

Freak-waves and their simulation

A.I. Dyachenko, D.I. Kachulin, V.E. Zakharov

Landau Institute for Theoretical Physics Novosibirsk State University Lebedev Physical Institute University of Arizona

Potential Flow of 2D Ideal Fluid

Conformal mapping

Domain on Z-plane
$$Z = x + iy$$
,

$$-\infty < x < \infty, \quad -\infty < y \le \eta(x,t),$$

to the lower half-plane,

$$-\infty < u < \infty, \quad -\infty < v \le 0,$$

W-plane

W = u + iv.

Equations for Z and Φ

If *conformal mapping* has been applied then it is naturally introduce complex analytic functions

Z = x + iy, and complex velocity potential $\Phi = \Psi + i\hat{H}\Psi$.

$$Z_t = iUZ_u,$$

$$\Phi_t = iU\Phi_u - \hat{P}(\frac{|\Phi_u|^2}{|Z_u|^2}) + ig(Z-u).$$

U is a complex transport velocity:

$$U = \hat{P}(\frac{-\hat{H}\Psi_u}{|Z_u|^2}). \qquad \qquad u \to w$$

Projector operator $\hat{P}(f) = \frac{1}{2}(1+i\hat{H})(f)$.

Surface dynamics (and the fluid bulk!) is described by two analytic functions, R(w,t) and V(w,t). They are related to conformal mapping *Z* and complex velocity potential:

$$R = \frac{1}{Z_w}, \qquad \Phi_w = -iVZ_w$$

For *R* and *V* dynamic equations have the simplest form:

$$R_t = i [UR' - U'R], V_t = i [UV' - B'R] + g(R - 1).$$

Complex transport velocity U is defined as

 $U = \hat{P}(V\bar{R} + \bar{V}R),$ and $B = \hat{P}(V\bar{V}).$

Freak-waves and their simulation - p. 5

4th order Hamiltonian

$$H = \frac{1}{2} \int (g\eta^2 + \psi \hat{k}\psi) dx \qquad -\frac{1}{2} \int \{(\hat{k}\psi)^2 - (\psi_x)^2\} \eta dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xx}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}(\eta \hat{k}\psi))\} dx + \frac{1}{2} \int \{\psi_{xy}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}\psi)\} dx + \frac{1}{2} \int \{\psi_{xy}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}\psi)\} dx + \frac{1}{2} \int \{\psi_{xy}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}\psi)\} dx + \frac{1}{2} \int \{\psi_{xy}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}\psi)\} dx + \frac{1}{2} \int \{\psi_{xy}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}\psi)\} dx + \frac{1}{2} \int \{\psi_{xy}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}\psi)\} dx + \frac{1}{2} \int \{\psi_{xy}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}\psi)\} dx + \frac{1}{2} \int \{\psi_{xy}\eta^2 \hat{k}\psi + \psi \hat{k}(\eta \hat{k}\psi)\} dx + \frac{1}{2} \int \{\psi_{xy}\eta^2 \hat{k}\psi$$

here $\eta(x,t)$ - is the shape of a surface, $\psi(x,t) = \phi(x,z = \eta(x,t),t)$ - is a potential at the surface.

Classical variables Ψ , η

Normal complex variable a_k :

$$\eta_k = \sqrt{\frac{\omega_k}{2g}} (a_k + a_{-k}^*) \qquad \psi_k = -i\sqrt{\frac{g}{2\omega_k}} (a_k - a_{-k}^*) \qquad \omega_k = \sqrt{gk}$$

Three-waves and four-wave resonances are absent

$$k = k_1 + k_2, \qquad k + k_1 = k_2 + k_3 \text{ NO}$$

$$\omega_k = \omega_{k_1} + \omega_{k_2}, \qquad \omega_k + \omega_{k_1} = \omega_{k_2} + \omega_{k_3}$$

Cubic and fourth order nonresonat terms can be <u>excluded</u> by canonical transformation:

$$a_k \to b_k.$$

Compact Hamiltonian

$$\mathcal{H} = \int b^* \hat{\omega}_k b dx + \frac{1}{2} \int |b'|^2 \left[\frac{i}{2} (bb'^* - b^*b') - \hat{k} |b|^2 \right] dx.$$

Corresponding dynamical equation is

$$i\frac{\partial b}{\partial t} = \hat{\omega}_k b + \frac{i}{4} \left[b^* \frac{\partial}{\partial x} (b'^2) - \frac{\partial}{\partial x} (b^{*'} \frac{\partial}{\partial x} b^2) \right] - \frac{1}{2} \left[b \cdot \hat{k} (|b'|^2) - \frac{\partial}{\partial x} (b' \hat{k} (|b|^2)) \right].$$

Transformation from b_k *to* η_k *and* ψ_k

$$\begin{split} \eta(x) &= \frac{1}{\sqrt{2}g^{\frac{1}{4}}} (\hat{k}^{\frac{1}{4}} \mathbf{b}(x) + \hat{k}^{\frac{1}{4}} \mathbf{b}(x)^*) + \frac{\hat{k}}{4\sqrt{g}} [\hat{k}^{\frac{1}{4}} \mathbf{b}(x) - \hat{k}^{\frac{1}{4}} \mathbf{b}^*(x)]^2 + \\ \psi(x) &= -i \frac{g^{\frac{1}{4}}}{\sqrt{2}} (\hat{k}^{-\frac{1}{4}} \mathbf{b}(x) - \hat{k}^{-\frac{1}{4}} \mathbf{b}(x)^*) + \\ &+ \frac{i}{2} [\hat{k}^{\frac{1}{4}} \mathbf{b}^*(x) \hat{k}^{\frac{3}{4}} \mathbf{b}^*(x) - \hat{k}^{\frac{1}{4}} \mathbf{b}(x) \hat{k}^{\frac{3}{4}} \mathbf{b}(x)] + \\ &+ \frac{1}{2} \hat{H} [\hat{k}^{\frac{1}{4}} \mathbf{b}(x) \hat{k}^{\frac{3}{4}} \mathbf{b}^*(x) + \hat{k}^{\frac{1}{4}} \mathbf{b}^*(x) \hat{k}^{\frac{3}{4}} \mathbf{b}(x)] + O(\mathbf{b}^3) \end{split}$$

Fully Nonlinear and Compact Eqs

$$R_t = i [UR' - U'R], V_t = i [UV' - B'R] + g(R - 1).$$

$$U = \hat{P}(V\bar{R} + \bar{V}R),$$
 and $B = \hat{P}(V\bar{V}).$

$$i\frac{\partial \mathbf{b}}{\partial t} = \hat{\omega}_k \mathbf{b} + \frac{i}{4} \left[\mathbf{b}^* \frac{\partial}{\partial x} (\mathbf{b}'^2) - \frac{\partial}{\partial x} (\mathbf{b}^{*'} \frac{\partial}{\partial x} \mathbf{b}^2) \right] - \frac{1}{2} \left[\mathbf{b} \cdot \hat{k} (|\mathbf{b}'|^2) - \frac{\partial}{\partial x} (\mathbf{b}' \hat{k} (|\mathbf{b}|^2)) \right].$$

Modulational instability of wave train

Breather

Figure 2. Breather and Envelope reak-waves and their simulation - p. 12

Giant Breather, k- ω spectrum

Figure 3 Negative frequency is abservatives and their simulation - p. 13

2D surface = 3D water

Generalization of the compact equation for the "almost" 2-D water waves, or "almost" 3-D fluid

$$\mathcal{H} = \int \omega_{\vec{k}} |\mathbf{b}_{\vec{k}}|^2 dk_x dk_y + \frac{1}{4} \int |\mathbf{b}'_x|^2 \left[\frac{i}{2} (\mathbf{b}\mathbf{b}'^*_x - \mathbf{b}^*\mathbf{b}'_x) - \hat{k}_x |\mathbf{b}|^2 \right] dx dy.$$

Surface $\eta(x, y)$ and steepness $\frac{\partial \eta}{\partial x}(x, y)$ at t = 313.

Freak-waves and their simulation – p. 15