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Potential Flow of 2D Ideal Fluid
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Conformal mapping

Domain on Z-plane Z = x + iy,
—oo < xr <00, —oo<y<n(xt),

to the lower half-plane,

—oo<u<oo, —oo<v<0,
W-plane W = u+ .
YEN© @
\\/; u=
n(z,1)
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Equations for Z and ¢

If conformal mapping has been applied then it is naturally
Introduce complex analytic functions

Z =X+ 1y, andcomplex velocity potential P = W + W,

Zt — ZUZU,
. ~ ’(I)uP .
o, = UD, — P(’ZuP) +ig(Z — u)
U is a complex transport velocity:
. —HU,
U = P( Z. ). U — w

Projector operator P(f) = L(1+iH)(f).
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Cubic equations for Rand V

Surface dynamics (and the fluid bulk!) is described by two
analytic functions, R(w,t) and V (w,t). They are related to
conformal mapping Z and complex velocity potential:

R — Z—w, (I)w — —ZVZw

For R and VV dynamic equations have the simplest form:

R, = i|[UR —U'R|,
Vi = t[UV' —B'R]+g¢g(R—-1).

Complex transport velocity U is defined as

U=PVR+VR), and B=PWVV).
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4th order Hamiltonian
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here n(x,t) - is the shape of a surface,
Yz, t) = ¢(x,z =n(x,t),t) - is a potential at the surface.
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Classical variables ¥, n

Normal complex variable ay:

Me = %(alﬁ_a—k) Vp = —i 2—%(%—@—0 wWe =V gk

Three-waves and four-wave resonances are absent

k

Wi

Ky + ko, bty =hy+ ks NOI

Wiy T Wk Wi T Wiy = Why T Wiy

Cubic and fourth order nonresonat terms can be excluded
by canonical transformation:

ap — bk
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Compact Hamiltonian

1 K .
H = /b*dzkbda: 5 /W %(bb’* — b)) — kybP] dz.

Corresponding dynamical equation is
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Transformation from b, to n;, and

1 /\l /\l " 12‘ /\% ZC —Ai " x 2
ﬁgi(k b(z) + k7b(z) )+—4\/§[k b(z) — kib™(z)]” +
NP SRR
—Zﬁ(k b(z) — k7ib(z)")+
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Fully Nonlinear and Compact Egs

R, = i|[UR —U'R|,

V, = i[UV' — B'R] + g(R —1)
U=PVR+VR), and B=PVV)
8b A I * a /2 a */ a 2
"o = Wb b o)~ 5 (PP )]

DO — =] .

b k() - - (5E(IbP) |
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n(x)
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Modulational instability of wave train

Fiaure 1 . Initial wavetrain.
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Breather
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Giant Breather, k-w spectrum
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2D surface = 3D water

Generalization of the compact equation for the "almost"
2-D water waves, or "almost" 3-D fluid

"= /wk]b Rk dh, + - /yb' 12[ (bb” — b*b..) — ki |b|2| dady.
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Surface n(x,y) and steepness g—z X,y
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