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Introduction: observations of internal waves
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Figure: Undular bore in the Strait of Messina, from
http://earth.esa.int/ers/instruments/sar/applications/ERS-
SARtropical/oceanic/intwaves/intro/



Introduction: observations of internal waves
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Figure: Large-amplitude internal waves in the St. Lawrence - Saguenay coastal
system, from http://myweb.dal.ca/kelley/SLEIWEX/index.php



Introduction: effect of rotation

The evolution of weakly-nonlinear, long internal waves with rotation is
described by the rotation-modified Korteweg-de Vries (KdV) equation or
Ostrovsky equation (Ostrovsky 1978)

{At + VAAL + Mox }x = YA

where v and A are the coefficients of nonlinear and dispersive terms,
respectively and the parameter v = f2/2¢y measures the effect of
rotation when there is no shear flow. Here, ¢y is the linear long wave
phase speed and f is the local Coriolis parameter.

Aim: to derive and study coupled Ostrovsky equations for the case when
a system supports two different long-wave modes with nearly coincident
phase speeds in the presence of a shear flow, extending the previous work
on coupled KdV equations (Gear and Grimshaw 1984, Grimshaw and
looss 2003, etc.)

Coupled Ostrovsky equations have also emerged in the context of waves
in layered elastic waveguides with the soft bonding layer (Khusnutdinova
and Moore 2011).



Introduction: effect of rotation

For oceanic waves (no shear flow) Ay > 0, emergence of an unsteady
nonlinear wave packet (Helfrich 2007, Grimshaw and Helfrich 2012).
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Figure: LHS: Numerical solution of the Ostrovsky equation with the KdV
soliton initial condition (amplitude Ap = 32 and v = A =y = 1). RHS: Phase
velocity for KdV equation (blue curve) and Ostrovsky equation (red curve).

When Ay < 0 the Ostrovsky equation can support steady envelope wave
packets (Galkin and Stepanyants 1991, Obregon and Stepanyants 1998):
magneto - acoustic waves in a rotating plasma.



Derivation of coupled Ostrovsky equations

We consider 2-D flow of an inviscid, incompressible fluid on a rotating
f-plane. In the basic state the fluid has depth h, density stratification
po(z), a corresponding pressure po(z) such that py, = —gpo and a

horizontal shear flow up(z) in the x-direction.

rotation

0 T m > X
free surface

-h flat rigid bottom

Figure: Configuration of the flow



Derivation of coupled Ostrovsky equations

Then the equations of motion relative to the basic state are,

po(ur + uoux + wuoz) + px po + p)(uux + wu, — fv) — p(ue + toux + wiz)

—(
po(Ve + tovx + fu) + pfue = —(po + p)(uvs + wv.) — p(ve + tovi) — pfu,

p:+gp = —(po+p)(we+ (uo+ u)ws + ww),
g(pe + topy) — poN?w = —g(upx + wp:),
uc+w, = 0.

Here, N(z) is the buoyancy frequency, defined by poN?> = —gpo, and f
is the Coriolis parameter. The free surface and rigid bottom boundary
conditions to the above problem are given by

pp+p=0 —at z=n,
e + (uo + u)ne = w at z=mn,
w=20 at z=—h.

The vertical particle displacement ( is defined by the equation
Ce + (o + u)Cx + Wi = w,

and satisfies the boundary condition (=7 at z=un.



Derivation of coupled Ostrovsky equations

To derive coupled Ostovsky equations we introduce the scaled variables
T=eat, O=¢x—ct), f=af
where a = €2 and seek a solution of the form

[C7 U7p7P] = a[ClaulaphPl]+042[§27U27,02>P2]+"' )
[w,v] = aelw,wvi]+ a2e[W2, v+

At the leading order,

G = A0, 7)¢1(2) + Ax(0, 7)a(2),
where ¢1(z) and ¢,(z) are the modal functions given by

(poW? i), + poN?¢; =0, =12
$;i=0 at z=—h, and W?¢,=g¢; at z=0.

Here W; = ¢; — ug(z) where ¢; is the long wave speed corresponding to
the mode ¢;(2).



Derivation of coupled Ostrovsky equations

We are concerned with the case when there are two modes with nearly
coincident speeds ¢; = ¢ and ¢ = ¢ + &® A\, where A is the detuning
parameter.

The asymptotic expansion then yields, at the next order, to the problem

{po(c — uo)*Caoz}z + poN?*Co9 = My at —h<z <0,
po(c — uo)*Coo- — poglao = No at z=0,
(=0 at z=—h,

where My, N, are known expressions containing terms in A; and their

derivatives. Two compatibility conditions need to be imposed on this
system, given by

0
/h Mo 2 dz — [Na12](z =0) = 0.



Derivation of coupled Ostrovsky equations

The outcome is the coupled Ostrovsky equations
L(Arr + p1A1ALs + A1Arsss — 71B1) + vi[A1Aq]s
+12A2A25 + A12A2sss = 11282,

h(Aor + 2 A2A2s + AoAssss + AAos — 12B2) + 1[A1 A
+U1A1ALs + A1 Aisss = 72181,
where By, = A1, Bo, = Az, and the coefficients are given by

0 0
lipi = 3/ po(c — wo)’pitdz, i\ = / po(c — w)*¢i” dz,
h

—h

0 0
l; = 2/ po(c — wo)pi2dz, Ao =An = / po(c — o)’ h12 dz,
h —h

0 0
vy = 3/ po(c — u0) ¢t oz dz, 12 = 3/ po(c — w0)’p2,¢12 dz,
h —h

Here i,j = 1,2 and poW®1 5 = poW 1,2, — (poto)- 1,2,
W=c-— uQ(z). If there is no shear flow, that is ug = 0, then
Y1 =72 = f2/2C and Y12 = Y21 = 0.

0 0
livi = fz/ po®ididz, v = f2/ po®idj; dz .
h h



Three-layer model with shear flow
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We assume U, = 0 without loss of generality. A resonance with two
distinct modes can take place if

h — h —
hy> b by, c=U +{g 1(P; ,01)}1/2 _ U3+{g 3(P; P2)}1/2'
1 3

For given densities p; 23 and layer depths h; 3, these determine the
allowed shear U; — U;. The modal functions and their derivatives are
then found explicitly, and all coefficients of the scaled cO equations

(ut + vux + uxxx + n(uv)x + mvvx 4+ avxxx)x = Bu + v,

(v 4 vvx + dvxxx + Avx + p(uv)x + quux + Auxxx)x = pv +vu

are calculated.



Linear dispersion relation (without shear flow)

The structure of the linear dispersion relation determines the possible
solution types.

Figure: Dispersion curve in the absence of a shear flow (8 = p > 0). The solid
curves show the phase speed, and the dashed curves show the group velocity.

In the presence of a shear flow, 8 # p, and each can be either positive or
negative.



Numerical simulations
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Figure: Typical numerical simulations for the coupled Ostrovsky equations
without shear flow.
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Figure: A cross-section at t = 200.



Linear dispersion relation (with a shear flow)

Case A (3 > 0, > 0): There is no spectral gap in either mode, and
this case is similar to the situation without any background shear. For
both modes the group velocities are negative for all k, and each has a
turning point at k = kpm1,m2 respectively.
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Figure: Typical dispersion curve for Case A.



Numerical simulations

Case A (8 > 0,u > 0):
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Figure: Numerical simulations (Case
corresponding to the point A.
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Figure: Numerical simulations (Case A) using the wave packet initial condition

corresponding to the point B.



Numerical simulations

Case A (3> 0,p > 0):

A typical numerical result is shown below using the KdV solitary wave
initial condition. The generation of two wave packets can be seen in the
u-component, but one of them is too small to be seen in the
v-component. However, the comparison of the numerical modal ratio,
R = ug/ vy, and the speeds of the wave packets, shows a very good
agreement with the theoretical predictions from the dispersion relation.
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Figure: Numerical simulations (Case A) using the weak coupling KdV initial
condition.



Linear dispersion relation (with a shear flow)

Case B (8 > 0, < 0): There is no spectral gap in mode 1, and the
group velocity is negative for all k with a turning point at kK = k,,;. But
mode 2 has a spectral gap, as the phase speed has a maximum value, ¢
at k = ksp. The group velocity is positive as k — 0 and negative as

k — 00. At the value cp» = cs2, the phase and group velocities are equal.

speed

Figure: Typical dispersion curve for Case B.



Numerical simulations

Case B (8 > 0, < 0):
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Figure: Numerical simulations for Case B using the wave packet initial
condition corresponding to the point A.
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Figure: Numerical simulations for Case B using the wave packet initial
condition corresponding to the point B.



Numerical simulations

Case B (8 > 0, < 0):
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Figure: Numerical simulations for Case B using the KdV weak coupling initial

condition.
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Figure: A cross-section at T = 200 for both modes.



Linear dispersion relation (with a shear flow)

Case C (5 < 0, > 0): There is no spectral gap in mode 1, and the
group velocity is negative for all k with a turning point at k = kp,;. But
mode 2 has a spectral gap, as the phase speed has a maximum value, ¢s
at k = ks».The group velocity is positive as k — 0 and negative as

k — 0o. At the value cp» = cs2, the phase and group velocities are equal.
There are two maxima in cg;.
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Figure: Typical dispersion curve for Case C.



Numerical simulations

Case C (5 < 0,u > 0):
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Figure: Numerical simulations for Case C using the wave packet initial
condition corresponding to the point A.
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Figure: Numerical simulations for Case C using the wave packet initial
condition corresponding to the point B.



Numerical simulations

Case C (5 < 0,u > 0):
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Figure: Numerical simulations for Case C using the wave packet initial
condition corresponding to the point K.
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Figure: Numerical simulations for Case C using the wave packet initial
condition corresponding to the point C.



Numerical simulations

Case C (5 < 0,u > 0):
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Figure: Numerical simulations for Case C using the KdV weak coupling initial

condition.
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Figure: A cross-section at T = 400 for both modes.
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Linear dispersion relation (with a shear flow)

Case D (5 < 0,1 < 0): Now both modes have phase speeds with
maxima Cs1, Csp at k = kg1, ksp respectively. For both modes, the group
velocity is positive as k — 0, but negative as k — oo, and at the point of
maximum phase speed, the phase and group velocities for each mode are
equal.
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Figure: Typical dispersion curve for Case D.



Numerical simulations

Case D (5 <0, <0):
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Figure: Numerical simulations for Case D using the wave packet initial
condition corresponding to the point A.
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Figure: Numerical simulations for Case D using a wave packet initial condition
corresponding to point B.



Numerical simulations

Case D (8 <0,u <0):
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Figure: Numerical simulations for Case D using the KdV weak coupling initial
condition.
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Figure: A cross-section at T = 300 for both modes.



Concluding remarks

» Coupled Ostrovsky equations are derived for strongly interacting
internal waves in a density-stratified ocean with a shear flow.

» In the absence of a shear flow, initial solitary-like waves are
destroyed and replaced by two coupled unsteady nonlinear wave
packets, being the counterpart of the same phenomenon in the
single Ostrovsky equation.

» There are several typical solution types when there is a shear flow.
Dominant features of the observed dynamical behaviours can be
classified and interpreted in terms of the main features of the
relevant dispersion curves.

» Sufficiently strong current near a pycnocline may lead to situations
where Ay < 0 for a single Ostrovsky equation (anomalous case).
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