Darboux transformations with tetrahedral reduction group and nonlocal symmetries

Alexander Mikhailov

University of Leeds

VII-th International Conference "SOLITONS, COLLAPSES AND TURBULENCE:
Achievements, Developments and Perspectives" (SCT-14)
in honor of Vladimir Zakharov's 75th birthday
August 04 - August 08, 2014

Plan of the talk

- Algebraic reductions, reduction group and automorphic Lie algebras
- Example: PDEs corresponding to the tetrahedral reduction group
- Elementary Darboux transformations with terahedral reduction symmetry
- Generic and degenerated Darboux transformations
- Corresponding differential difference integrable systems
- Bianchi permutability of Darboux maps and difference systems
- Reduction to a scalar equation - a discrete analogue of Kupershmidt's KdV6 equation
- Non-local symmetries of difference equations

Some of the results were obtained together with G.Berkeley, S.Igonin and P.Xenitidis.

Rational in spectral parameter λ linear problems

(Zakharov, Shabat 1978, Zakharov Mikhailov 1978) Rational in λ linear problems \Rightarrow integrable systems of PDEs.

$$
\begin{gathered}
L(\lambda) \Psi(\lambda)=0, \quad A(\lambda) \Psi(\lambda)=0, \quad \operatorname{det} \Psi(\lambda) \neq 0, \\
L(\lambda)=D_{x}-U_{0}-\sum_{k=1}^{n} \frac{U_{k}}{\lambda-\alpha_{k}}, A(\lambda)=D_{t}-V_{0}-\sum_{p=1}^{m} \frac{V_{p}}{\lambda-\beta_{p}}, \quad U_{q}, V_{q} \in M_{a N_{N^{2}}}(\mathbb{C} ; x, t) .
\end{gathered}
$$

The condition $[L(\lambda), A(\lambda)]=0 \Leftrightarrow$ the system of $N^{2}(n+m+1)$ equations (assuming $\alpha_{i} \neq \beta_{j}, \alpha_{i}, \beta_{j} \in \mathbb{C}$):

$$
\begin{aligned}
& D_{t}\left(U_{0}\right)-D_{x}\left(V_{0}\right)+\left[U_{0}, V_{0}\right]=0, \\
& D_{t}\left(U_{k}\right)+\left[U_{k}, V_{0}+\sum_{p=1}^{m} \frac{V_{p}}{\alpha_{k}-\beta_{p}}\right]=0, \quad k=1, \ldots, n, \\
& D_{\times}\left(V_{p}\right)-\left[U_{0}+\sum_{k=1}^{n} \frac{U_{k}}{\beta_{p}-\alpha_{k}}, V_{p}\right]=0, \quad p=1, \ldots, m .
\end{aligned}
$$

on $N^{2}(n+m+2)$ functions (entries of $\left.U_{q}, V_{q}\right)$. By a gauge transformation one can set $U_{0}=V_{0}=0$ and get a well determined system of $N^{2}(n+m)$ equations.
Eigenvalues of U_{k} and V_{p} are arbitrary functions of x and t respectively and thus we arrive to a well determined system of $N(N-1)(n+m)$ equations.
\# In the case $N=3, n=m=4$ it is 48 equations.

Algebraic reductions, reduction group and automorphic Lie algebras

More general:

$$
L(\lambda)=D_{x}-U(\lambda), \quad A(\lambda)=D_{t}-V(\lambda), \quad U(\lambda), V(\lambda) \in \mathcal{A}(\Gamma)=\mathcal{A} \times \mathcal{R}(\Gamma)
$$

where \mathcal{A} is a simple Lie algebra and $\mathcal{R}(\Gamma)$ is a ring of meromorphic functions with poles at the set Γ and no other singularities.

A reduction group G is a subgroup of Aut $\mathcal{A}(\Gamma)$, so that $G \subset$ Aut $\mathcal{A}(\Gamma)$.
Automorphic Lie algebra is $\mathcal{A}(\Gamma)^{G} \subset \mathcal{A}(\Gamma)$.
In the case of rational in λ Lax operators a group G is finite, the set Γ is a finite union of orbits of the group G and Aut $\mathcal{A}(\Gamma) \subset$ Aut $(\mathcal{A} \times \mathbb{C}(\lambda))$

If a finite reduction group G is cyclic and $\Gamma=\{0, \infty\}$, then $\mathcal{A}(\Gamma)^{G}$ is a graded (Kac-Moody) algebra.

In general, $\mathcal{A}(\Gamma)^{G}$ is a quasi-graded (or almost-graded in terminology proposed by Krichever and Novikov) Lie algebra.

There is a good progress in classification of automorphic Lie algebras (Bury, AVM, Lombardo, Sanders).

Tetrahedral reduction group

We consider $G \sim \mathbb{T}$ generated by two elements of $\operatorname{Aut}\left(\mathfrak{s l}_{3}(\mathbb{C}) \times \mathbb{C}(\lambda)\right)$

$$
\begin{gathered}
g_{s}: \mathbf{a}(\lambda) \rightarrow \mathbf{Q}_{s} \mathbf{a}\left(\sigma_{s}^{-1}(\lambda)\right) \mathbf{Q}_{s}^{-1} \\
g_{r}: \mathbf{a}(\lambda) \rightarrow \mathbf{Q}_{r} \mathbf{a}\left(\sigma_{r}^{-1}(\lambda)\right) \mathbf{Q}_{r}^{-1} \\
\sigma_{s}(\lambda)=\omega \lambda, \sigma_{r}(\lambda)=\frac{\lambda+2}{\lambda-1} \\
\mathbf{Q}_{s}=\left(\begin{array}{ccc}
\omega & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & 1
\end{array}\right), \mathbf{Q}_{r}=\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right)
\end{gathered}
$$

where $\omega=e^{\frac{2 \pi i}{3}}$. We have $g_{s}^{3}=g_{r}^{2}=\left(g_{s} g_{r}\right)^{3}=$ id.
There are two smallest orbits $\Gamma_{1}=\left\{1, \omega, \omega^{2}, \infty\right\}$ and $\Gamma_{0}=\left\{-2,-2 \omega,-2 \omega^{2}, 0\right\}$.
Automorphic Lie algebra $\mathcal{A}\left(\Gamma_{1}\right)^{G}$ has a quasi-graded structure

$$
\begin{aligned}
\mathcal{A}\left(\Gamma_{1}\right)^{G}=\bigoplus_{k=0}^{\infty} \mathcal{A}^{k}, \quad \mathcal{A}^{k}=\left\{J^{k} \mathbf{a}_{1}, J^{k} \mathbf{a}_{2}, \ldots, J^{k} \mathbf{a}_{8}\right\}, \quad\left[\mathcal{A}^{n}, \mathcal{A}^{m}\right] \subset \mathcal{A}^{n+m} \bigoplus \mathcal{A}^{n+m+1} \\
\mathbf{a}_{1}=<\lambda \mathbf{e}_{13}>_{\mathbb{T}}, \mathbf{a}_{2}=<\lambda \mathbf{e}_{21}>_{\mathbb{T}}, \mathbf{a}_{3}=<\lambda \mathbf{e}_{32}>_{\mathbb{T}} \\
\mathbf{a}_{4}=\left[\mathbf{a}_{1}, \mathbf{a}_{3}\right], \mathbf{a}_{5}=\left[\mathbf{a}_{2}, \mathbf{a}_{1}\right], \mathbf{a}_{6}=\left[\mathbf{a}_{3}, \mathbf{a}_{2}\right] \\
\mathbf{a}_{7}=\left[\left[\mathbf{a}_{1}, \mathbf{a}_{3}\right], \mathbf{a}_{2}\right], \mathbf{a}_{8}=\left[\left[\mathbf{a}_{2}, \mathbf{a}_{1}\right], \mathbf{a}_{3}\right], \quad J=\frac{\lambda^{3}\left(\lambda^{3}+8\right)^{3}}{4\left(\lambda^{3}-1\right)^{3}}
\end{aligned}
$$

Tetrahedral reduction group

$$
\begin{aligned}
& \mathbf{a}_{1}=<\lambda \mathbf{e}_{13}>_{\mathbb{T}}=\left(\begin{array}{ccc}
-\frac{1}{6} \frac{\lambda^{3}+2}{\lambda^{3}-1} & -\frac{1}{2} \frac{\lambda^{2}}{\lambda^{3}-1} & \frac{1}{4} \frac{\lambda^{4}}{\lambda^{3}-1} \\
\frac{\lambda}{\lambda^{3}-1} & \frac{1}{3} \frac{\lambda^{3}+2}{\lambda^{3}-1} & -\frac{1}{2} \frac{\lambda^{2}}{\lambda^{3}-1} \\
\frac{\lambda^{3}+2}{\lambda^{3}-1} & \frac{\lambda}{\lambda^{3}-1} & -\frac{1}{6} \frac{\lambda^{3}+2}{\lambda^{3}-1}
\end{array}\right) \\
& \mathbf{a}_{2}=<\lambda \mathbf{e}_{21}>_{\mathbb{T}}=\left(\begin{array}{ccc}
-\frac{1}{6} \frac{\lambda^{3}+2}{\lambda^{3}-1} & \frac{\lambda^{2}}{\lambda^{3}-1} & \frac{\lambda}{\lambda^{3}-1} \\
\frac{1}{4} \frac{\lambda^{4}}{\lambda^{3}-1} & -\frac{1}{6} \frac{\lambda^{3}+2}{\lambda^{3}-1} & -\frac{1}{2} \frac{\lambda^{2}}{\lambda^{3}-1} \\
-\frac{1}{2} \frac{\lambda^{2}}{\lambda^{3}-1} & \frac{\lambda}{\lambda^{3}-1} & \frac{1}{3} \frac{\lambda^{3}+2}{\lambda^{3}-1}
\end{array}\right) \\
& \mathbf{a}_{3}=<\lambda \mathbf{e}_{32}>_{\mathbb{T}}=\left(\begin{array}{ccc}
\frac{1}{3} \frac{\lambda^{3}+2}{\lambda^{3}-1} & -\frac{1}{2} \frac{\lambda^{2}}{\lambda^{3}-1} & \frac{\lambda}{\lambda^{3}-1} \\
\frac{\lambda}{\lambda^{3}-1} & -\frac{1}{6} \frac{\lambda^{3}+2}{\lambda^{3}-1} & \frac{\lambda^{2}}{\lambda^{3}-1} \\
-\frac{1}{2} \frac{\lambda^{2}}{\lambda^{3}-1} & \frac{1}{4} \frac{\lambda^{4}}{\lambda^{3}-1} & -\frac{1}{6} \frac{\lambda^{3}+2}{\lambda^{3}-1}
\end{array}\right) \text {. } \\
& \mathbf{b}_{1}=<\lambda^{-1} \mathbf{e}_{12}>_{\mathbb{T}}, \mathbf{b}_{2}=<\lambda^{-1} \mathbf{e}_{23}>_{\mathbb{T}}, \mathbf{b}_{3}=<\lambda^{-1} \mathbf{e}_{31}>_{\mathbb{T}} \\
& \mathbf{b}_{1}=\left(\begin{array}{ccc}
\frac{\frac{-1}{6} \lambda^{3}+\frac{2}{3}}{\lambda^{3}+8} & \frac{2}{\lambda^{4}+8 \lambda} & \frac{-\lambda}{\lambda^{3}+8} \\
2 \frac{\lambda}{\lambda^{3}+8} & \frac{-1}{6} \lambda^{3}+\frac{2}{3} \\
\lambda^{3}+8 & \frac{-\lambda^{2}}{\lambda^{3}+8} \\
\frac{-\lambda^{2}}{\lambda^{3}+8} & \frac{-\lambda}{\lambda^{3}+8} & \frac{\frac{1}{3} \lambda^{3}-\frac{4}{3}}{\lambda^{3}+8}
\end{array}\right), \ldots
\end{aligned}
$$

Tetrahedral reduction group

$$
\begin{gathered}
L=\partial_{x}+u \mathbf{a}_{1}+v \mathbf{a}_{2}+w \mathbf{a}_{3}, \quad u v w=1 \\
A=\partial_{t}+\sum_{i=1}^{3} p_{i} \mathbf{a}_{i}+\sum_{i=4}^{6} q_{i} \mathbf{a}_{i} \\
{[L, A]=0 \Leftrightarrow\left\{\begin{array}{c}
i \psi_{t}=\psi_{x x}+\bar{\psi}_{x}^{2}+i\left(e^{\psi+\bar{\psi}}+\omega^{*} e^{\omega \psi+\omega^{*}} \bar{\psi}+\omega e^{\omega^{*} \psi+\omega \bar{\psi}}\right) \bar{\psi}_{x} \\
-i \bar{\psi}_{t}=\bar{\psi}_{x x}+\psi_{x}^{2}-i\left(e^{\psi+\bar{\psi}}+\omega e^{\omega \psi+\omega^{*} \bar{\psi}}+\omega^{*} e^{\omega^{*} \psi+\omega \bar{\psi}}\right) \psi_{x}
\end{array}\right.}
\end{gathered}
$$

$$
\begin{gathered}
B=\partial_{y}+p \mathbf{b}_{1}+q \mathbf{b}_{2}+r \mathbf{b}_{3}, \quad \text { pqr }=1 \\
{[L, B]=0 \Leftrightarrow \begin{cases}\phi_{x}=e^{\bar{\phi}}-e^{\bar{\psi}}, & \psi_{x}=e^{-\bar{\phi}-\bar{\psi}}-e^{\bar{\phi}} \\
\bar{\phi}_{y}=e^{\phi}-e^{\psi}, & \bar{\psi}_{y}=e^{-\phi-\psi}-e^{\phi}\end{cases} }
\end{gathered}
$$

If we let $x=y, \bar{\phi}=\phi, \bar{\psi}=\psi$, then

$$
\phi_{x x}=e^{2 \phi}-e^{-\phi}
$$

Elementary Darboux transformations

Darboux transformations M for Lax operators

$$
L=\partial_{x}+u \mathbf{a}_{1}+v \mathbf{a}_{2}+w \mathbf{a}_{3}, \quad u v w=1
$$

is a mapping of a fundamental solution $L \Psi=0$ to a fundamental solution $\Psi_{1}=M(\lambda) \Psi, L_{1} \Psi_{1}=0$ where

$$
L_{1}=\partial_{x}+u_{1} \mathbf{a}_{1}+v_{1} \mathbf{a}_{2}+w_{1} \mathbf{a}_{3}, \quad u_{1} v_{1} w_{1}=1
$$

Let $L=\partial_{x}+U, L_{1}=\partial_{x}+S(U), \Psi_{1}=S(\Psi)$, then it follows from $\left[\partial_{x}, S\right]=0$ that

$$
M_{x}(\lambda)+S(U) M(\lambda)-M(\lambda) U=0
$$

Darboux matrix $M(\lambda)$ inherits symmetries of the Lax operator. There exists such $M(\lambda)$ that

$$
M(\lambda)=\mathbf{Q}_{s}^{-1} M(\omega \lambda) \mathbf{Q}_{s}, \quad M(\lambda)=\mathbf{Q}_{r}^{-1} M\left(\frac{\lambda+2}{\lambda-1}\right) \mathbf{Q}_{r} .
$$

Elementary Darboux transformations

Invariant M with first order poles in λ at Γ is of the form

$$
M=\mathbf{I} f+\alpha\left(u v u_{1} \mathbf{a}_{1}+v u_{1} v_{1} \mathbf{a}_{2}+\mathbf{a}_{3}\right)
$$

Where f and α can be found from the condition that $\operatorname{det} M(\lambda)$ is a generating function of first integrals

$$
\begin{gathered}
\operatorname{det} M=E J(\lambda)+F_{1}=E(J(\lambda)-\gamma)+F_{2} \\
J(\lambda)=\frac{\lambda^{3}\left(\lambda^{3}+8\right)^{3}}{4\left(\lambda^{3}-1\right)^{3}}, \quad E=\frac{1}{16} \alpha^{3} u v^{2} u_{1}^{2} v_{1} \\
F_{1}=\frac{1}{27}\left(3 f+\alpha\left(1+u v u_{1}-2 v u_{1} v_{1}\right)\right)\left(3 f+\alpha\left(1-2 u v u_{1}+v u_{1} v_{1}\right)\right)\left(3 f+\alpha\left(-2+u v u_{1}+v u_{1} v_{1}\right)\right) \\
F_{2}=\gamma E+F_{1}=\frac{1}{27}\left(3 f+\alpha\left(1+u v u_{1}+v u_{1} v_{1}\right)\right) q, \quad \gamma=J(1+\sqrt{3})
\end{gathered}
$$

where q is an irreducible quadratic polynomial in f. By setting $E=\frac{1}{16}$, $F_{1}=c_{1} \in \mathbb{C}$ we obtain a generic Darboux matrix parametrised by a constant c_{1}.

Elementary Darboux transformations

There are four degenerate Darboux matrices (three cases when $F_{1}=0$ and one case when $F_{2}=0$)

$$
\begin{aligned}
& M_{1}\left(u, v, u_{1}, v_{1}\right)=\alpha\left(-\frac{1}{3}\left(-2+u v u_{1}+v u_{1} v_{1}\right) \mathbf{I}+u v u_{1} \mathbf{a}_{1}+v u_{1} v_{1} \mathbf{a}_{2}+\mathbf{a}_{3}\right) \\
& M_{2}\left(u, v, u_{2}, v_{2}\right)=\beta\left(-\frac{1}{3}\left(1+u v u_{2}-2 v u_{2} v_{2}\right) \mathbf{I}+u v u_{2} \mathbf{a}_{1}+v u_{2} v_{2} \mathbf{a}_{2}+\mathbf{a}_{3}\right) \\
& M_{3}\left(u, v, u_{3}, v_{3}\right)=\gamma\left(\frac{1}{3}\left(-1+2 u v u_{3}-v u_{3} v_{3}\right) \mathbf{I}+u v u_{3} \mathbf{a}_{1}+v u_{3} v_{3} \mathbf{a}_{2}+\mathbf{a}_{3}\right) \\
& M_{4}\left(u, v, u_{4}, v_{4}\right)=\delta\left(-\frac{1}{3}\left(1+u v u_{4}+v u_{4} v_{4}\right) \mathbf{I}+u v u_{4} \mathbf{a}_{1}+v u_{4} v_{4} \mathbf{a}_{2}+\mathbf{a}_{3}\right) . \\
& \alpha^{3} u v^{2} u_{1}^{2} v_{1}=1, \quad \beta^{3} u v^{2} u_{2}^{2} v_{2}=1, \quad \gamma^{3} u v^{2} u_{3}^{2} v_{3}=1, \quad \delta^{3} u v^{2} u_{4}^{2} v_{4}=1 .
\end{aligned}
$$

Elementary Darboux transformations

From $\left(M_{i}\right)_{x}+S_{i}(U) M_{i}-M_{i} U=0$ we get corresponding differential-difference systems (or Bäcklund transformations)

$$
\begin{gathered}
\left(\begin{array}{cc}
-1 & S_{1} \\
S_{1}+1 & 1
\end{array}\right)\binom{\frac{u_{x}}{u}}{\frac{v_{x}}{v}}=\binom{\frac{1}{u v}-\frac{2}{u_{1} v}+\frac{1}{u_{1} v_{1}}+u-u_{1}-v+v_{1}}{-\frac{1}{u v}+\frac{1}{u_{1} v}-u+u_{1}} \\
\left(\begin{array}{cc}
-1 & S_{2} \\
S_{2}+1 & 1
\end{array}\right)\binom{\frac{u_{x}}{u}}{\frac{v_{x}}{v}}=\binom{\frac{u_{2} v_{2}}{u}+u-u_{2}-v_{2}}{\frac{1}{u v}-\frac{1}{u_{2} v_{2}}-\frac{2 u_{2} v_{2}}{u}-u+u_{2}+v+v_{2}} \\
\left(\begin{array}{cc}
-1 & S_{3} \\
S_{3}+1 & 1
\end{array}\right)\binom{\frac{u_{x}}{u}}{\frac{v_{x}}{v}}=\binom{\frac{u v}{v_{3}}-u-v+v_{3}}{\frac{u v}{v_{3}}+\frac{1}{u v}-\frac{1}{u_{3} v_{3}}-u_{3}} \\
\left(\begin{array}{cc}
-1 & S_{4} \\
S_{4}+1 & 1
\end{array}\right)\binom{\frac{u_{x}}{u}}{\frac{v_{x}}{v}}=\binom{u-u_{4}-v+v_{4}}{\frac{1}{u v}-\frac{1}{u_{4} v_{4}}-u+u_{4}}
\end{gathered}
$$

Notice that

$$
\left(\begin{array}{cc}
-1 & S_{i} \\
S_{i}+1 & 1
\end{array}\right)^{2}=\left(1+S_{i}+S_{i}^{2}\right) \mathbf{I}
$$

Bianchi permutability of Darboux maps and difference systems

From $\left[S_{i}, S_{j}\right]=0$ it follows that $Q_{i, j}=S_{i}\left(M_{j}\right) M_{i}-S_{j}\left(M_{i}\right) M_{j}=0$:

$$
\begin{aligned}
& \left\{\begin{array}{l}
-u v-u u_{1} u_{14} v_{4} v+u u_{4} u_{14} v_{4} v+u_{14} v_{4}=0 \\
-u u_{1}^{2} v v_{4}+u u_{4} u_{1} v v_{4}+u_{1} v_{4}+u u_{1} v v_{1} v_{14}-u u_{1} v v_{4} v_{14}-u v_{14}=0
\end{array}\right. \\
& \left\{\begin{array}{l}
-u_{24} u_{2}^{2} v_{2}^{2} v_{4}+u u_{24} u_{2}^{2} v_{2} v_{4}+u u_{2} v_{2}+u u_{4} u_{2} v v_{2} v_{4}-u u_{4} u_{24} u_{2} v_{2} v_{4}-u u_{4} v_{4}=0 \\
u_{2} v_{2}-u v_{24}-u u_{2}+u u_{4}=0
\end{array}\right. \\
& \left\{\begin{array}{l}
-u_{3} v_{3}+u u_{3} u_{4} u_{34} v_{4} v_{3}-u u_{3} u_{4} v v_{4}+u_{4} v_{4}=0 \\
-u_{4} v_{4}+u v_{34}+v_{34} v_{4}-v_{3} v_{34}=0
\end{array}\right. \\
& \left\{\begin{array}{l}
u u_{1} v_{2} v^{2}-u_{2} u_{12} v_{2}^{2} v-u v-u u_{1} u_{12} v_{2} v+u u_{2} u_{12} v_{2} v+u_{12} v_{2}=0 \\
-u u_{1}^{2} v v_{2}-u_{2} u_{1} v v_{2}^{2}+u u_{2} u_{1} v v_{2}+u_{1} v_{2}+u u_{1} v v_{2} v_{12}-u v_{12}=0
\end{array}\right. \\
& \left\{\begin{array}{l}
u_{2} u_{3} u^{2} v v_{2}+u u_{3} u v_{3}-u_{2} u_{3} u v v_{2} v_{3}-u_{2} u_{3} u_{23} u v_{2} v_{3}-u u_{2} v_{2}+u_{2}^{2} u_{23} v_{2}^{2} v_{3}=0 \\
u v_{23}-u_{2} v_{2}=0
\end{array}\right. \\
& \left\{\begin{array}{l}
u_{13} v_{3}-u v=0 \\
-u_{1} u^{2} v v_{13}+u_{1}^{2} u v v_{1}-u_{1} u v v_{1} v_{13}+u_{1} u v v_{3} v_{13}+u v_{13}-u_{1} v_{3}=0
\end{array}\right.
\end{aligned}
$$

The above differential-difference equations are non-local symmetries of these difference systems. Indeed,

$$
\partial_{x} Q_{i, j}=-S_{i}\left(S_{j}(U)\right) Q_{i, j}+Q_{i, j} U=0 .
$$

A discrete analogue of Kupershmidt's KdV6 equation

$$
\begin{gathered}
\left(D_{x}^{3}+8 u_{x} D_{x}+4 u_{x x}\right)\left(u_{t}+u_{x x x}+6 u_{x}^{2}\right)=0 \\
\left(D_{x} \pm 2 u\right)\left(u_{t}+u_{x x x}-6 u^{2} u_{x}\right)=0
\end{gathered}
$$

System $Q_{1,4}$ can be reduced to one scalar 6-point equation

$$
\left(u_{0,1} S_{1}-u_{2,0}\right)(Q)=0, \quad Q=u_{1,0} u_{0,1}\left(u_{0,0}+u_{1,1}\right)+1
$$

where $u_{i, j}=S_{1}^{i} S_{4}^{j}(u)$. (Similar reduction exist for $Q_{2,4}$ and $Q_{3,4}$).
This 6-point equation admits the following local symmetry,

$$
\partial_{s} u_{0,0}=u_{0,0}\left(S_{1}-1\right) \frac{1}{\left(u_{1,0} u_{0,0} u_{-1,0}-1\right)\left(u_{0,0} u_{-1,0} u_{-2,0}-1\right)}
$$

and a non-local symmetry

$$
\begin{gathered}
\partial_{x} u_{0,0}=u_{0,0} \phi_{0,0} \\
\left(S_{1}+1+S_{1}^{-1}\right)\left(\phi_{0,0}\right)=\left(S_{1}-1\right)\left(u_{0,0} u_{-1,0}+\frac{1}{u_{-1,0}}+\frac{1}{u_{0,0}}\right) \\
\left(S_{1}^{-1}-S_{4}\right)\left(\phi_{0,0}\right)=\left(S_{4}-1\right)\left(\frac{1}{u_{-1,0}}-\frac{1}{u_{0,0}}\right)
\end{gathered}
$$

Potentiations and 6-point scalar equations

Systems $Q_{2,3}$ and $Q_{1,2}$ can be brought via potentiation and invertible transformations to a 6 -point scalar equation,
$w_{0,1} w_{1,0} w_{1,2}-w_{1,0} w_{2,2} w_{1,2}-w_{0,1} w_{1,0} w_{2,1}-w_{0,0} w_{0,1} w_{2,2}+w_{0,0} w_{1,0} w_{2,2}+w_{0,1} w_{2,1} w_{2,2}=0$
$Q_{1,3}$ can be brought via potentiation to the equation
$w_{0,0} w_{1,0} w_{1,2}+w_{0,1} w_{2,1} w_{1,2}-w_{1,0} w_{2,1} w_{1,2}-w_{0,0} w_{2,2} w_{1,2}-w_{0,0} w_{0,1} w_{2,1}+w_{0,0} w_{2,1} w_{2,2}=0$
Indeed, we introduce w such that $u_{n, m}=\frac{w_{n, m+1}}{w_{n, m}}$ and $v_{n, m}=\frac{w_{n, m}}{w_{n+1, m+1}}$. Here $a_{n, m}$ corresponds to a shifted by n units in the 1 direction and m units in the 3 direction.

These equations seem to be new, they are different from the type of equations classified by V.Adler.

Local symmetries

Let \mathbf{A} be the algebra of functions of the variables $u_{p, q}^{j}$ for all $p, q \in \mathbb{Z}$ and $j=1, \ldots, s$.

Each function $f \in \mathbf{A}$ depends on a finite number of the variables $u_{p, q}^{j}$. Depending on the problem, one can consider polynomial, rational, analytic or meromorphic functions.

There are two commuting automorphisms \mathcal{S} and \mathcal{T} of \mathbf{A}

$$
\mathcal{S}^{n} \mathcal{T}^{m} f\left(u_{i, j}, u_{p, k}, \ldots\right)=f\left(u_{i+n, j+m}, u_{p+n, k+m}, \ldots\right)
$$

and thus \mathbf{A} is a difference algebra.

We consider a system of difference equations of arbitrary order

$$
Q^{i}\left(u_{0,0}^{j}, u_{1,0}^{j}, u_{0,1}^{j}, u_{1,1}^{j}, \ldots\right)=0, \quad i=1, \ldots, r, \quad j=1, \ldots, s .
$$

In this system we have r equations for s functions u^{1}, \ldots, u^{s}.
As usual, we assume that equations are valid at every point $(n, m) \in \mathbb{Z}^{2}$, and thus

$$
Q_{p, q}^{i}=Q^{i}\left(u_{p, q}^{j}, u_{p+1, q}^{j}, u_{p, q+1}^{j}, u_{p+1, q+1}^{j}, \ldots\right)=0, \quad(p, q) \in \mathbb{Z}^{2}, \quad i=1, \ldots, r
$$

Local symmetries

With this system we associate the ideal $J_{Q}=\left\langle\left\{Q_{p, q}^{i}\right\}\right\rangle \subset \mathbf{A}$ and the quotient algebra $\mathcal{A}=\mathbf{A} / J_{Q}$.

For any $a \in J_{Q}$ one has $\mathcal{S}(a) \in J_{Q}$ and $\mathcal{T}(a) \in J_{Q}$. Therefore, \mathcal{S} and \mathcal{T} determine well-defined maps from \mathcal{A} to \mathcal{A} which are automorphisms of \mathcal{A}.

Recall that $K=\left(K^{1}, \ldots, K^{s}\right)$ is a symmetry of system $Q=0$ if $Q_{*}(K)=0$ modulo J_{Q}. Here $K^{1}, \ldots, K^{s} \in \mathbf{A}$ and Q_{*} is the Frechét derivative of Q

A vector field

$$
\begin{equation*}
X_{K}=\sum_{\substack{j=1, \ldots, s, s \\(p, q) \in \mathbb{Z}^{j}}} \mathcal{S}^{p} \mathcal{T}^{q}\left(K^{j}\right) \frac{\partial}{\partial \psi_{p, q}^{j},} \tag{1}
\end{equation*}
$$

is a derivation of the algebra \mathbf{A} and satisfies $\mathcal{S} X_{K}=X_{K} \mathcal{S}, \mathcal{T} X_{K}=X_{K} \mathcal{T}$.
The equation $Q_{*}(K)=0$ modulo J_{Q} implies that $X_{K}\left(J_{Q}\right) \subset J_{Q}$. Therefore, X_{K} determines a well-defined derivation of the algebra $\mathcal{A}=\mathbf{A} / J_{Q}$.

Non-local symmetries

A (local) symmetry K of the system $Q=0$ is a map $X_{K}: \mathcal{A} \rightarrow \mathcal{A}$ satisfying $\mathcal{S} X_{K}=X_{K} \mathcal{S}, \quad \mathcal{T} X_{K}=X_{K} \mathcal{T}, \quad X_{K}(f g)=f X_{K}(g)+g X_{K}(f), \quad \forall f, g \in \mathcal{A}$.

A difference extension of $(\mathcal{A}, \mathcal{S}, \mathcal{T})$ is given by $(\tilde{\mathcal{A}}, \tilde{\mathcal{S}}, \tilde{\mathcal{T}})$, where $\tilde{\mathcal{A}}$ is a commutative associative algebra and $\tilde{\mathcal{S}}, \tilde{\mathcal{T}}$ are automorphisms of $\tilde{\mathcal{A}}$ such that

- the algebra \mathcal{A} is embedded in $\tilde{\mathcal{A}}$,
- the restrictions of $\tilde{\mathcal{S}}$ and $\tilde{\mathcal{T}}$ to $\mathcal{A} \subset \tilde{\mathcal{A}}$ coincide with \mathcal{S} and \mathcal{T} respectively,
- one has $\tilde{\mathcal{S}} \tilde{\mathcal{T}}=\tilde{\mathcal{T}} \tilde{\mathcal{S}}$.

Since $\mathbf{A} \subset \tilde{\mathbf{A}}$ and $J_{Q} \subset \mathbf{A}$, one has $J_{Q} \subset \tilde{\mathbf{A}}$. Let $\tilde{J} \subset \tilde{\mathbf{A}}$ be the ideal generated by $J_{Q} \subset \tilde{\mathbf{A}}$. Then one has the natural embedding $\mathcal{A}=\mathbf{A} / J_{Q} \hookrightarrow \tilde{\mathcal{A}}=\tilde{\mathbf{A}} / \tilde{J}$.

A nonlocal symmetry of the system $Q=0$ in the difference extension $(\tilde{\mathcal{A}}, \tilde{\mathcal{S}}, \tilde{\mathcal{T}})$ of $(\mathcal{A}, \mathcal{S}, \mathcal{T})$ is a $\operatorname{map} X: \mathcal{A} \rightarrow \tilde{\mathcal{A}}$ obeying

$$
\tilde{\mathcal{S}} X=X \mathcal{S}, \quad \tilde{\mathcal{T}} X=X \mathcal{T}, \quad X(f g)=f X(g)+g X(f) \quad \forall f, g \in \mathcal{A} .
$$

Here we use the fact that for any $a \in \mathcal{A}$ and $b \in \tilde{\mathcal{A}}$ the product $a b \in \tilde{\mathcal{A}}$ is well defined, because $\mathcal{A} \subset \tilde{\mathcal{A}}$.

Non-local symmetries

Example: Consider the H 1 equation

$$
Q=\left(u_{0,0}-u_{1,1}\right)\left(u_{1,0}-u_{0,1}\right)-\alpha+\beta=0
$$

The following system is compatible modulo J_{Q}

$$
w+w_{1,0}=\left(u_{0,0}-u_{1,0}\right)^{2}+\alpha, \quad w+w_{0,1}=\left(u_{0,0}-u_{0,1}\right)^{2}+\beta
$$

We can extend \mathcal{S}, \mathcal{T} to new variable w by

$$
\begin{array}{cc}
w_{1,0}=-w+\left(u_{0,0}-u_{1,0}\right)^{2}+\alpha, & w_{0,1}=-w+\left(u_{0,0}-u_{0,1}\right)^{2}+\beta \\
w_{-1,0}=-w+\left(u_{-1,0}-u_{0,0}\right)^{2}+\alpha, & w_{0,-1}=-w+\left(u_{0,-1}-u_{0,0}\right)^{2}+\beta
\end{array}
$$

It is easy to check that $K=w$ satisfies $Q_{*}(K)=0$ in $\tilde{\mathcal{A}}$ modulo \tilde{J} and, therefore, determines a nonlocal symmetry for H 1 .

Non-local symmetries

Similar to local symmetries, one can use non-local symmetries to find invariant solutions.

Let us describe solutions of H 1 which are invariant with respect to the nonlocal symmetry $K=w$. According to the definition of symmetry-invariant solutions, we need to solve the system

$$
\begin{gathered}
Q=\left(u_{0,0}-u_{1,1}\right)\left(u_{1,0}-u_{0,1}\right)-\alpha+\beta=0 \\
w_{1,0}=-w+\left(u_{0,0}-u_{1,0}\right)^{2}+\alpha, \quad w_{0,1}=-w+\left(u_{0,0}-u_{0,1}\right)^{2}+\beta \\
w_{-1,0}=-w+\left(u_{-1,0}-u_{0,0}\right)^{2}+\alpha, \quad w_{0,-1}=-w+\left(u_{0,-1}-u_{0,0}\right)^{2}+\beta \\
w=0
\end{gathered}
$$

Taking into account $w=0$, from this system we get

$$
u_{1,0}=u_{0,0}+\sqrt{-\alpha}, \quad u_{0,1}=u_{0,0}+\sqrt{-\beta}
$$

which implies that $u(n, m)=n \sqrt{-\alpha}+m \sqrt{-\beta}+c$, where c is a constant.

Happy Burthday！

