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Gross-Pitaevskii (nonlinear Schrödinger) equation

describes the evolution of a temporal envelope of a spectrally narrow
wave packet, independent of the origin of the waves and the nature of
the nonlinearity

iψt +∇2ψ ± |ψ|2ψ = 0

Conserved quantities

Wave action:

N =

∫
|ψ|2dr =

∫
|ψk |2︸ ︷︷ ︸
nk

dk

Hamiltonian:

H =

∫
|∇ψ|2︸ ︷︷ ︸

Hk

∓ 1
4 |ψ|

4︸ ︷︷ ︸
Hp

dr

Measure of nonlinearity: Hp/Hk .



Cascades of turbulence
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Weak turbulence theories are based on kinetic equation

∂nk
∂t

=
2

(2π)3

∫
δ(k + k1 − k2 − k3)δ(k2 + k2

1 − k2
2 − k2

3 )×

(nk1nk2nk3 + nknk2nk3 − nknk1nk3 − nknk1nk2)dk1dk2dk3

Theoretical framework: Zakharov, Lvov, Falkovich (1992)
Inverse cascade: Dyachenko, Newell, Pushkarev, Zakharov (1992)
Direct cascade: Malkin (1996)



Goals of our numerical simulations

1. Compare turbulent spectra to weakly-nonlinear theories

2. Push beyond weakly-nonlinear regime

3. Evaluate the flux of wave action and energy in inverse and
direct cascades



Numerical setup
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Defocusing nonlinearity, forcing in k-space:

iψt +∇2ψ − |ψ|2ψ = i f̂kψ + i ĝk .

Simulation size: up to 163862 grid points (kmin ≥ 1
16 ).

Pumping: gk = |gk |e iφk , |gk | ∝
√

(k2 − k2
l )(k2

r − k2), random φk ,

kl < k < kr . Deposition rate α = Ṅ ≡ |ψ|2.

Small-scale damping: fk = −β(k/kd)4(k/kd − 1)2, k > kd .

Large-scale friction: fk = −(1, 1, 1√
2

) γ for k = (0, 1,
√

2)kmin.



Evolution of Inverse Cascade Spectra in

Simulations Without Friction



Inverse cascade: time evolution of non-stabilized spectra
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Early stage: Equipartitioned distribution of wave action.
Later stage: Thermal quazi-equilibrium with chemical potential µ = k2

µ,

nk =
T (t)

k2
µ(t) + k2

.



Relation between T (t) and kµ(t)
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Balance of wave action:

π
T

k2
min

ln

[
1 +

(
kp
kµ

)2
]

= α̃t − Nd .

Assumption of T (t)→ const leads to kµ = Ae−κt .
Deviation is due to non-linear effects, not due to limited domain size.



Non-linear effects in large boxes
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I At higher nonlinearities, nk cannot be described by equilibrium fit.

I Spectra flatten at a lower k and pile-up at intermediate k.

I Flattening occurs even in large boxes.

I Pumping at lower rate α reduces piling-up and extends the spectrum.



Stabilized Spectra of Inverse Cascade

Comparison to Weakly-Nonlinear Theory



Inverse cascade: Effect of forcing and friction
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I Deviation from nk ∼ k−2 is small.

I Weak turbulence, four-wave interactions are dominant,
resulting in nk ∼ α1/3 scaling.

I Too high or too low γ leads to the distortion of spectrum at small k.



Comparison to weakly-nonlinear theory
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Dyachenko, Newell, Pushkarev, Zakharov (1992):

k2nk =
T

1 +
(

kµ
k

)2
+ qk2

[
ln k

kmin

]2 , q ≡ 4aQT−3

Analytical correction does not agree with data.



Effect of domain size
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Can we extend the universal part of the spectrum by reducing kmin?

I For given α, domain size does not affect k−2 part of the spectrum.

I Pushing kmin → 0 widens equipartitioned part, with kµ = const.

I Adjustment of friction does not extend universal part.

I Longer spectrum is expected for lower pumping rate α.



Toward higher nonlinearity
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I At large k , deviation from nk ∼ k−2 is small; unlike at weak
nonlinearity, compensated spectra have negative slopes.

I Strong turbulence, three-wave interactions are dominant,
resulting in nk ∼ α1/2 scaling.

I Nonlinearity makes equipartitioned part of the spectrum wider.



Stabilized Spectra of Direct Cascade

Comparison to Weakly-Nonlinear Theory



Direct cascade: compensated spectra
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I Three-wave interactions are dominant, nk ∼ α1/2.

I Spectra at larger scales are distorted due to nonlinearity and
sensitive to friction, γ.

I Spectra at small scales are universal and well-described by Malkin’s
theory (1996).



Comparison to weakly-nonlinear theory (Malkin, 1996)
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Implicit description in terms of the fraction of wave action contained within a
sphere of radius k, Nk/N, and energy flux P,

nkk
2

k2
min

=
C

2π

[
ln

N

Nk

] 1
3

,
C

N
ln

kd
k

= p

(
Nk

N

)
.

Here, p(m) =
∫ 1

m

[
ln y−1

]− 1
3 dy and C ∝ P

1
3 . We show that C ∝ α

1
2 .



Comparison to weakly-nonlinear theory (Malkin, 1996)
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The parametric representation does not provide explicit expression for nk(k).

Using approximation papprox(m) = 3
2
(1−m)

2
3 , we obtain

nkk
2

k2
min

=
C

2π
ln

1
3

[
1−

(
2C

3N
ln

kd
k

)3
2

]
.

Low pumping rates (smaller nonlinearity) might extent the range of appicability.



Fluxes of Wave Action and Energy



Flux of wave action
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〈|ψ|2〉 grows in time and long
modes appear, but

〈|ψ1 − ψ2|2〉 = const

only k = 1/r contribute to
〈|ψ1 − ψ2|2〉 =

∫
|ψk |2(1− cos kr)dk

〈|ψ1 − ψ2|2〉 ∼
∫ ∞
1/r

|ψk |2dk = const

Take time derivative of 〈|ψ1 − ψ2|2〉 = 2N − 〈ψ1ψ
∗
2 + ψ∗1ψ2〉 to obtain,

Q(r) ≡ 2 Im〈ψ∗1 |ψ2|2ψ2〉 = −Ṅ

Q(r) does not depend on distance between two points, r .
Analog of Kolmogorov’s 4/5-law!



Flux of wave action in inverse cascade, r � rp
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Q(r) ≡ 2 Im〈ψ∗1 |ψ2|2ψ2〉 = −Ṅ
Simulations confirm:

−Q(r) ∝ Ṅ = α̃ ≈ 0.9α for all scales.
−Q(r) = Ṅ for rp . r . L/16.

Q(r) is constant across the scales in inverse cascade.



Flux of energy in direct cascade, r � rp

-1.5

-1

-0.5

 0

 0.5

 0 1/8 1/4 3/8 1/2

Q
(r)

 / 
α

r / L

L = 2π

rp

~

α  =   800
α  =   400
α  =   200

-1.5

-1

-0.5

 0

 0.5

 0 1/8 1/4 3/8 1/2

Q
(r)

 / 
α

r / L

α = 400

L = 2π
L = 4π
L = 8π

 0.001

 0.01

 0.1

 1

 0.1  1

- Q
(r)

 / 
α

r / rp
~

α = 400,  L = 2π
α = 400,  L = 4π
α = 400,  L = 8π

12 (r/rp)2

Simulations show:
−Q(r) ∝ Ṅ = α̃ ≈ 0.9α for all scales.
−Q ′′(r) = const, therefore P ∼ Qr−2 = const for r � rp.

P(r) is constant across the scales in direct cascade.



Conclusions

I To the first order, weak turbulence spectra can be described by
thermal quazi-equilibrium with chemical potential.

I Correction by Dyachenko, Newell, Pushkarev, Zakharov (1992) for
inverse cascade spectra does not work.

I Correction by Malkin (1996) for direct cascade spectra works well.

I High nonlinearities distort spectra from thermal equilibrium.

I Analog of Kolmogorov’s 4/5 law:

Q(r) ≡ 2 Im〈ψ∗1 |ψ2|2ψ2〉 = −Ṅ for r > rp;

the flux of wave action is independent of scale in inverse cascade,
while the flux of energy is independent of scale in direct cascade.


