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QUASI-REGULAR AND
QUASI-CHAOTIC REGIMES

We discuss new nonlinear phenomena inherent to rich dynamics
of the class D lasers and their relation to the specific problems of
cooperative radiative behavior of many-particle systems.

We analyze physical mechanisms responsible for intriguing
superradiance regimes in low-Q cavities.
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Classification of lasers (after Arecchi and Khanin)
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Superfluorescence (SF) In
semiclassical approximation

b Classical Maxwell equation for the field

r A

O

. 0’E 1 0°E 4n0°P

d 2 oz ¢° ot ¢ ot

e C

n % Quantum Bloch equations for the polarization P

i o S_b_dﬁféfﬁé'dﬂé'eﬁﬁssif)ﬂ,;[ and the inversion AN

n relaxation times 2 2
o°’P 2 0P 2d“w,AN

g —+ +(wF +T,%)P=— " E
ot> T, ot h

short sample OAN AN N 2 c oP
B<B, =¢/(aV7) ot T, ho, o




Experimental evidence of superfluorescence

Active media suitable for superradiant lasing:

sub-monolayer guantum-dot heterostructures ?
magnetized quantum wells
excitons in semiconductor traps

active colour centers in solid-state matrices
(e.g., in semiconductors or fibers)

degenerate electron-hole gas in semiconductors

molecular J- and H-aggregates

alkaline-earth-metal cold atomic gases

Typical power of a superradiant pulse ~1W corresponds to coherent
emission of 10° -10" photons within picosecond timescale



Sub-monolayer quantum-dots heterostructures

TEM mages (plan view) of InAs SML msertions 1n a GaAs matrix stacked with
different spacer lavers: a) AlgsGagsAs and b) Algg¢GagaAs
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FIG. 1. {Color online) The left panel illustrates a conventional DWELL
structure where a SK D, consisting of pyramidal shape QD resting on a

wetting layer, is embedded in a QW structure. The right panel show two
stacks of SML QDs embedded in a (W,
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of SR lasing 2 B B=0.1-1mm,R=0.1-0.3 Tz =0.5-5ps

Quasi-monochromatic mode generation in sub-monolayer quantum-dot hetero-
lasers was shown about 10 years ago (S.A. Blokhin et al., T.D. Germann et al.)




Superfluoresence Iin magnetized quantum wells

PRL 96 (2006) 237401, PRB 81 (2010) 155314
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Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma

Y. D. Jhot* X, Wang.! J. Kono.? D. H. Reitze,! X. Wei* A. A. Belyanin,*

V. V. Kocharovsky,*®> VI. V. Kocharovsky.” and G. S. Solomon®
' Department of Physics, University of Florida, Gainesville, FL 32611
2 Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005
3 National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310
*Department of Physics, Texas AM University, College Station, Texas 77843
5 Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod Russia
6 Solid-State Laboratories, Stanford University, Stanford, CA 94305

We investigate photoluminescence from a high-density electron-hole plasma in semiconductor
quantum wells created via intense femtosecond excitation in a strong perpendicular magnetic field,
a fully-quantized and tunable system. At a critical magnetic field strength and excitation fluence,
we observe a clear transition in the band-edge photoluminescence from omnidirectional output to
a randomly directed but highly collimated beam. In addition, changes in the linewidth, carrier
density, and magnetic field scaling of the PL spectral features correlate precisely with the onset of
random directionality, indicative of cooperative recombination from a high density population of
free carriers in a semiconductor environment.



Superfluorescence of a long active sample

Numerical simulation of complete Maxwell-Bloch equations
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Superradiant pulses in class D lasers

cooperative frequency necessary conditions of superradiance

12 in an active media e
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Dimensionless equations for the field, polarization and

Inversion in a 1D active sample with distributed feedback
approximation of two counter-propagating waves
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Mode superradiance

_ ' iKe " ikl \ aiQr Joint solving of the dispersion and
a, = (Aie + Aie )e characteristic equations for an active sample
] with inhomogeneous broadening

Is possible an excitation of electromagnetic
modes with growth rate exceeding the
homogeneous broadening, though less than
the intermode frequency spacing.

Electromagnetic waves propagate along
an active sample and reflect from the Bragg
periodic structure with integral reflection factor

JR = tanh(,b’L) It is individual mode superfluorecsence.
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One and a few polariton mode lasing

Output field intensities

Spectra of the value of the output field amplitude
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From quasi-stationary to superradiant regime
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Lasing thresholds and instability estimates

number of modes in lasing
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Efficient superradiant lasing takes place if the (photonic) band gap is not
less than the so-called active cooperative frequency of the lasing medium
and both these quantities are in between the values of homogeneous and

| linhomogeneous broadening
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Single mode superradiant lasing
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Combined distributed feedback Fabry-Perot laser in the case of an active
medium with a strong inhomogeneous broadening. Holes burned in the
dynamical spectrum of the inversion (blue) correspond to peaks in the
dynamical spectrum of the field (green) and peaks in the oscillogram of
intensity of the output field (black thick line). All values are dimensionless,
including the frequencies of the field harmonics and active centers, A .



Typical regimes of generation and spectral
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Spectral features of quasi-chaotic generation in
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Multimode superradiant lasing in a combined distributed
feedback Fabry-Perot cavity in the case of an active
medium with a strong inhomogeneous broadening

N

Superradiant modes make much deeper holes in a dynamical spectrum of

the inversion than almost steady-state mqgdes do.
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Spontaneous self-mode-locking in a superradiant laser with
a strong inhomogeneous broadening of an active medium
In a combined distributed feedback Fabry-Perot cavity
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Partial self-mode-locking.
Correlation properties of superradiant lasing

T — T .
K| Normalized correlation function #Habat-od
N K(r)= s
0.5 — Jﬂal(m dt1j|a2(t)| dt
1 | [ T [ | | I [
gielale 1500 inlale ZEMIN annn Ot

the SR-mode field and the self-mode-locking field

Spectrum of the
correlation function

100 — P .
K =l, | K@=} j a(t)a’(t—7)dt
0
a0 —

“.ﬂn - o w4 -t.-.-- ----ﬂ-

N
p . ﬂ CIEE T R T TN o L Ll
L ] L]
_ ‘ g e
[:] ‘ | l . ’ [ 4
[ [ I . e ~

L =20,b=+/3,A, =13
r,=0.01T,=003R=0.1




Correlation properties of - taa (o
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Conclusions

Variety of generation regimes and dynamical spectra of the DFB lasers with inhomogeneous
broadening (T*, << T,, Tp) are strongly enriched if the inequality T, << T; (the class B lasers) is changed to the
opposite one, T, >> T, (the class D lasers). We show that efficient mode selection near photonic band edges
makes coherent superradiant lasing possible even in the case of strong inhomogeneous broadening, e.g., in
the DFB sub-monolayer quantum-dot heterolasers. The transition from class B to class D lasers opens the door to
the independent dynamical evolution of the active centers with different frequencies of working 2-level
transitions and, hence, makes it possible complicated coherent phenomena like Dicke superradiance and Rabi
oscillations under CW pumping.

In a typical regime of the class B lasers, there are two quasi-monochromatic modes (with utmost Q-
factors) which burn deep wide holes in the inversion spectral profile and dominate over other modes. As a
result, a multimode non-stationary (self-modulated) lasing becomes possible only under very strong pumping or
in the case of very long cavity. The laser pulsations originate from a subtle nonlinear mode coupling, and the
inversion never becomes negative or strongly modulated, even if the level of pumping greatly exceeds the
laser threshold.

On the contrary, for the class D lasers (DFB ones in particular case) the steady-state lasing is almost
impossible due to the superradiance phenomenon and Rabi oscillations. Typically, several modes are excited
and demonstrate simultaneous or independent pulsed generation even in the case of short laser cavity at the
pumping level on the order of the laser threshold value. In this case the hole burning proceeds in the pulsed
regime also, the width of that holes may be rather narrow as compared to the intermode spectral spacing,
and the inversion inside the holes can make deep jumps, oscillate strongly and reach negative values during
some periods of time. The field dynamical spectra shows specific order of mode switching on and switching off
which is responsible for the frequency shift (regular or not) in the consecutive mode superradiant pulses. The
latter appear in bunches usually, which follow quasi-periodically with a typical period on the order of the
inversion timescale given by the pumping.

We describe main regimes of the DFB class D lasers, find optimal conditions of the superradiant
pulsed operation, and give qualitative explanations of the major features in the dynamical spectra of the
output field and the inversion of an active medium. The effects of facet reflections are also described.



summary

Dense ensembles of active centers capable of superradiant lasing
are promising for both fundamental and applied research, e.~g., for an
ultrafast information processing in an optical system of strongly interacting
particles. The dynamics of such class D lasers, especially with inhomogeneous
broadening of an active medium, becomes extremely rich and results in
complicated, though quite regular dynamical spectra of emission.

One can smoothly change the dynamical spectra and correlation
features of emission by adapting a proper coherent composition of the "hot"
lasing modes via managing the parameters of pumping, an active sample,
and a low-Q cavity. On the other hand, one can get information on the
transitions between cooperative states in a many-particle system (including
phase transitions) by tracing the changes in its "hot" mode composition and
dynamical spectra of emission. Thus, it seems that the superradiant lasing and
other nonlinear phenomena in the class D lasers will enter soon the modern

technologies of information optics and diagnostics of many-particle states.



