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Gross-Pitaevskii (nonlinear Schrodinger) equation

describes the evolution of a temporal envelope of a spectrally narrow
wave packet, independent of the origin of the waves and the nature of
the nonlinearity
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Conserved quantities

Wave action: Hamiltonian:
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Measure of nonlinearity: H,/Hj.



Cascades of turbulence
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Weak turbulence theories are based on kinetic equation
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Theoretical framework: Zakharov, Lvov, Falkovich (1992)

Inverse cascade: Dyachenko, Newell, Pushkarev, Zakharov (1992)
Direct cascade: Malkin (1996)



Goals of our numerical simulations

1. Compare turbulent spectra to weakly-nonlinear theories
2. Push beyond weakly-nonlinear regime

3. Evaluate the flux of wave action and energy in inverse and
direct cascades



Numerical setup

Kpn=2T/L k =15k, kkk k,=256 k=512

Defocusing nonlinearity, forcing in k-space:
e+ V2 = [YP = it + g

Simulation size: up to 163862 grid points (kmin > %)

Pumping: gk = |gkle’®, |gk| o< \/(k2 — k7)(k? — K?), random ¢,
ki < k < k.. Deposition rate v = N = |2

Small-scale damping' f = —ﬁ(k/kd) (k/ka — 1), k> kq.

Large-scale friction: —(1,1, )ﬁ/ for k = (0,1, v/2)kmin-



Evolution of Inverse Cascade Spectra in
Simulations Without Friction



Inverse cascade: time evolution of non-stabilized spectra
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Early stage: Equipartitioned distribution of wave action.
Later stage: Thermal quazi-equilibrium with chemical potential ;. = kﬁ,
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Relation between T(t) and k,(t)
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Balance of wave action:
T ko \ 2
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Assumption of T(t) — const leads to

k, = Ae™ >t

Deviation is due to non-linear effects, not due to limited domain size.



Non-linear effects in large boxes
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» At higher nonlinearities, ny cannot be described by equilibrium fit.
» Spectra flatten at a lower k and pile-up at intermediate k.
» Flattening occurs even in large boxes.
» Pumping at lower rate « reduces piling-up and extends the spectrum.



Stabilized Spectra of Inverse Cascade

Comparison to Weakly-Nonlinear Theory



Inverse cascade: Effect of forcing and friction
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» Deviation from nx ~ k=2 is small.

» Weak turbulence, four-wave interactions are dominant,

resulting in ng ~ «

1/3

scaling.

» Too high or too low 7y leads to the distortion of spectrum at small k.



Comparison to weakly-nonlinear theory
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Dyachenko, Newell, Pushkarev, Zakharov (1992):
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Analytical correction does not agree with data.

q= 42QT 3



Effect of domain size

non-compensated spectra, o =400 compensated spectra, a =400
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Can we extend the universal part of the spectrum by reducing kmin?

» For given o, domain size does not affect k2 part of the spectrum.

» Pushing kmin — 0 widens equipartitioned part, with k, = const.

» Adjustment of friction does not extend universal part.
» Longer spectrum is expected for lower pumping rate a.



Toward higher nonlinearity
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» At large k, deviation from ny ~ k=2 is small; unlike at weak
nonlinearity, compensated spectra have negative slopes.

» Strong turbulence, three-wave interactions are dominant,
resulting in nx ~ al/? scaling.

» Nonlinearity makes equipartitioned part of the spectrum wider.



Stabilized Spectra of Direct Cascade

Comparison to Weakly-Nonlinear Theory



Direct cascade: compensated spectra
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» Three-wave interactions are dominant, n, ~ «
> Spectra at larger scales are distorted due to nonlinearity and

sensitive to friction, ~.

1/2

> Spectra at small scales are universal and well-described by Malkin's

theory (1996).




Comparison to weakly-nonlinear theory (Malkin, 1996)
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Implicit description in terms of the fraction of wave action contained within a
sphere of radius k, Ni/N, and energy flux P,
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Here, p(m) = fnl, [Iny™']7%dy and C P3.  We show that C x a?.



Comparison to weakly-nonlinear theory (Malkin, 1996)
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The parametric representation does not provide explicit expression for ng(k).

Using approximation papprox(m) = 3(1 — m)%, we obtain
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Low pumping rates (smaller nonlinearity) might extent the range of appicability.




Fluxes of Wave Action and Energy



Flux of wave action
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(|®|?) grows in time and long
modes appear, but

(|1 — ¢o|*) = const

5 spectral space

lw,

— 1
kp,=r k

only k = 1/r contribute to

(|91 — 2)?) = [ |9k|*(1 — cos kr)dk

(lr — o)) ~ /1;0 || dk = const

Take time derivative of (|11 — 12|?) = 2N — (193 + 71b2) to obtain,
Q(r) = 2Im (¥ [va*42) = —N

Q(r) does not depend on distance between two points, r.

Analog of Kolmogorov's 4/5-law!



Flux of wave action in inverse cascade, r > r,
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Q(r) = 2Im(¥f [ *eha) = =N
Simulations confirm:

—Q(r) x N =a~ 0.9« for all scales.
—Q(r)=N forr, Sr<L/16.

Q(r) is constant across the scales in inverse cascade.



Flux of energy in direct cascade, r < r,
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Simulations show:

—Q(r) x N =é ~0.9a for all scales.
—Q"(r) = const, therefore P ~ Qr=2 = const for r < r,.

P(r) is constant across the scales in direct cascade.



Conclusions

» To the first order, weak turbulence spectra can be described by
thermal quazi-equilibrium with chemical potential.

» Correction by Dyachenko, Newell, Pushkarev, Zakharov (1992) for
inverse cascade spectra does not work.

» Correction by Malkin (1996) for direct cascade spectra works well.
» High nonlinearities distort spectra from thermal equilibrium.

» Analog of Kolmogorov's 4/5 law:
Q(r) = 2Im (Y5 | ho) = =N for r>r,;

the flux of wave action is independent of scale in inverse cascade,
while the flux of energy is independent of scale in direct cascade.



