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The theory of such discrete structures remains very topical 

due to their numerous applications: 

 theoretical physics [theory of crystal heat transport]  

 molecular physics [transport of excitations in molecules]  

 X-ray spectroscopy  

 ultrasound diagnostics of solids 

 application to electric transmission lines 

 dusty plasma, etc.  

 

 

Study of Anharmonic Chains 
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The FPU Model 

In the one-dimensional case in application to a chain of 

atoms the equation of motion for longitudinal modes is 

scalar describing atom vibrations in the direction of wave 

propagation (Fermi, Pasta, Ulam, 1955; Toda, 1989). 
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Transverse Modes of the Atomic Chain 
 

When the transverse modes are considered the equation of 

motion becomes vector describing particle displacements 

in two perpendicular directions transverse to the direction 

of wave propagation  

(Gorbacheva & Ostrovsky, 1983). 

7 



Transvers Modes on a Particle Chain 

Steve Mould: Amazing bead chain experiment in 
slow motion, YouTube, http://youtu.be/6ukMId5fIi0 
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Helical Waves on the Chain of Beads 

9 



Infinite chain of equal mass atoms: 

Vector Equation of Motion 

j – coupling constants, 

T – uniform tension of the chain, 

K – analogue of Hooke’s constant, 

 – local angle between the chain and the x-axis, 

 j = 1 – for nearest two neighbor atoms and j = 2 for the next two atoms. 
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The expression for the force: 

Vector Equation of Motion 
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Vector Equation of Motion 

In the case of small angles   the forces are: 
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Vector Equation of Motion 

Finally the equation of motion in the dimensionless variables 

reads: 
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Dispersion Law for Flexural Modes 

 It is a matter of experimental fact that in many cases the 

transverse flexural modes in crystals demonstrate the 

quadratic dispersion law in ~~~k2 in the long-wave 

approximation, whereas typically the dispersion low in 

the long wave approximation is  ~ k. 

  The quadratic dispersion law occurs in anisotropic 

crystals with strong difference between the inlayer and 

interlayer forces; e.g., in the graphite (Nicklow et al., 

1972). 
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Experimental Observation 
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Nicklow, Wakabayashi, Smith.  

Phys. Rev. B, 1972, v. 5, 4951–4962. 

Quadratic phonon dispersion in graphite C (a) and linear phonon 

dispersion in GaS (b). The wavenumber is given in relative units. 



Dispersion Relation 

For small perturbations of infinitesimal amplitude the 

dispersion relation reads: 
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I.M. Lifshitz (1952) pointed out that the quadratic dispersion 

law in crystals can be obtained if the influence of next 

particles are taken into consideration.  
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Graphic of the Dispersion Relation   
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Dispersion relation in the first Brillouin zone, –  k  , for 

different values of the coupling constant  2: line 1 –  2 = 0, 

line 2 –  2 = –1/8, line 3 –  2 = –0.4, line 4 –  2 = –0.5, 

line 5 –  2 = 0.5, and line 6 –  2 = 1.0. 
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β2  ≠  ½: 

 

β2  =  ½: 

 

β2  = ⅛: 
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Dispersion Relation in the  

Long Wave Approximation 
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In the long-wave approximation,  << 1, the dispersion 

relation reads: 
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Nonlinear PDEs 

In the long-wave approximation the governing equation  

 

 

 

 

reduces to the PDE: 
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Varios Model Vector Equations 

The basic equation can be presented in terms of u = /x: 
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If β2 ≠ 1/2 and β2 ≠ 1/8, then for the unidirectional wave 

propagation the equation can be further reduced to the 

vector mKdV equation (Karney, Sen & Chu, 1979; Gorba-

cheva & Ostrovsky, 1983; Destrade & Saccomandi, 2008): 
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Vector mKdV Equations 

The derived vector mKdV equation in non-integrable, but is 

very close to the completely integrable equation: 
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Other Model Equations 
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If β2 ≠ 1/2, but close to β2 = 1/8, then we have: 
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Or for unidirectional wave propagation: 
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The Critical Case 

In the critical case when β2 = 1/2, and  ~ k2, 

the basic vector equation reduces to: 
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This equation can be treated as the vector version of the 

‘second order cubic Benjamin–Ono (socBO) equation’.  

The similar (but scalar) equation with the quadratic 

nonlinearity has been studied in (Hereman et al., 1986; 

Taghizadeh et al., 2011; Najafi, 2012). 
23 



The Nonlinear Pseudo-Diffusion  

Vector Equation 

For waves propagating in one direction only, the socBO 

equation can be further simplified to the  

nonlinear ‘pseudo-diffusion’ vector equation: 
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Stationary Waves 

Consider stationary solutions to the main equation of 

nonlinear vector string, u = u(s = x  Vt): 
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Analysis of the Energy Integral 

Mechanical interpretation of the energy integral: 
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Solitary Waves 

Let us look for a solution to the equation  

 

 

 

in the form u = (R cosj, R sinj);  

then denoting X = j' we obtain:  
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Stationary Solitary Waves 

The analysis of the derived equation 

 

 

 

shows that stationary solitary waves are possible 

only in the form of plane solitons when I = 0.  
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Stationary Solitary Waves 
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Plane soliton solution: 
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Stationary Solitary Waves 
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I

III

II

Existence of plane solitons: 

1) Fast solitons, |V | > c0;                  2 > –1/8, 

2) Slow solitons, |V | < c0;   –1/4 <  2 < –1/8, 

                                            –1/2 <  2 < –1/4,   > 0 
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Fast solitons exist in the domain I 

Slow solitons exist in the domains II and III 



Stationary Solitary Waves 
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Dependence of soliton speed on amplitude: 
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Non-Stationary Solitary Waves 
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I. Plane breathers in the mKdV equation 
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Non-Stationary Solitary Waves 
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II. Helical solitons – clockwise rotating soliton 

*i iRe Re  u e e

   *0,1 2, 2 , 0,1 2, 2 .i i  e e
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Interactions of Solitary Waves 
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The numerical modelling of wave dynamics was 

undertaken by direct simulation of the differential-difference 

set of vector equations on the basis of the fourth order 

Runge–Kutta method. 
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Interaction of Plane Solitary Waves 
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Elastic interactions between 

solitons propagating in the 

same plane 



Interaction of Plane Solitary Waves 
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Interaction of Plane Solitary Waves 
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Inelastic interactions between 

solitons propagating in different 

planes 

 The larger-amplitude soliton 

overtaking the smaller one 

transfers its energy to the 

smaller soliton and then 

decays.  

 In the meantime, the smaller-

amplitude soliton acquiring 

energy from the bigger one 

becomes taller and moves 

ahead. 



Inelastic Soliton Interaction at 30 
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Inelastic Soliton Interaction at 45 
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Inelastic Soliton Interaction at 60 

40 



Inelastic Soliton Interaction at 90 
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Helical Soliton 
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Non-Stationary Dynamics 
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Breakdown of a Helical Perturbation 
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Conclusion 

 It has been shown that flexural transverse waves in 

an anharmonic chain of atoms can be described by 

general vector differential-difference equation which 

can be reduced to the “string equation” in the long-

wave approximation. 
 

 The basic differential-difference equation takes into 

account the interaction of each atom with two nearest 

neighbours from both sides. 
 

 The dispersion relation in the long-wave 

approximation may be both linear and quadratic 

depending on the relationship between the bonds. 
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Conclusion 

 Two solitons of the same or opposite polarities 

interact elastically similar to the scalar mKdV solitons, 

but interaction of two solitons lying initially in the 

nonparallel planes is essentially inelastic. 
 

 Helical soliton solution has been constructed. 
 

 Examples of non-stationary dynamics of helical initial 

perturbations were obtained.  
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