FACULTY OF SCIENCES

Nonlinear vector waves in the atomic chain model

S.P. Nikitenkova¹, L.A. Ostrovsky², N. Raj³ and <u>Y.A. Stepanyants³</u>

¹ N.I. Lobachevsky State University of Nizhny Novgorod, Russia;

- ²NOAA Environmental Science Research Laboratory and the University of Colorado,
- ³ University of Southern Queensland, Toowoomba, Australia.

International conference SCT-14 (Zakharov-75)

Happy Birthday to V.E.Z.!

Gorky School on Nonlinear Waves March 1972

Happy Birthday to V.E.Z.!

Gorky School on Nonlinear Waves March 1972 (with Semen Moiseev)

SOUTHERN QUEENSLAND

Happy Birthday to V.E.Z.!

Sydney, Australia, ICAM-2003 (with Stuart Anderson and Yury Stepanyants)

UNIVERSITY OF SOUTHERN QUEENSLAND

The theory of such discrete structures remains very topical due to their numerous applications:

- > theoretical physics [theory of crystal heat transport]
- > molecular physics [transport of excitations in molecules]
- X-ray spectroscopy
- ultrasound diagnostics of solids
- > application to electric transmission lines
- dusty plasma, etc.

In the <u>one-dimensional case</u> in application to a chain of atoms the equation of motion for <u>longitudinal</u> modes is <u>scalar</u> describing atom vibrations in the direction of wave propagation (*Fermi, Pasta, Ulam, 1955; Toda, 1989*).

$$\underbrace{ \begin{array}{c} u_n & u_{n+1} \\ \leftarrow & \leftarrow \\ \end{array} \\ - \underbrace{ \begin{array}{c} \dots \\ \dots \\ \end{array} \\ - \underbrace{ \begin{array}{c} \dots \\ \end{array} \\ \end{array} \\ - \underbrace{ \begin{array}{c} \dots \\ \end{array} \\ \end{array} \\ - \underbrace{ \begin{array}{c} \dots \\ \end{array} \\ \end{array} \\ - \underbrace{ \begin{array}{c} \dots \\ \end{array} \\ \end{array} \\ - \underbrace{ \begin{array}{c} \dots \\ \end{array} \\ - \underbrace{ \begin{array}{c} \dots \\ \end{array} \\ \end{array} \\ - \underbrace{ \begin{array}{c} \dots \\ \end{array} \\ - \underbrace{ \end{array} \\ - \underbrace{ \begin{array}{c} \dots \\ \end{array} \\ - \underbrace{ \begin{array}{c} \dots \\ \end{array} \\ - \underbrace{ \end{array} \\ - \underbrace{ \begin{array}{c} \dots \\ \end{array} \\ - \underbrace{ \end{array} \\ - \underbrace{ \begin{array}{c} \dots \\ \end{array} \\ - \underbrace{ \end{array} \\ - \underbrace{ \begin{array}{c} \dots \\ \end{array} \\ - \underbrace{ } \end{array} \\ - \underbrace{ \end{array} \\ = \underbrace{ \end{array} \\ - \underbrace{ \end{array} \\ - \underbrace{ } \end{array} \\ = \underbrace{ \end{array} \\ - \underbrace{ \end{array} \\ = \underbrace{ \end{array} \\ - \underbrace{ } \end{array} \\ = \underbrace{ } \end{array} \\ = \underbrace{ \end{array} \\ = \underbrace{ } \end{array} \\ = \underbrace{ } \\ = \underbrace{ } \\ = \underbrace{ \end{array} \\ = \underbrace{ } \end{array} \\ = \underbrace{ } \end{array} \\ = \underbrace{ } \\ = \underbrace{ \end{array} \\ = \underbrace{ } \end{array} \\ = \underbrace{ \end{array} \\ = \underbrace{ } \end{array} \\ = \underbrace{ } \end{array} \\ =$$

- When the <u>transverse modes</u> are considered the equation of motion becomes <u>vector</u> describing particle displacements in two perpendicular directions transverse to the direction of wave propagation
- (Gorbacheva & Ostrovsky, 1983).

Transvers Modes on a Particle Chain

Steve Mould: Amazing bead chain experiment in slow motion, YouTube, *http://youtu.be/6ukMId5fli0*

AUSTRA

Helical Waves on the Chain of Beads USQ

Vector Equation of Motion

$$m\frac{d^{2}\overline{\xi}_{n}}{dt^{2}} = \mathbf{F}_{n-2} + \mathbf{F}_{n-1} + \mathbf{F}_{n+1} + \mathbf{F}_{n+2}$$

$$\vec{\xi}_{n} = (y_{n}, z_{n})$$

$$\beta_{j} - \text{ coupling constants,}$$

$$T - \text{ uniform tension of the chain,}$$

$$K - \text{ analogue of Hooke's constant,}$$

 α – local angle between the chain and the *x*-axis,

j = 1 - for nearest two neighbor atoms and <math>j = 2 for the next two atoms.

AUSTR/

Vector Equation of Motion

The expression for the force:

AUSTRA

Vector Equation of Motion

$$m\frac{d^{2}\vec{\xi}_{n}}{dt^{2}} = \mathbf{F}_{n-2} + \mathbf{F}_{n-1} + \mathbf{F}_{n+1} + \mathbf{F}_{n+2}$$
$$F_{n\pm 1} = \pm\beta_{1}\left[T + aK\left(\frac{1}{\cos\alpha_{n\pm 1}} - 1\right)\right]\sin\alpha_{n\pm 1}$$

In the case of small angles α the forces are:

$$\mathbf{F}_{n\pm j} \approx \pm \frac{\vec{\xi}_{n\pm j} - \vec{\xi}_n}{ja} \left[T + \frac{jaK - T}{2(ja)^2} \left| \vec{\xi}_{n\pm j} - \vec{\xi}_n \right|^2 \right]$$

Finally the equation of motion in the dimensionless variables

reads:

$$m\frac{d^{2}\vec{\xi}_{n}}{dt^{2}} = \mathbf{F}_{n-2} + \mathbf{F}_{n-1} + \mathbf{F}_{n+1} + \mathbf{F}_{n+2}$$

$$\frac{d^{2}\overline{\xi}_{n}}{d\tau^{2}} = \overline{\xi}_{n+1} - 2\overline{\xi}_{n} + \overline{\xi}_{n-1} + \frac{\mu - 1}{2} \left[\left| \overline{\xi}_{n+1} - \overline{\xi}_{n} \right|^{2} \left(\overline{\xi}_{n+1} - \overline{\xi}_{n} \right) - \left| \overline{\xi}_{n} - \overline{\xi}_{n-1} \right|^{2} \left(\overline{\xi}_{n} - \overline{\xi}_{n-1} \right) \right] + \frac{\beta_{2}}{2} \left\{ \overline{\xi}_{n+2} - 2\overline{\xi}_{n} + \overline{\xi}_{n-2} + \frac{2\mu - 1}{8} \left[\left| \overline{\xi}_{n+2} - \overline{\xi}_{n} \right|^{2} \left(\overline{\xi}_{n+2} - \overline{\xi}_{n} \right) - \left| \overline{\xi}_{n} - \overline{\xi}_{n-2} \right|^{2} \left(\overline{\xi}_{n} - \overline{\xi}_{n-2} \right) \right] \right\}$$

$$\tau = t \sqrt{T/am}, \qquad \overline{\xi_n} = \vec{\xi_n}/a, \qquad \mu = aK/T$$

Dispersion Law for Flexural Modes

1972).

- > It is a matter of experimental fact that in many cases the transverse flexural modes in crystals demonstrate the quadratic dispersion law in $\omega \sim k^2$ in the long-wave approximation, whereas typically the dispersion low in the long wave approximation is $\omega \sim k$.
- The quadratic dispersion law occurs in anisotropic crystals with strong difference between the inlayer and interlayer forces; e.g., in the graphite (*Nicklow et al.*,
 - UNIVERSITY OF SOUTHERN QUEE

AUSTR

Experimental Observation

Nicklow, Wakabayashi, Smith. Phys. Rev. B, 1972, v. 5, 4951–4962.

AUSTR/

Quadratic phonon dispersion in graphite C (a) and linear phonon dispersion in GaS (b). The wavenumber is given in relative units.

For small perturbations of infinitesimal amplitude the

dispersion relation reads:

$$\omega^2 = 4\sin^2\frac{\kappa}{2}\left(1 + 2\beta_2\cos^2\frac{\kappa}{2}\right)$$

I.M. Lifshitz (1952) pointed out that the quadratic dispersion

law in crystals can be obtained if the influence of next

particles are taken into consideration.

1)
$$\beta_2 = 0$$
, $\omega = 2\sin\frac{\kappa}{2}$

2)
$$\beta_2 = -\frac{1}{2}, \quad \omega = 2\sin^2\frac{\kappa}{2}$$

Graphic of the Dispersion Relation

Dispersion relation in the first Brillouin zone, $-\pi \le k \le \pi$, for different values of the coupling constant β_2 : line $1 - \beta_2 = 0$, line $2 - \beta_2 = -1/8$, line $3 - \beta_2 = -0.4$, line $4 - \beta_2 = -0.5$, line $5 - \beta_2 = 0.5$, and line $6 - \beta_2 = 1.0$.

AUSTR

Dispersion Relation in the Long Wave Approximation

In the long-wave approximation, $\kappa << 1$, the dispersion relation reads:

 $\omega \approx \sqrt{1+2\beta_2}\kappa - \frac{1+8\beta_2}{24\sqrt{1+2\beta_2}}\kappa^3 + \dots$ $\beta_2 \neq -\frac{1}{2}$: $\omega \approx \frac{\kappa^2}{2} - \frac{\kappa^4}{24} + \dots$ $\beta_2 = -\frac{1}{2}$: $\omega \approx \frac{\sqrt{3}}{2}\kappa - \frac{\sqrt{3}}{360}\kappa^5 + \dots$ $\beta_2 = -\frac{1}{8}$

Nonlinear PDEs

In the long-wave approximation the governing equation

$$\frac{d^{2}\overline{\xi}_{n}}{d\tau^{2}} = \overline{\xi}_{n+1} - 2\overline{\xi}_{n} + \overline{\xi}_{n-1} + \frac{\mu - 1}{2} \left[\left| \overline{\xi}_{n+1} - \overline{\xi}_{n} \right|^{2} \left(\overline{\xi}_{n+1} - \overline{\xi}_{n} \right) - \left| \overline{\xi}_{n} - \overline{\xi}_{n-1} \right|^{2} \left(\overline{\xi}_{n} - \overline{\xi}_{n-1} \right) \right] + \frac{\beta_{2}}{2} \left\{ \overline{\xi}_{n+2} - 2\overline{\xi}_{n} + \overline{\xi}_{n-2} + \frac{2\mu - 1}{8} \left[\left| \overline{\xi}_{n+2} - \overline{\xi}_{n} \right|^{2} \left(\overline{\xi}_{n+2} - \overline{\xi}_{n} \right) - \left| \overline{\xi}_{n} - \overline{\xi}_{n-2} \right|^{2} \left(\overline{\xi}_{n} - \overline{\xi}_{n-2} \right) \right] \right\}$$

reduces to the PDE:

$$\frac{\partial^2 \overline{\xi}}{\partial \tau^2} - (1 + 2\beta_2) \frac{\partial^2 \overline{\xi}}{\partial x^2} = \frac{1 + 8\beta_2}{12} \frac{\partial^4 \overline{\xi}}{\partial x^4} + \frac{1 + 32\beta_2}{360} \frac{\partial^6 \overline{\xi}}{\partial x^6} + \frac{\mu (1 + 4\beta_2) - (1 + 2\beta_2)}{2} \frac{\partial}{\partial x} \left(\left| \frac{\partial \overline{\xi}}{\partial x} \right|^2 \frac{\partial \overline{\xi}}{\partial x} \right)$$

The basic equation can be presented in terms of $\mathbf{u} = \partial \boldsymbol{\xi} / \partial x$:

$$\frac{\partial^2 \mathbf{u}}{\partial \tau^2} - (1 + 2\beta_2) \frac{\partial^2 \mathbf{u}}{\partial x^2} - \frac{1 + 8\beta_2}{12} \frac{\partial^4 \mathbf{u}}{\partial x^4} - \frac{1 + 32\beta_2}{360} \frac{\partial^6 \mathbf{u}}{\partial x^6} - \frac{\mu (1 + 4\beta_2) - (1 + 2\beta_2)}{2} \frac{\partial^2}{\partial x^2} (|\mathbf{u}|^2 \mathbf{u}) = 0$$

If $\beta_2 \neq -1/2$ and $\beta_2 \neq -1/8$, then for the <u>unidirectional</u> wave propagation the equation can be further reduced to the <u>vector mKdV equation</u> (*Karney, Sen & Chu*, 1979; *Gorbacheva & Ostrovsky*, 1983; *Destrade & Saccomandi*, 2008):

$$\frac{\partial \mathbf{u}}{\partial \tau} + c_0 \frac{\partial \mathbf{u}}{\partial x} + \frac{1 + 8\beta_2}{24c_0} \frac{\partial^3 \mathbf{u}}{\partial x^3} + \frac{\mu (1 + 4\beta_2) - c_0^2}{4c_0} \frac{\partial}{\partial x} (|\mathbf{u}|^2 \mathbf{u}) = 0, \quad c_0 = \sqrt{1 + 2\beta_2}$$

The derived vector mKdV equation in non-integrable, but is

very close to the completely integrable equation:

$$\frac{\partial \mathbf{u}}{\partial \tau} + \alpha \frac{\partial}{\partial x} \left(|\mathbf{u}|^2 \mathbf{u} \right) + \beta \frac{\partial^3 \mathbf{u}}{\partial x^3} = 0;$$
$$\frac{\partial \mathbf{u}}{\partial \tau} + \alpha |\mathbf{u}|^2 \frac{\partial \mathbf{u}}{\partial x} + \beta \frac{\partial^3 \mathbf{u}}{\partial x^3} = -\alpha \mathbf{u} \frac{\partial |\mathbf{u}|^2}{\partial x}$$

$$\alpha = \frac{\mu (1 + 4\beta_2) - c_0^2}{4c_0}, \quad \beta = \frac{1 + 8\beta_2}{24c_0}, \quad c_0 = \sqrt{1 + 2\beta_2}$$

AUSTR/

If
$$\beta_2 \neq -1/2$$
, but close to $\beta_2 = -1/8$, then we have:

$$\frac{\partial^2 \mathbf{u}}{\partial \tau^2} - c_0^2 \frac{\partial^2 \mathbf{u}}{\partial x^2} - \frac{1 + 8\beta_2}{12} \frac{\partial^4 \mathbf{u}}{\partial x^4} - \frac{1 + 32\beta_2}{360} \frac{\partial^6 \mathbf{u}}{\partial x^6} - \frac{\mu (1 + 4\beta_2) - c_0^2}{2} \frac{\partial^2}{\partial x^2} (|\mathbf{u}|^2 \mathbf{u}) = 0$$

Or for unidirectional wave propagation:

$$\frac{\partial \mathbf{u}}{\partial \tau} + c_0 \frac{\partial \mathbf{u}}{\partial x} + \frac{1 + 8\beta_2}{24c_0} \frac{\partial^3 \mathbf{u}}{\partial x^3} + \frac{1 + 32\beta_2}{720c_0} \frac{\partial^5 \mathbf{u}}{\partial x^5} + \frac{\mu(1 + 4\beta_2) - c_0^2}{4c_0} \frac{\partial}{\partial x} \left(|\mathbf{u}|^2 \mathbf{u} \right) = 0$$

In the critical case when $\beta_2 = -1/2$, and $\omega \sim k^2$,

the basic vector equation reduces to:

$$\frac{\partial^2 \mathbf{u}}{\partial \tau^2} + \frac{1}{4} \frac{\partial^4 \mathbf{u}}{\partial x^4} + \frac{\mu}{2} \frac{\partial^2}{\partial x^2} \left(\left| \mathbf{u} \right|^2 \mathbf{u} \right) = 0$$

This equation can be treated as the vector version of the 'second order cubic Benjamin–Ono (socBO) equation'. The similar (but <u>scalar</u>) equation with the <u>quadratic</u> nonlinearity has been studied in (*Hereman et al.*, 1986;

Taghizadeh et al., 2011; Najafi, 2012).

The Nonlinear Pseudo-Diffusion Vector Equation

For waves propagating in one direction only, the socBO

equation can be further simplified to the

nonlinear 'pseudo-diffusion' vector equation:

$$\frac{\partial \left(\hat{\mathbf{H}} \mathbf{u} \right)}{\partial \tau} - \frac{1}{2} \frac{\partial^2 \mathbf{u}}{\partial x^2} - \frac{\mu}{2} \left| \mathbf{u} \right|^2 \mathbf{u} = 0$$

where \hat{H} – is the Hilbert transform operator:

$$\hat{H}\{f\} = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{f(x')}{x'-x} dx'; \quad \hat{H}^{-1} = -\hat{H}.$$

NIVERSITY OF DUTHERN QUEENSLAND Consider stationary solutions to the main equation of

nonlinear vector string, $\mathbf{u} = \mathbf{u}(s = x - Vt)$:

$$\frac{\partial^2 \mathbf{u}}{\partial \tau^2} - c_0^2 \frac{\partial^2 \mathbf{u}}{\partial x^2} - \alpha \frac{\partial^2}{\partial x^2} \left(\left| \mathbf{u} \right|^2 \mathbf{u} \right) - \beta \frac{\partial^4 \mathbf{u}}{\partial x^4} = 0$$

$$\frac{d^{2}\mathbf{u}}{dx^{2}} + \frac{c_{0}^{2} - V^{2}}{\beta}\mathbf{u} + \frac{\alpha}{\beta}|\mathbf{u}|^{2}\mathbf{u} = 0$$

Energy integral:

$$\frac{1}{2}\left|\frac{d\mathbf{u}}{ds}\right|^2 + \frac{c_0^2 - V^2}{\beta}\left|\mathbf{u}\right|^2 + \frac{\alpha}{\beta}\left|\mathbf{u}\right|^4 = E$$

AUSTRA

Analysis of the Energy Integral

Mechanical interpretation of the energy integral:

$$\frac{1}{2} \left| \frac{d\mathbf{u}}{ds} \right|^2 + \frac{c_0^2 - V^2}{\beta} \left| \mathbf{u} \right|^2 + \frac{\alpha}{\beta} \left| \mathbf{u} \right|^4 = E$$

The potential function:

$$P(|\mathbf{u}|) = \frac{c_0^2 - V^2}{\beta} |\mathbf{u}|^2 + \frac{\alpha}{\beta} |\mathbf{u}|^4$$

Solitary Waves

Let us look for a solution to the equation

$$\frac{d^2\mathbf{u}}{dx^2} + \frac{c_0^2 - V^2}{\beta}\mathbf{u} + \frac{\alpha}{\beta}|\mathbf{u}|^2\mathbf{u} = 0$$

in the form $\mathbf{u} = (R \cos \varphi, R \sin \varphi);$

then denoting $X = \varphi'$ we obtain:

$$\beta \left[R'' - RX^2 \right] + \alpha R^3 + \left(c_0^2 - V^2 \right) R = 0; \qquad R^2 X = I = const$$

$$R'' + \frac{\alpha}{\beta}R^3 + \frac{c_0^2 - V^2}{\beta}R - \frac{I^2}{R^3} = 0$$

The analysis of the derived equation

$$R'' + \frac{\alpha}{\beta}R^3 + \frac{c_0^2 - V^2}{\beta}R - \frac{I^2}{R^3} = 0$$

shows that stationary solitary waves are possible

only in the form of plane solitons when I = 0.

$$\frac{1}{2}(R')^{2} + \frac{\alpha}{4\beta}R^{4} + \frac{c_{0}^{2} - V^{2}}{2\beta}R^{2} + \frac{I^{2}}{2R^{2}} = E$$

Stationary Solitary Waves

$$u(s) = \frac{A_s}{\cosh(s/\Delta_s)}, \quad \overline{y}(s) = 2A_s\Delta_s\left[\tan^{-1}\left(e^{-s/\Delta_s}\right) - C\right]$$

$$\Delta_{s} = \frac{1}{|A_{s}|} \sqrt{\frac{1 + 8\beta_{2}}{3\left[\mu(1 + 4\beta_{2}) - c_{0}^{2}\right]}}$$

$$V^{2} = c_{0}^{2} + \frac{A_{s}^{2}}{4} \left[\mu \left(1 + 4\beta_{2} \right) - c_{0}^{2} \right]$$

Stationary Solitary Waves

Existence of plane solitons:

1) Fast solitons, $|V| > c_0$; $\beta_2 > -1/8$, $\mu > \frac{1+2\beta_2}{1+4\beta_2}$ 2) Slow solitons, $|V| < c_0$; $-1/4 < \beta_2 < -1/8$, $\mu < \frac{1+2\beta_2}{1+4\beta_2}$

$$-1/2 < \beta_2 < -1/4, \ \mu > 0$$

Fast solitons exist in the domain I

Slow solitons exist in the domains II and III

AUSTRA

Stationary Solitary Waves

Dependence of soliton speed on amplitude:

$$V^{2} = c_{0}^{2} + \frac{A_{s}^{2}}{4} \left[\mu \left(1 + 4\beta_{2} \right) - c_{0}^{2} \right]$$

Non-Stationary Solitary Waves

I. Plane breathers in the mKdV equation

$$u(x,\tau) = -4q \sqrt{\frac{1+8\beta_2}{\mu(1+4\beta_2)-c_0^2}} \operatorname{sech}\Psi \frac{\cos\Phi - (q/p)\sin\Phi\tanh\Psi}{1+(q/p)^2\sin^2\Phi\operatorname{sech}^2\Psi},$$

$$\Phi = 2px + \frac{\delta}{24c_0} (1 + 8\beta_2)\tau + \varphi_0, \quad \Psi = 2qx + \frac{\gamma}{24c_0} (1 + 8\beta_2)\tau + \psi_0, \\ \delta = 8p(p^2 - 3q^2), \quad \gamma = 8q(3p^2 - q^2).$$

Non-Stationary Solitary Waves

S USQ AUSTRALIA

II. Helical solitons – clockwise rotating soliton

$$\mathbf{u} = Re^{i\psi}\mathbf{e} + Re^{-i\psi}\mathbf{e}^{*}$$
$$\mathbf{e} = (0,1/2,i/2), \quad \mathbf{e}^{*} = (0,1/2,-i/2).$$
$$R(s) = \frac{A_{h}}{\cosh(s/\Delta_{h})}, \qquad \psi(s,\tau) = \frac{C(\tau)}{A_{h}^{2}}\sqrt{\frac{1+8\beta_{2}}{3\left[\mu(1+4\beta_{2})-c_{0}^{2}\right]}} \sinh(s/\Delta_{h})$$
$$\Delta_{h} = \frac{1}{|A_{h}|}\sqrt{\frac{1+8\beta_{2}}{3\left[\mu(1+4\beta_{2})-c_{0}^{2}\right]}}$$
$$V_{h} = \frac{\mu(1+4\beta_{2})-c_{0}^{2}}{8c_{0}}A_{h}^{2}$$

The numerical modelling of wave dynamics was

undertaken by direct simulation of the differential-difference

set of vector equations on the basis of the fourth order

Runge–Kutta method.

$$\frac{d^{2}\overline{\xi}_{n}}{d\tau^{2}} = \overline{\xi}_{n+1} - 2\overline{\xi}_{n} + \overline{\xi}_{n-1} + \frac{\mu - 1}{2} \left[\left| \overline{\xi}_{n+1} - \overline{\xi}_{n} \right|^{2} \left(\overline{\xi}_{n+1} - \overline{\xi}_{n} \right) - \left| \overline{\xi}_{n} - \overline{\xi}_{n-1} \right|^{2} \left(\overline{\xi}_{n} - \overline{\xi}_{n-1} \right) \right] + \frac{\beta_{2}}{2} \left\{ \overline{\xi}_{n+2} - 2\overline{\xi}_{n} + \overline{\xi}_{n-2} + \frac{2\mu - 1}{8} \left[\left| \overline{\xi}_{n+2} - \overline{\xi}_{n} \right|^{2} \left(\overline{\xi}_{n+2} - \overline{\xi}_{n} \right) - \left| \overline{\xi}_{n} - \overline{\xi}_{n-2} \right|^{2} \left(\overline{\xi}_{n} - \overline{\xi}_{n-2} \right) \right] \right\}$$

Interaction of Plane Solitary Waves

b)

c)

Elastic interactions between solitons propagating in the same plane

Interaction of Plane Solitary Waves

36

Interaction of Plane Solitary Waves

Inelastic interactions between

solitons propagating in different

planes

- The larger-amplitude soliton overtaking the smaller one transfers its energy to the smaller soliton and then decays.
- In the meantime, the smalleramplitude soliton acquiring energy from the bigger one becomes taller and moves ahead.

Inelastic Soliton Interaction at 30°

USQ

AUSTRALIA

MAAN

Inelastic Soliton Interaction at 45°

ISO

Inelastic Soliton Interaction at 60°

USQ

AUSTRALIA

MAAA

Inelastic Soliton Interaction at 90°

USQ

Helical Soliton

Non-Stationary Dynamics

Breakdown of a Helical Perturbation

Conclusion

- It has been shown that flexural <u>transverse waves</u> in an anharmonic chain of atoms can be described by general <u>vector differential-difference</u> equation which can be reduced to the "string equation" in the longwave approximation.
- The basic differential-difference equation takes into account the interaction of each atom with <u>two nearest</u> <u>neighbours</u> from both sides.
- The <u>dispersion</u> relation in the long-wave approximation may be both <u>linear and quadratic</u> depending on the relationship between the bonds.

Conclusion

- Two solitons of the same or opposite polarities interact <u>elastically</u> similar to the scalar mKdV solitons, but interaction of two solitons lying initially in the nonparallel planes is essentially <u>inelastic</u>.
- Helical soliton solution has been constructed.
- Examples of non-stationary dynamics of helical initial perturbations were obtained.

- 1. *Karney C.F.F., Sen A.* & *Chu F.Y.F.* 1979. Nonlinear evolution of lower hybrid waves. Phys. Fluids, v. 22, 940.
- 2. Gorbacheva O.B. & Ostrovsky L.A., 1983. Nonlinear vector waves in a mechanical model of a molecular chain. *Physica D*, v. 8, 223–228.
- 3. *Muslu G.M.* & *Erbay H.A.* 2003. A split-step Fourier method for the complex modified Korteweg–de Vries equation. Comput. Math. Appl., v. 45, 503–514.
- 4. Destrade M. & Saccomandi G., 2008. Nonlinear transverse waves in deformed dispersive solids, *Wave Motion*, v. 45, 325–336.

- 5. *Triki H.* & *Ismail M.S.* 2010. Solitary wave solutions for a coupled pair of mKdV equations. Appl. Math. and Comp., v. 217, 1540–1548.
- Uddin M. & Jan R.A. 2013. RBF-PS scheme for the numerical solution of the complex modified Korteweg–de Vries equation. Appl. Math. Inf. Sci. Lett., v. 1, n. 1, 9– 17.
- 7. *Nikitenkova S.P., Raj N. & Stepanyants Y.A.* Nonlinear vector waves of a flexural mode in a chain model of atomic particles. *Communications in Nonlinear Science and Numerical Simulation*, 2014.

