Freak-waves and their simulation

A.I. Dyachenko, D.I. Kachulin, V.E. Zakharov

Landau Institute for Theoretical Physics
Novosibirsk State University
Lebedev Physical Institute
University of Arizona

Potential Flow of 2D Ideal Fluid

irrotational

Boundary conditions: $\left[\left.\begin{array}{l}\frac{\partial \phi}{\partial t}+\frac{1}{2}|\nabla \phi|^{2}+g \eta=\frac{P}{\rho}, \\ \frac{\partial \eta}{\partial t}+\eta_{x} \phi_{x}=\phi_{y}\end{array} \right\rvert\,\right.$ at $y=\eta(x, t)$.

$$
\begin{aligned}
& \frac{\partial \phi}{\partial y}=0, y \rightarrow-\infty \\
& \frac{\partial \phi}{\partial x}=0,|x| \rightarrow \infty, \text { or periodic }
\end{aligned}
$$

Conformal mapping

Domain on Z-plane $Z=x+i y$,

$$
-\infty<x<\infty, \quad-\infty<y \leq \eta(x, t)
$$

to the lower half-plane,

$$
-\infty<u<\infty, \quad-\infty<v \leq 0
$$

W-plane

$$
W=u+i v
$$

Equations for Z and Φ

If conformal mapping has been applied then it is naturally introduce complex analytic functions

$$
\begin{aligned}
Z=x+i y & , \quad \text { and complex velocity potential } \Phi=\Psi+i \hat{H} \Psi . \\
Z_{t} & =i U Z_{u} \\
\Phi_{t} & =i U \Phi_{u}-\hat{P}\left(\frac{\left|\Phi_{u}\right|^{2}}{\left|Z_{u}\right|^{2}}\right)+i g(Z-u) .
\end{aligned}
$$

U is a complex transport velocity:

$$
U=\hat{P}\left(\frac{-\hat{H} \Psi_{u}}{\left|Z_{u}\right|^{2}}\right) .
$$

$$
u \rightarrow w
$$

Projector operator $\hat{P}(f)=\frac{1}{2}(1+i \hat{H})(f)$.

Cubic equations for R and V

Surface dynamics (and the fluid bulk!) is described by two analytic functions, $R(w, t)$ and $V(w, t)$. They are related to conformal mapping Z and complex velocity potential:

$$
R=\frac{1}{Z_{w}}, \quad \quad \Phi_{w}=-i V Z_{w} .
$$

For R and V dynamic equations have the simplest form:

$$
\begin{aligned}
R_{t} & =i\left[U R^{\prime}-U^{\prime} R\right], \\
V_{t} & =i\left[U V^{\prime}-B^{\prime} R\right]+g(R-1) .
\end{aligned}
$$

Complex transport velocity U is defined as

$$
U=\hat{P}(V \bar{R}+\bar{V} R), \quad \text { and } \quad B=\hat{P}(V \bar{V}) .
$$

4th order Hamiltonian

$$
\begin{aligned}
H=\frac{1}{2} \int\left(g \eta^{2}+\psi \hat{k} \psi\right) d x & -\frac{1}{2} \int\left\{(\hat{k} \psi)^{2}-\left(\psi_{x}\right)^{2}\right\} \eta d x+ \\
& +\frac{1}{2} \int\left\{\psi_{x x} \eta^{2} \hat{k} \psi+\psi \hat{k}(\eta \hat{k}(\eta \hat{k} \psi))\right\} d x+
\end{aligned}
$$

here $\eta(x, t)$ - is the shape of a surface, $\psi(x, t)=\phi(x, z=\eta(x, t), t)$ - is a potential at the surface.

Classical variables Ψ, η

Normal complex variable a_{k} :
$\eta_{k}=\sqrt{\frac{\omega_{k}}{2 g}}\left(a_{k}+a_{-k}^{*}\right) \quad \psi_{k}=-i \sqrt{\frac{g}{2 \omega_{k}}}\left(a_{k}-a_{-k}^{*}\right) \quad \omega_{k}=\sqrt{g k}$
Three-waves and four-wave resonances are absent

$$
\begin{aligned}
k & =k_{1}+k_{2}, & & k+k_{1}=k_{2}+k_{3} \\
\omega_{k} & =\omega_{k_{1}}+\omega_{k_{2}}, & & \omega_{k}+\omega_{k_{1}}=\omega_{k_{2}}+\omega_{k_{3}}
\end{aligned}
$$

Cubic and fourth order nonresonat terms can be excluded by canonical transformation:

$$
a_{k} \rightarrow b_{k}
$$

Compact Hamiltonian

$$
\mathcal{H}=\int b^{*} \hat{\omega}_{k} b d x+\frac{1}{2} \int\left|b^{\prime}\right|^{2}\left[\frac{i}{2}\left(b b^{*}-b^{*} b^{\prime}\right)-\hat{k}|b|^{2}\right] d x .
$$

Corresponding dynamical equation is

$$
\begin{aligned}
i \frac{\partial b}{\partial t}=\hat{\omega}_{k} b & +\frac{i}{4}\left[b^{*} \frac{\partial}{\partial x}\left(b^{\prime 2}\right)-\frac{\partial}{\partial x}\left(b^{* \prime} \frac{\partial}{\partial x} b^{2}\right)\right] \\
& -\frac{1}{2}\left[b \cdot \hat{k}\left(\left|b^{\prime}\right|^{2}\right)-\frac{\partial}{\partial x}\left(b^{\prime} \hat{k}\left(|b|^{2}\right)\right)\right]
\end{aligned}
$$

Transformation from b_{k} to η_{k} and ψ_{k}

$$
\begin{aligned}
\eta(x) & =\frac{1}{\sqrt{2} g^{\frac{1}{4}}}\left(\hat{k}^{\frac{1}{4}} \mathbf{b}(x)+\hat{k}^{\frac{1}{4}} \mathbf{b}(x)^{*}\right)+\frac{\hat{k}}{4 \sqrt{g}}\left[\hat{k}^{\frac{1}{4}} \mathbf{b}(x)-\hat{k}^{\frac{1}{4}} \mathbf{b}^{*}(x)\right]^{2}+ \\
\psi(x) & =-i \frac{g^{\frac{1}{4}}}{\sqrt{2}}\left(\hat{k}^{-\frac{1}{4}} \mathbf{b}(x)-\hat{k}^{-\frac{1}{4}} \mathbf{b}(x)^{*}\right)+ \\
& \left.+\frac{i}{2} \hat{k}^{\frac{1}{4}} \mathbf{b}^{*}(x) \hat{k}^{\frac{3}{4}} \mathbf{b}^{*}(x)-\hat{k}^{\frac{1}{4}} \mathbf{b}(x) \hat{k}^{\frac{3}{4}} \mathbf{b}(x)\right]+ \\
& +\frac{1}{2} \hat{H}\left[\hat{k}^{\frac{1}{4}} \mathbf{b}(x) \hat{k}^{\frac{3}{4}} \mathbf{b}^{*}(x)+\hat{k}^{\frac{1}{4}} \mathbf{b}^{*}(x) \hat{k}^{\frac{3}{4}} \mathbf{b}(x)\right]+O\left(\mathbf{b}^{3}\right)
\end{aligned}
$$

Fully Nonlinear and Compact Eqs

$$
\begin{aligned}
& R_{t}=i\left[U R^{\prime}-U^{\prime} R\right], \\
& V_{t}=i\left[U V^{\prime}-B^{\prime} R\right]+g(R-1) . \\
& U=\hat{P}(V \bar{R}+\bar{V} R), \quad \text { and } \quad B=\hat{P}(V \bar{V}) . \\
& \hline i \frac{\partial \mathbf{b}}{\partial t}=\hat{\omega}_{k} \mathbf{b}+\frac{i}{4}\left[\mathbf{b}^{*} \frac{\partial}{\partial x}\left(\mathbf{b}^{\prime 2}\right)-\frac{\partial}{\partial x}\left(\mathbf{b}^{*} \frac{\partial}{\partial x} \mathbf{b}^{2}\right)\right] \\
&-\frac{1}{2}\left[\mathbf{b} \cdot \hat{k}\left(\left|\mathbf{b}^{\prime}\right|^{2}\right)-\frac{\partial}{\partial x}\left(\mathbf{b}^{\prime} \hat{k}\left(|\mathbf{b}|^{2}\right)\right)\right] .
\end{aligned}
$$

Modulational instability of wave train

Fiaure 1. Initial wavetrain.

Breather

Fiaure 2. Breather and Envelope

Giant Breather, $k=\omega$ spectrum

$2 D$ surface = 3D water

Generalization of the compact equation for the "almost" 2-D water waves, or "almost" 3-D fluid

$$
\mathcal{H}=\int \omega_{\vec{k}}\left|\mathbf{b}_{\vec{k}}\right|^{2} d k_{x} d k_{y}+\frac{1}{4} \int\left|\mathbf{b}_{x}^{\prime}\right|^{2}\left[\frac{i}{2}\left(\mathbf{b b}_{x}^{\prime *}-\mathbf{b}^{*} \mathbf{b}_{x}^{\prime}\right)-\hat{k}_{x}|\mathbf{b}|^{2}\right] d x d y .
$$

Surface $\eta(x, y)$ and steepness $\frac{\partial \eta}{\partial x}(x, y)$ $\boldsymbol{a} t=313$.

