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motivation

All the existing approaches to the modelling of longtime evolution of
wind waves are based on the key concept of wave turbulence. The
statistical description is provided by the kinetic equation derived by K.
Hasselmann (1962)

dn(k,x, t)

dt
= Sinput + Sdiss + Snl

The interaction term Snl, dominant for energy carrying waves, is derived
from first principles employing an asymptotic procedure based upon
smallness of nonlinearity parameter ε and a number of additional
assumptions:

Snl = 4π

∫
T 2

0123f0123δ0+1−2−3δ(ω0 + ω1 − ω2 − ω3) dk123, (1)

where f0123 = n2n3(n0 + n1)− n0n1(n2 + n3), ni ≡ n(ki),
δ0+1−2−3 ≡ δ(k0 + k1 − k2 − k3) and T0123 is given by an explicit but
page long formula.



The expression for Snl is derived under the assumption of
quasi-stationarity of the random wave field, and the resulting
equation has a O(ε−4) timescale of evolution

Therefore, strictly speaking, the Hasselmann equation is not
applicable to the situations with rapid changes of the environment,
such as wind gusts

Due to the lack of alternatives, this fact is usually ignored, and the
Hasselmann theory is used to model the response to an instant and
sharp increase or decrease of wind (e.g. Young & van Agthoven
1997). It is not clear to what extent these results can be trusted

There is experimental evidence that after a sharp change of wind
random wind waves appear to evolve faster than O(ε−4) (Vledder &
Holthuijsen 1993; Waseda, Toba & Tullin 2001; Autard & Caulliez
1995; Caulliez 2013)

An example of phenomenon that cannot be legitimately described on
the basis of the Hasselmann equation is squall



statistical description

Let us derive the wave kinetic equation. The starting point is the
Zakharov equation

i
∂b0
∂t

= ω0b0 +

∫
T0123b

∗
1b2b3δ0+1−2−3 dk123 + . . .

Notation: δ0+1−2−3 = δ(k0 + k1 − k2 − k3), dk123 = dk1dk2dk3. Here,
b(k) is complex amplitude in Fourier space, linked to the
Fourier-transformed primitive physical variables ζ(k, t) and ϕ(k, t)
(position of the free surface and the velocity potential at the surface
respectively) through an integral-power series

b(k) =
1√
2

{√
ω(k)

k
ζ(k) + i

√
k

ω(k)
ϕ(k)

}
+O(ε). (2)

Derivation of the Zakharov equation assumes that wave slopes are O(ε)
small, and includes expansion in powers of ε



Now we consider ensembles of random wave fields (each governed by the
deterministic Zakharov equation). We are interested in the ensemble
averaged characteristics of the wave field.

Assumption of spatial homogeneity gives

〈b∗0b1〉 = n0δ0−1

the brackets mean ensemble averaging, the second-order correlator n0 is
the spectral density of wave action at wavevector k = k0.
The classical problem is to find and solve a closed equation in terms of
n(k), i.e. to find evolution of wave action spectral density n(k) with time.



Multiplying the Zakharov equation by b∗0 and its c.c. by b0, upon
ensemble averaging we find

∂n0

∂t
= 2Im

∫
T0123J0123δ0+1−2−3 dk123

J
(0)
0123δ0+1−2−3 =< b∗0b

∗
1b2b3 >

Assumption of Gaussianity gives

< b∗0b
∗
1b2b3 >= n0n1 (δ0−2δ1−3 + δ0−3δ1−2) .

which is real and, since T0123 is also real, does not contribute to
evolution of n0.



Non-gaussian correction J
(1)
0123 is specified by an evolution equation

containing on the right-hand-side the sixth-order correlator I012345.

By assuming quasi-Gaussianity I
(0)
012345 is expressed in terms of the

products of pair correlators. As a result we have(
i
∂

∂t
+ ∆ω

)
J

(1)
0123 = 2T0123f0123, (3)

where ∆ω = ω0 + ω1 − ω2 − ω3, and
f0123 = n2n3(n0 + n1)− n0n1(n2 + n3)



It is usually assumed that n0 and, hence, f0123 depends on slow time µt,
such that µ/∆ω � 1.

Then neglecting
∂

∂t
in

(
i
∂

∂t
+ ∆ω

)
J
(1)
0123 = 2T0123f0123 ⇒

J
(1)
0123(t) ' 2T0123

∆ω
f0123.

This solution represents a large t asymptotics and is understood in terms
of generalized functions

J
(1)
0123(t) = 2T0123

[
P

∆ω
+ iπδ(∆ω)

]
f0123(t), (P is ‘principal value’)

This asymptotic derivation yields the classic kinetic (Hasselmann)
equation and is valid as long as the interest is confined to slow O(ε−4)
evolution.



The generalised kinetic equation

If we allow for faster variability of statistical moments of wave field, we
can use the exact solution for J (1) in the form

J
(1)
0123(t) = −2iT0123

∫ t

0

e−i∆ω(τ−t)f0123 dτ + J
(1)
0123(0)ei∆ωt.

J
(1)
0123(0) is specified by initial conditions. The resulting generalized

kinetic equation (GKE) is

∂n0

∂t
= 4Re

∫
T 2

0123

[∫ t

0

e−i∆ω(τ−t)f0123 dτ

]
δ0+1−2−3 dk123

+2Im

∫ [
iT0123J

(1)
0123(0)ei∆ωt

]
δ0+1−2−3 dk123.

The GKE aims to capture ε−2 evolution and tends to the Hasselmann
equation at large times. The stationary solutions of the Hasselmann
equation are also equilibrium solutions of the GKE.



Initial stages

In general setting the evolution of spectral density n depends not only on

the initial distribution of n, but also on the initial distribution of J
(1)
0123(0).

“Cold start”. Zero value of J
(1)
0123(0) corresponds to the situations where

the wave field is initially free, so that the wave components are not
correlated, and waves begin to interact only after t = 0. Then the GKE
has the form

∂n0

∂t
= 2

∫
T 2

0123

[∫ t

0

cos[∆ω(τ − t)]f0123 dτ

]
δ0+1−2−3 dk123

∂n0

∂t
|t=0 = 0,

∂2n0

∂t2
|t=0 = 2

∫
T 2

0123f0123 δ0+1−2−3 dk123

All odd derivatives are zero, all even derivatives are known.



Timescales

∂n0

∂t
|t=0 = 0,

∂2n0

∂t2
|t=0 = 2

∫
T 2

0123f0123δ0+1−2−3 dk123

Since n ∼ ε2 and the RHS is ∼ n3 ∼ ε6, then the timescale of initial
evolution is O(ε−2).



Higher moments

Kurtosis due to wave interactions

C
(d)
4 = m4/m

2
2 − 3

where

m4 =
3

2
Re

∫
(ω0ω1ω2ω3)1/2J

(1)
0123 dk0123

m2 =

∫
ω0n0 dk0

Kurtosis depends on ReJ
(1)
0123, while the spectral evolution involves

ImJ
(1)
0123. All resonant and non-resonant interactions contribute to

kurtosis, while the spectral evolution depends only on the interactions
close to resonance.



Janssen’s equation

Pulling f0123 out of the integral∫ t

0

e−i∆ω(τ−t)f0123 dτ

and setting J
(1)
0123(0) = 0, we get

∂n0

∂t
= 4

∫
T 2

0123f0123δ0+1−2−3
sin(∆ωt)

∆ω
dk123

This is Janssen’s kinetic equation (Janssen 2003). Its derivation is based
on the assumption that µ/∆ω � 1, and f0123 depends on slow time µt.
In the limit t→∞ we get

lim
t→∞

sin(∆ωt)

∆ω
= πδ(∆ω),

and the equation tends to the Hasselmann equation.



Simulations of the GKE

Grid: 101× 31 (ω, θ), 0.5 ≤ ω ≤ 3 with logarithmic spacing,
−2π/3 ≤ θ ≤ 2π/3,

Initial conditions: Donelan et al (1985) with 2 ≤ U/c ≤ 7.5, ωp = 1.

Algorithm: Runge-Kutta-Fehlberg with automatic step choice (step ≤
1/3 of the period). After each step, all the previous history is stored in
J (1), so there is no integration over the past.

The Hasselmann collision integral is computed using the code kindly
provided by Gerbrant van Vledder (Delft University of Technology).

In the GKE, all resonant and non-resonant interactions should be taken
into account, but actually only nearly resonant interactions contribute to
the spectral evolution. We use a fairly large cutoff ∆ω/ωmin = 0.25, the
total number of interactions is 3 · 109.

A typical computation takes 1-3 days on 64 processors.



Simulations of the GKE

Evolution of energy spectrum E(ω) under constant wind. Initial condition
is taken as an empirical spectrum by Donelan et al (1985) for U/c = 5,
wind forcing corresponds to U/c = 5 at the initial moment, ωp = 1.
Spectra are plotted approximately every 100 characteristic periods



Self-similarity

Evolution of the spectral peak for various U/c, and the theoretical
downshift rate t−6/11



Steepness



Same evolution as in figure 1, obtained by the numerical solution of the
Hasselmann equation



GKE vs Hasselmann. Spectra are plotted every 160 characteristic periods



Wavenumber of the spectral peak for constant wind forcing (U/c = 5 at
t = 0), GKE vs Hasselmann



Wave action of the spectral peak n(kp) for constant wind forcing
(U/c = 5 at t = 0), GKE vs Hasselmann



GKE vs Hasselmann, for initial U/c = 3. Spectra are plotted every 350
characteristic periods



Comparison of 2D spectra: GKE (top) and Hasselmann (bottom), for
initial U/c = 3, after evolution for 1000 periods



Squall

A squall is a sudden, sharp increase in the speed of the sustained winds
over a short time interval.
“A furious squall came up, and the waves broke over the boat, so that it
was nearly swamped” (Mark 4:37)

Wind speed as function of time for the squall. Wind is normalised by the
phase speed of the spectral peak of the initial condition, time is measured
in periods of the spectral peak of the initial condition.



Wave steepness before, during and after the squall, GKE and Hasselmann



Comparison of the GKE, Janssen and Hasselmann equations solutions
during the squall. For a direct comparison, initial conditions are taken as
the GKE spectrum at the beginning of the squall



After the squall



Spectral width after the squall

Evolution of spectral width (taken as the width of the one-dimensional
spectrum at half amplitude of the peak), GKE vs Hasselmann



JONSWAP fit

Illustration of JONSWAP fitting to the numerical spectra



Evolution of peakedness γ

Evolution of the fitted JONSWAP parameter γ, GKE vs Hasselmann



Higher moments

Evolution of dynamic kurtosis C
(d)
4 during and after the squall



Discussion

Under steady wind GKE and Hasselmann equations are, as expected,
in perfect agreement

During the squall, when the spectrum grows rapidly, they are in
perfect agreement too, which is unexpected

The evolution with both equations has the O(ε−4) timescale

After the squall, both equations show a peculiar shape of the spectra
with a dip on the spectral slope

But it is after the squall that the GKE and Hasselmann solutions
diverge: GKE spectra are more narrow with higher peakedness

No O(ε−2) evolution was found

It appears that the Hasselmann equation has a much wider range of
applicability than it follows from the used assumptions

The GKE can be efficiently computed with a fast highly parallel
algorithm, and has a potential to replace the Hasselmann equation
as the basis of wave modelling


