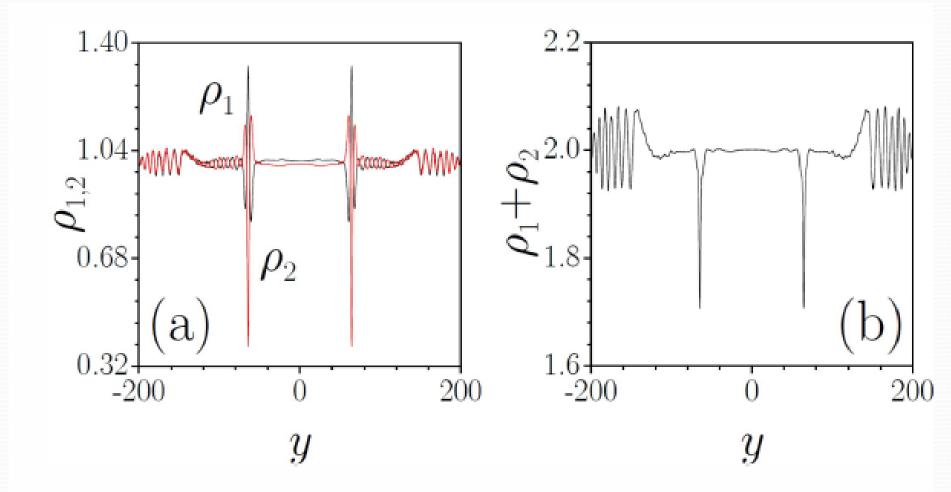
Oblique breathers are generated by the flow of two-component BEC past a polarized obstacle



Non-polarized obstacle



Polarized obstacle



Two-component BEC with spin-orbit coupling

Y. V. Kartashov, A.M.K., EPL, 107, 10008 (2014)

$$\begin{split} i\partial_t \psi_1 + \frac{1}{2} \Delta \psi_1 - (g_{11}|\psi_1|^2 + g_{12}|\psi_2|^2)\psi_1 \\ &- i\gamma \partial_y \psi_2 = \kappa_1 V_{\rm obs}(\mathbf{r})\psi_1, \\ i\partial_t \psi_2 + \frac{1}{2} \Delta \psi_2 - (g_{12}|\psi_1|^2 + g_{22}|\psi_2|^2)\psi_1 \\ &- i\gamma \partial_y \psi_1 = \kappa_2 V_{\rm obs}(\mathbf{r})\psi_2, \end{split}$$

Dispersion laws of linear waves of density and polarization (equal densities of components)

$$\omega = Vk_x - \gamma k_y \pm c_d^0 k, \quad \omega = Vk_x + \gamma k_y \pm c_p^0 k,$$

Rotation angle

$$\alpha_r = \mp \arctan\left(\frac{\gamma}{V}\right)$$

Non-polarized obstacle

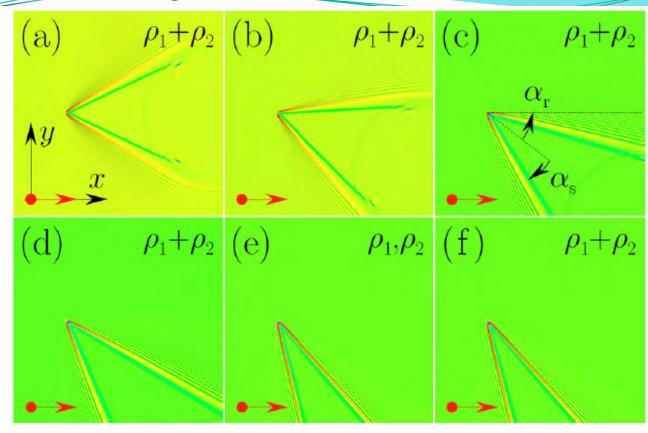
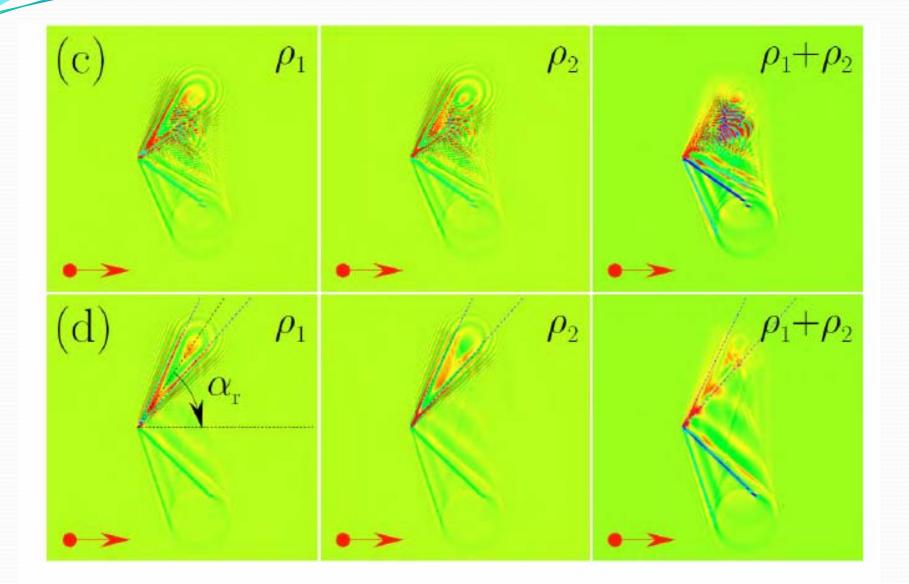


FIG. 1: (Color online) Transverse density distributions at t = 112 generated by the flow with velocity V = 2.6 past a nonpolarized obstacle with $\kappa_1 = \kappa_2 = 1$ at (a) $\gamma = 0$, (b) $\gamma = 1$, (c) $\gamma = 2$, (d) $\gamma = 3$, and (e), (f) $\gamma = 5$. Red arrows indicate the direction of the flow. Rotation angle α_r of the entire pattern and the angle between two oblique dark solitons α_s are indicated on the panel (c).

Polarized obstacle



THANK YOU FOR YOUR ATTENTION!