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Plan of the talk

I Algebraic reductions, reduction group and automorphic Lie algebras

I Example: PDEs corresponding to the tetrahedral reduction group
I Elementary Darboux transformations with terahedral reduction symmetry

I Generic and degenerated Darboux transformations
I Corresponding differential difference integrable systems
I Bianchi permutability of Darboux maps and difference systems

I Reduction to a scalar equation - a discrete analogue of Kupershmidt’s
KdV6 equation

I Non-local symmetries of difference equations

Some of the results were obtained together with G.Berkeley, S.Igonin and
P.Xenitidis.



Rational in spectral parameter λ linear problems

(Zakharov, Shabat 1978, Zakharov Mikhailov 1978)
Rational in λ linear problems ⇒ integrable systems of PDEs.

L(λ)Ψ(λ) = 0, A(λ)Ψ(λ) = 0, det Ψ(λ) 6= 0,

L(λ) = Dx−U0−
n∑

k=1

Uk

λ− αk
, A(λ) = Dt−V0−

m∑
p=1

Vp

λ− βp
, Uq ,Vq ∈ MatN2 (C; x , t).

The condition [L(λ),A(λ)] = 0 ⇔ the system of N2(n + m + 1) equations
(assuming αi 6= βj , αi , βj ∈ C):

Dt(U0)− Dx (V0) + [U0,V0] = 0,

Dt(Uk ) + [Uk ,V0 +
m∑

p=1

Vp

αk − βp
] = 0, k = 1, . . . , n,

Dx (Vp)− [U0 +
n∑

k=1

Uk

βp − αk
,Vp ] = 0, p = 1, . . . ,m.

on N2(n + m + 2) functions (entries of Uq,Vq). By a gauge transformation one
can set U0 = V0 = 0 and get a well determined system of N2(n + m) equations.
Eigenvalues of Uk and Vp are arbitrary functions of x and t respectively and
thus we arrive to a well determined system of N(N − 1)(n + m) equations.
z In the case N = 3, n = m = 4 it is 48 equations.



Algebraic reductions, reduction group and automorphic Lie algebras

More general:

L(λ) = Dx − U(λ), A(λ) = Dt − V (λ), U(λ),V (λ) ∈ A(Γ) = A×R(Γ)

where A is a simple Lie algebra and R(Γ) is a ring of meromorphic functions
with poles at the set Γ and no other singularities.

A reduction group G is a subgroup of AutA(Γ), so that G ⊂ AutA(Γ).

Automorphic Lie algebra is A(Γ)G ⊂ A(Γ).

In the case of rational in λ Lax operators a group G is finite, the set Γ is a
finite union of orbits of the group G and AutA(Γ) ⊂ Aut (A× C(λ))

If a finite reduction group G is cyclic and Γ = {0,∞}, then A(Γ)G is a graded
(Kac-Moody) algebra.

In general, A(Γ)G is a quasi-graded (or almost-graded in terminology proposed
by Krichever and Novikov) Lie algebra.

There is a good progress in classification of automorphic Lie algebras (Bury,
AVM, Lombardo, Sanders).



Tetrahedral reduction group

We consider G ∼ T generated by two elements of Aut (sl3(C)× C(λ))

gs : a(λ)→ Qsa(σ−1
s (λ))Q−1

s

gr : a(λ)→ Qra(σ−1
r (λ))Q−1

r

σs(λ) = ωλ , σr (λ) =
λ+ 2

λ− 1

Qs =

 ω 0 0
0 ω2 0
0 0 1

 ,Qr =

 −1 2 2
2 −1 2
2 2 −1


where ω = e

2πi
3 . We have g3

s = g2
r = (gsgr )3 = id.

There are two smallest orbits Γ1 = {1, ω, ω2,∞} and Γ0 = {−2,−2ω,−2ω2, 0}.

Automorphic Lie algebra A(Γ1)G has a quasi-graded structure

A(Γ1)G =
∞⊕
k=0

Ak , Ak = {Jka1, J
ka2, . . . , J

ka8}, [An,Am] ⊂ An+m
⊕
An+m+1

a1 =< λe13 >T, a2 =< λe21 >T, a3 =< λe32 >T

a4 = [a1, a3], a5 = [a2, a1], a6 = [a3, a2]

a7 = [[a1, a3], a2], a8 = [[a2, a1], a3], J =
λ3(λ3 + 8)3

4(λ3 − 1)3



Tetrahedral reduction group
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a2 =< λe21 >T=
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a3 =< λe32 >T=
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b1 =< λ−1e12 >T, b2 =< λ−1e23 >T, b3 =< λ−1e31 >T

b1 =
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 , . . .



Tetrahedral reduction group

L = ∂x + ua1 + va2 + wa3, uvw = 1,

A = ∂t +
3∑

i=1

piai +
6∑

i=4

qiai .

[L,A] = 0 ⇔


iψt = ψxx + ψ̄2

x + i
(
eψ+ψ̄ + ω∗eωψ+ω∗ψ̄ + ωeω

∗ψ+ωψ̄
)
ψ̄x

−iψ̄t = ψ̄xx + ψ2
x − i

(
eψ+ψ̄ + ωeωψ+ω∗ψ̄ + ω∗eω

∗ψ+ωψ̄
)
ψx

B = ∂y + pb1 + qb2 + rb3, pqr = 1

[L,B] = 0 ⇔

 φx = eφ̄ − eψ̄ , ψx = e−φ̄−ψ̄ − eφ̄,

φ̄y = eφ − eψ , ψ̄y = e−φ−ψ − eφ.

If we let x = y , φ̄ = φ, ψ̄ = ψ, then

φxx = e2φ − e−φ.



Elementary Darboux transformations

Darboux transformations M for Lax operators

L = ∂x + ua1 + va2 + wa3, uvw = 1

is a mapping of a fundamental solution LΨ = 0 to a fundamental solution
Ψ1 = M(λ)Ψ, L1Ψ1 = 0 where

L1 = ∂x + u1a1 + v1a2 + w1a3, u1v1w1 = 1.

Let L = ∂x + U, L1 = ∂x + S(U), Ψ1 = S(Ψ), then it follows from [∂x ,S ] = 0
that

Mx(λ) + S(U)M(λ)−M(λ)U = 0

Darboux matrix M(λ) inherits symmetries of the Lax operator. There exists
such M(λ) that

M(λ) = Q−1
s M(ωλ)Qs , M(λ) = Q−1

r M(
λ+ 2

λ− 1
)Qr .



Elementary Darboux transformations

Invariant M with first order poles in λ at Γ is of the form

M = If + α(uvu1a1 + vu1v1a2 + a3).

Where f and α can be found from the condition that det M(λ) is a generating
function of first integrals

det M = EJ(λ) + F1 = E(J(λ)− γ) + F2

J(λ) =
λ3(λ3 + 8)3

4(λ3 − 1)3
, E =

1

16
α3uv 2u2

1v1

F1 =
1

27
(3f +α(1+uvu1−2vu1v1))(3f +α(1−2uvu1+vu1v1))(3f +α(−2+uvu1+vu1v1))

F2 = γE + F1 =
1

27
(3f + α(1 + uvu1 + vu1v1))q, γ = J(1 +

√
3)

where q is an irreducible quadratic polynomial in f . By setting E = 1
16

,
F1 = c1 ∈ C we obtain a generic Darboux matrix parametrised by a constant c1.



Elementary Darboux transformations

There are four degenerate Darboux matrices (three cases when F1 = 0 and one
case when F2 = 0)

M1(u, v , u1, v1) = α(−1

3
(−2 + uvu1 + vu1v1)I + uvu1a1 + vu1v1a2 + a3)

M2(u, v , u2, v2) = β(−1

3
(1 + uvu2 − 2vu2v2)I + uvu2a1 + vu2v2a2 + a3)

M3(u, v , u3, v3) = γ(
1

3
(−1 + 2uvu3 − vu3v3)I + uvu3a1 + vu3v3a2 + a3)

M4(u, v , u4, v4) = δ(−1

3
(1 + uvu4 + vu4v4)I + uvu4a1 + vu4v4a2 + a3).

α3uv 2u2
1v1 = 1, β3uv 2u2

2v2 = 1, γ3uv 2u2
3v3 = 1, δ3uv 2u2

4v4 = 1.



Elementary Darboux transformations

From (Mi )x + Si (U)Mi −MiU = 0 we get corresponding differential-difference
systems (or Bäcklund transformations) −1 S1

S1 + 1 1

 ux
u

vx
v

 =

 1
uv
− 2

u1v
+ 1

u1v1
+ u − u1 − v + v1

− 1
uv

+ 1
u1v
− u + u1


 −1 S2

S2 + 1 1

 ux
u

vx
v

 =

 u2v2
u

+ u − u2 − v2

1
uv
− 1

u2v2
− 2u2v2

u
− u + u2 + v + v2


 −1 S3

S3 + 1 1

 ux
u

vx
v

 =

 uv
v3
− u − v + v3

uv
v3

+ 1
uv
− 1

u3v3
− u3


 −1 S4

S4 + 1 1

 ux
u

vx
v

 =

 u − u4 − v + v4

1
uv
− 1

u4v4
− u + u4


Notice that (

−1 Si

Si + 1 1

)2

= (1 + Si + S2
i )I.



Bianchi permutability of Darboux maps and difference systems

From [Si , Sj ] = 0 it follows that Qi,j = Si (Mj )Mi − Sj (Mi )Mj = 0:{
−uv − uu1u14v4v + uu4u14v4v + u14v4 = 0
−uu2

1vv4 + uu4u1vv4 + u1v4 + uu1vv1v14 − uu1vv4v14 − uv14 = 0{
−u24u2

2v
2
2 v4 + uu24u2

2v2v4 + uu2v2 + uu4u2vv2v4 − uu4u24u2v2v4 − uu4v4 = 0
u2v2 − uv24 − uu2 + uu4 = 0{
−u3v3 + u3u4u34v4v3 − uu3u4vv4 + u4v4 = 0
−u4v4 + uv34 + v34v4 − v3v34 = 0{
uu1v2v2 − u2u12v2

2 v − uv − uu1u12v2v + uu2u12v2v + u12v2 = 0
−uu2

1vv2 − u2u1vv2
2 + uu2u1vv2 + u1v2 + uu1vv2v12 − uv12 = 0{

u2u3u2vv2 + u3uv3 − u2u3uvv2v3 − u2u3u23uv2v3 − uu2v2 + u2
2u23v2

2 v3 = 0
uv23 − u2v2 = 0{
u13v3 − uv = 0
−u1u2vv13 + u2

1uvv1 − u1uvv1v13 + u1uvv3v13 + uv13 − u1v3 = 0

The above differential-difference equations are non-local symmetries of these
difference systems. Indeed,

∂xQi,j = −Si (Sj (U))Qi,j + Qi,jU = 0.



A discrete analogue of Kupershmidt’s KdV6 equation

(D3
x + 8uxDx + 4uxx)(ut + uxxx + 6u2

x ) = 0

(Dx ± 2u)(ut + uxxx − 6u2ux) = 0

System Q1,4 can be reduced to one scalar 6-point equation

(u0,1S1 − u2,0)(Q) = 0, Q = u1,0u0,1(u0,0 + u1,1) + 1

where ui,j = S i
1S j

4(u). (Similar reduction exist for Q2,4 and Q3,4).
This 6-point equation admits the following local symmetry,

∂su0,0 = u0,0(S1 − 1)
1

(u1,0u0,0u−1,0 − 1)(u0,0u−1,0u−2,0 − 1)

and a non-local symmetry
∂xu0,0 = u0,0φ0,0

(S1 + 1 + S−1
1 )(φ0,0) = (S1 − 1)

(
u0,0u−1,0 +

1

u−1,0
+

1

u0,0

)
(S−1

1 − S4)(φ0,0) = (S4 − 1)

(
1

u−1,0
− 1

u0,0

)
.



Potentiations and 6-point scalar equations

Systems Q2,3 and Q1,2 can be brought via potentiation and invertible
transformations to a 6-point scalar equation,

w0,1w1,0w1,2−w1,0w2,2w1,2−w0,1w1,0w2,1−w0,0w0,1w2,2+w0,0w1,0w2,2+w0,1w2,1w2,2 = 0

Q1,3 can be brought via potentiation to the equation

w0,0w1,0w1,2+w0,1w2,1w1,2−w1,0w2,1w1,2−w0,0w2,2w1,2−w0,0w0,1w2,1+w0,0w2,1w2,2 = 0

Indeed, we introduce w such that un,m =
wn,m+1

wn,m
and vn,m =

wn,m

wn+1,m+1
. Here

an,m corresponds to a shifted by n units in the 1 direction and m units in the 3
direction.

These equations seem to be new, they are different from the type of equations
classified by V.Adler.



Local symmetries

Let A be the algebra of functions of the variables uj
p,q for all p, q ∈ Z and

j = 1, . . . , s.

Each function f ∈ A depends on a finite number of the variables uj
p,q.

Depending on the problem, one can consider polynomial, rational, analytic or
meromorphic functions.

There are two commuting automorphisms S and T of A

SnT mf (ui,j , up,k , . . .) = f (ui+n,j+m, up+n,k+m, . . .),

and thus A is a difference algebra.

We consider a system of difference equations of arbitrary order

Q i (uj
0,0, u

j
1,0, u

j
0,1, u

j
1,1, . . . ) = 0, i = 1, . . . , r , j = 1, . . . , s.

In this system we have r equations for s functions u1, . . . , us .
As usual, we assume that equations are valid at every point (n,m) ∈ Z2, and
thus

Q i
p,q = Q i (uj

p,q, u
j
p+1,q, u

j
p,q+1, u

j
p+1,q+1, . . . ) = 0, (p, q) ∈ Z2, i = 1, . . . , r , j = 1, . . . , s.



Local symmetries

With this system we associate the ideal JQ = 〈{Q i
p,q}〉 ⊂ A and the quotient

algebra A = A/JQ .

For any a ∈ JQ one has S(a) ∈ JQ and T (a) ∈ JQ . Therefore, S and T
determine well-defined maps from A to A which are automorphisms of A.

Recall that K = (K 1, . . . ,K s) is a symmetry of system Q = 0 if Q∗(K) = 0
modulo JQ . Here K 1, . . . ,K s ∈ A and Q∗ is the Frechét derivative of Q

A vector field

XK =
∑

j=1,...,s,

(p,q)∈Z2

SpT q(K j)
∂

∂uj
p,q

, (1)

is a derivation of the algebra A and satisfies SXK = XKS, T XK = XKT .

The equation Q∗(K) = 0 modulo JQ implies that XK (JQ) ⊂ JQ . Therefore, XK

determines a well-defined derivation of the algebra A = A/JQ .



Non-local symmetries

A (local) symmetry K of the system Q = 0 is a map XK : A → A satisfying

SXK = XKS, T XK = XKT , XK (fg) = fXK (g)+gXK (f ), ∀ f , g ∈ A.

A difference extension of (A,S, T ) is given by (Ã, S̃, T̃ ), where Ã is a
commutative associative algebra and S̃, T̃ are automorphisms of Ã such that

I the algebra A is embedded in Ã,

I the restrictions of S̃ and T̃ to A ⊂ Ã coincide with S and T respectively,

I one has S̃T̃ = T̃ S̃.

Since A ⊂ Ã and JQ ⊂ A, one has JQ ⊂ Ã. Let J̃ ⊂ Ã be the ideal generated
by JQ ⊂ Ã. Then one has the natural embedding A = A/JQ ↪→ Ã = Ã/J̃.

A nonlocal symmetry of the system Q = 0 in the difference extension
(Ã, S̃, T̃ ) of (A,S, T ) is a map X : A → Ã obeying

S̃X = XS, T̃ X = XT , X (fg) = fX (g) + gX (f ) ∀ f , g ∈ A.

Here we use the fact that for any a ∈ A and b ∈ Ã the product ab ∈ Ã is well
defined, because A ⊂ Ã.



Non-local symmetries

Example: Consider the H1 equation

Q = (u0,0 − u1,1)(u1,0 − u0,1)− α + β = 0.

The following system is compatible modulo JQ

w + w1,0 = (u0,0 − u1,0)2 + α, w + w0,1 = (u0,0 − u0,1)2 + β.

We can extend S, T to new variable w by

w1,0 = −w + (u0,0 − u1,0)2 + α, w0,1 = −w + (u0,0 − u0,1)2 + β,

w−1,0 = −w + (u−1,0 − u0,0)2 + α, w0,−1 = −w + (u0,−1 − u0,0)2 + β,
.

It is easy to check that K = w satisfies Q∗(K) = 0 in Ã modulo J̃ and,
therefore, determines a nonlocal symmetry for H1.



Non-local symmetries

Similar to local symmetries, one can use non-local symmetries to find invariant
solutions.

Let us describe solutions of H1 which are invariant with respect to the nonlocal
symmetry K = w . According to the definition of symmetry-invariant solutions,
we need to solve the system

Q = (u0,0 − u1,1)(u1,0 − u0,1)− α + β = 0,

w1,0 = −w + (u0,0 − u1,0)2 + α, w0,1 = −w + (u0,0 − u0,1)2 + β,

w−1,0 = −w + (u−1,0 − u0,0)2 + α, w0,−1 = −w + (u0,−1 − u0,0)2 + β,

w = 0.

Taking into account w = 0, from this system we get

u1,0 = u0,0 +
√
−α, u0,1 = u0,0 +

√
−β,

which implies that u(n,m) = n
√
−α + m

√
−β + c, where c is a constant.



Happy Burthday!


